1
|
Fatima I, Uppada JP, Chhonker YS, Gowrikumar S, Barman S, Roy S, Tolentino KT, Palermo N, Natarajan A, Beauchamp DR, Vecchio A, Murry DJ, Singh AB, Hopkins CR, Dhawan P. Identification and characterization of a first-generation inhibitor of claudin-1 in colon cancer progression and metastasis. Biomed Pharmacother 2023; 159:114255. [PMID: 36696800 PMCID: PMC10824272 DOI: 10.1016/j.biopha.2023.114255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of the cancer-related deaths worldwide. Thus, developing novel and targeted therapies for inhibiting CRC progression and metastasis is urgent. Several studies, including ours, have reported a causal role for an upregulated claudin-1 expression in promoting CRC metastasis through the activation of the Src and β-catenin-signaling. In murine models of colon tumorigenesis, claudin-1 overexpression promotes oncogenic properties such as transformation and invasiveness. Conversely, the downregulation of claudin-1 inhibits colon tumorigenesis. Despite being a desirable target for cancer treatment, there are currently no known claudin-1 inhibitors with antitumor efficacy. Using a rigorous analytical design and implementing in- vitro and in-vivo testing and a brief medicinal chemistry campaign, we identified a claudin-1-specific inhibitor and named it I-6. Despite its high potency, I-6 was rapidly cleared in human liver microsomes. We, therefore, synthesized I-6 analogs and discovered a novel small molecule, PDS-0330. We determined that PDS0330 inhibits claudin-1-dependent CRC progression without exhibiting toxicity in in-vitro and in-vivo models of CRC and that it binds directly and specifically to claudin-1 with micromolar affinity. Further analyses revealed that PDS-0330 exhibits antitumor and chemosensitizer activities with favorable pharmacokinetic properties by inhibiting the association with metastatic oncogene Src. Overall, our data propose that PDS-0330 interferes with claudin-1/Src association to inhibit CRC progression and metastasis. Our findings are of direct clinical relevance and may open new therapeutic opportunities in colon cancer treatment and/or management by targeting claudin-1.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jaya Prakash Uppada
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sourav Roy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
| | - Kirsten T Tolentino
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicholas Palermo
- Computational Chemistry Core, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amar Natarajan
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel R Beauchamp
- Surgical Oncology Research Laboratories, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alex Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Targeting Wnt Signaling in Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102351. [PMID: 34068065 PMCID: PMC8152465 DOI: 10.3390/cancers13102351] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wnt has diverse regulatory roles at multiple cellular levels and numerous targeting points, and aberrant Wnt signaling has crucial roles in carcinogenesis, metastasis, cancer recurrence, and chemotherapy resistance; based on these facts, Wnt represents an appealing therapeutic target for cancer treatment. Although preclinical data supports a role for the Wnt signaling pathway in uterine carcinogenesis, this area remains understudied. In this review, we identify the functions of several oncogenes of the Wnt/β-catenin signaling pathway in tumorigenesis and address the translation approach with potent Wnt inhibitors that have already been established or are being investigated to target key components of the pathway. Further research is likely to expand the potential for both biomarker and cancer drug development. There is a scarcity of treatment choices for advanced and recurrent endometrial cancer; investigating the sophisticated connections of Wnt signaling networks in endometrial cancer could address the unmet need for new therapeutic targets. Abstract This review presents new findings on Wnt signaling in endometrial carcinoma and implications for possible future treatments. The Wnt proteins are essential mediators in cell signaling during vertebrate embryo development. Recent biochemical and genetic studies have provided significant insight into Wnt signaling, in particular in cell cycle regulation, inflammation, and cancer. The role of Wnt signaling is well established in gastrointestinal and breast cancers, but its function in gynecologic cancers, especially in endometrial cancers, has not been well elucidated. Development of a subset of endometrial carcinomas has been attributed to activation of the APC/β-catenin signaling pathway (due to β-catenin mutations) and downregulation of Wnt antagonists by epigenetic silencing. The Wnt pathway also appears to be linked to estrogen and progesterone, and new findings implicate it in mTOR and Hedgehog signaling. Therapeutic interference of Wnt signaling remains a significant challenge. Herein, we discuss the Wnt-activating mechanisms in endometrial cancer and review the current advances and challenges in drug discovery.
Collapse
|
3
|
Zhang J, Wang F, Wang H, Wang Y, Wu Y, Xu H, Su C. Paeoniflorin inhibits proliferation of endometrial cancer cells via activating MAPK and NF-κB signaling pathways. Exp Ther Med 2017; 14:5445-5451. [PMID: 29285074 PMCID: PMC5740769 DOI: 10.3892/etm.2017.5250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Paeoniflorin (PAE), a principal bioactive component of Paeonia lactiflora Pall., appears to have antitumor properties. However, the pharmacological activity of PAE in endometrial cancer and the specific mechanisms have remained largely elusive. The present study aimed to determine the antitumor activity of PAE in the human endometrial cancer cell line RL95-2 and explore the potential mechanisms. Cell proliferation was assessed to evaluate the antitumor effect of PAE towards RL95-2 cells via a Cell Counting Kit-8 assay. Protein expression was examined to investigate changes in the signaling pathways of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-κB in RL95-2 cells during PAE treatment by western blot analysis. The results revealed that PAE significantly and dose- and time-dependently inhibited the proliferation of RL95-2 cells. In addition, PAE activated MAPK signaling pathways (p38, JNK and ERK) and the NF-κB signaling pathway. Furthermore, p38 MAPK and NF-κB inhibitors (SB203580 and MG-132, respectively) prevented PAE-induced proliferative inhibition in RL95-2 cells. However, ERK and JNK inhibitors (PD98059 and BI-78D3, respectively) did not produce such an inhibition. In conclusion, the present study demonstrated that PAE exerts its anti-proliferative activity via activating p38 MAPK and NF-κB signaling pathways in endometrial cancer cells, providing a potential new drug of choice for endometrial cancer therapy.
Collapse
Affiliation(s)
- Jianxin Zhang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fengchun Wang
- Department of General Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Huali Wang
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yanna Wang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yan Wu
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hui Xu
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chen Su
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
4
|
Dai H, Chen H, Liu W, You Y, Tan J, Yang A, Lai X, Bie P. Effects of Raf kinase inhibitor protein expression on pancreatic cancer cell growth and motility: an in vivo and in vitro study. J Cancer Res Clin Oncol 2016; 142:2107-17. [PMID: 27444299 DOI: 10.1007/s00432-016-2206-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/08/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE Raf kinase inhibitor protein (RKIP) is a tumor suppressor that inhibits cell growth and metastasis of malignant tumors. Pancreatic cancer is a leading cause of cancer death with a low survival rate. RKIP expression and its role in tumorigenesis and metastasis in pancreatic cancer are poorly understood. The aims of our study were to assess the effects of RKIP on pancreatic carcinoma cells in vitro and in tumor tissues in vivo. METHODS This study included 84 patients with histologically confirmed pancreatic adenocarcinoma. The expression levels of RKIP were measured in pancreatic cancer tissues and adjacent normal tissues using real-time PCR and immunohistochemistry. Overexpression plasmid of RKIP was transfected into SW1990 and AsPC-1 cell lines, and the effects on cell proliferation were studied using a Cell Counting Kit-8 assay. MEK1/2 and ERK1/2 were detected by Western blot and immunofluorescence assay. RESULTS Results showed a reduced expression of RKIP in pancreatic carcinoma tissues compared with adjacent normal tissues, which closely correlated with patient outcomes. Overexpression of RKIP suppressed cell proliferation and promoted apoptosis in cultured SW1990 and AsPC-1 cell lines. Transwell assay showed RKIP can inhibit cell migration and invasion, and in vivo RKIP can suppress tumorigenesis by diminishing the volume of the tumors. CONCLUSIONS In conclusion, expression of RKIP is closely correlated with the survival of pancreatic cancer patients. RKIP can inhibit pancreatic adenocarcinoma cells proliferation, activities of migration and invasion, through downregulating Raf-1-MEK1/2-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Haowei Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Yu You
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Jiaxin Tan
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Aigang Yang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Xiangdong Lai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China
| | - Ping Bie
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 404100, People's Republic of China.
| |
Collapse
|
5
|
Chandra V, Kim JJ, Benbrook DM, Dwivedi A, Rai R. Therapeutic options for management of endometrial hyperplasia. J Gynecol Oncol 2015; 27:e8. [PMID: 26463434 PMCID: PMC4695458 DOI: 10.3802/jgo.2016.27.e8] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Endometrial hyperplasia (EH) comprises a spectrum of changes in the endometrium ranging from a slightly disordered pattern that exaggerates the alterations seen in the late proliferative phase of the menstrual cycle to irregular, hyperchromatic lesions that are similar to endometrioid adenocarcinoma. Generally, EH is caused by continuous exposure of estrogen unopposed by progesterone, polycystic ovary syndrome, tamoxifen, or hormone replacement therapy. Since it can progress, or often occur coincidentally with endometrial carcinoma, EH is of clinical importance, and the reversion of hyperplasia to normal endometrium represents the key conservative treatment for prevention of the development of adenocarcinoma. Presently, cyclic progestin or hysterectomy constitutes the major treatment option for EH without or with atypia, respectively. However, clinical trials of hormonal therapies and definitive standard treatments remain to be established for the management of EH. Moreover, therapeutic options for EH patients who wish to preserve fertility are challenging and require nonsurgical management. Therefore, future studies should focus on evaluation of new treatment strategies and novel compounds that could simultaneously target pathways involved in the pathogenesis of estradiol-induced EH. Novel therapeutic agents precisely targeting the inhibition of estrogen receptor, growth factor receptors, and signal transduction pathways are likely to constitute an optimal approach for treatment of EH.
Collapse
Affiliation(s)
- Vishal Chandra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jong Joo Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea
| | - Doris Mangiaracina Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajani Rai
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea.
| |
Collapse
|
6
|
Du XW, Stanley LM. Tandem Alkyne Hydroacylation and Oxo-Michael Addition: Diastereoselective Synthesis of 2,3-Disubstituted Chroman-4-ones and Fluorinated Derivatives. Org Lett 2015; 17:3276-9. [PMID: 26098453 PMCID: PMC4874191 DOI: 10.1021/acs.orglett.5b01447] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tandem reactions involving Rh-catalyzed intermolecular hydroacylations of alkynes with salicylaldehydes followed by intramolecular oxo-Michael additions are described for the diastereoselective synthesis of 2,3-disubstituted chroman-4-ones. The tandem hydroacylation/oxo-Michael additions occur to form 2,3-disubstituted chroman-4-ones in high yields from a range of 1,2-disubstituted acetylenes and substituted salicylaldehyes. The resulting 2,3-disubstituted chroman-4-ones are readily fluorinated to form trans-3-fluoro-2,3-disubstituted chroman-4-ones in high yields with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Xiang-Wei Du
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50014 (USA)
| | - Levi M. Stanley
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50014 (USA)
| |
Collapse
|
7
|
Synthesis of targeted dibenzo[b,f]thiepines and dibenzo[b,f]oxepines as potential lead molecules with promising anti-breast cancer activity. Eur J Med Chem 2015; 99:113-24. [PMID: 26067208 DOI: 10.1016/j.ejmech.2015.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/18/2023]
Abstract
A targeted library of substituted dibenzo[b,f]thiepines and dibenzo[b,f]oxepines (prototypes I, II and III), and structurally analogous to tamoxifen have been synthesized as a new class of anti-breast cancer agents. All the prototype molecules exhibited potential antiproliferative activity against ER + ve and ER-ve breast cancer cell lines. Dibenzo[b,f]thiepine prototypes were found to be more active. Of all the compound tested, 14b exhibited potent in-vitro antiproliferative activity at 1.33 μM and 5 μM concentration in MCF-7 and MDA-MB-231 cell lines and was devoid of any cytotoxicity in normal HEK cells even at 50 μM. Cell cycle analysis showed that the compound 14b inhibited cell proliferation due to G0/G1 arrest in MCF-7 cells. Annexin-V FITC and PI staining experiments confirmed that the cell inhibition was primarily due to apoptosis and not by necrosis, which was also supported by LDH release assay experiment. Molecular docking studies showed better binding interaction of the new dibenzo[b,f]thiepine analogue 14b with the estrogen receptor (ER) as compared to 4-hydroxy-tamoxifen and this enhanced binding might be responsible for its estrogen antagonistic activity that induces cell cycle arrest, apoptosis and inhibition of breast cancer cells.
Collapse
|
8
|
Chandra V, Fatima I, Manohar M, Popli P, Sirohi VK, Hussain MK, Hajela K, Sankhwar P, Dwivedi A. Inhibitory effect of 2-(piperidinoethoxyphenyl)-3-(4-hydroxyphenyl)-2H-benzo(b)pyran (K-1) on human primary endometrial hyperplasial cells mediated via combined suppression of Wnt/β-catenin signaling and PI3K/Akt survival pathway. Cell Death Dis 2014; 5:e1380. [PMID: 25144715 PMCID: PMC4454309 DOI: 10.1038/cddis.2014.334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023]
Abstract
Endometrial hyperplasia is a precursor to the most common gynecologic cancer diagnosed in women. Apart from estrogenic induction, aberrant activation of the Wnt/β-catenin signal is well known to correlate with endometrial hyperplasia and its carcinoma. The benzopyran compound 2-(piperidinoethoxyphenyl)-3-(4-hydroxyphenyl)-2H-benzo (b) pyran(K-1), a potent antiestrogenic agent, has been shown to have apoptosis-inducing activity in rat uterine hyperplasia. The current study was undertaken to explore the effect of the benzopyran compound K-1 on growth and Wnt signaling in human endometrial hyperplasial cells. Primary culture of atypical endometrial hyperplasial cells was characterized by the epithelial cell marker cytokeratin-7. Results revealed that compound K-1 reduced the viability of primary endometrial hyperplasial cells and expression of ERα, PR, PCNA, Wnt7a, FZD6, pGsk3β and β-catenin without affecting the growth of the primary culture of normal endometrial cells. The β-catenin target genes CyclinD1 and c-myc were also found to be reduced, whereas the expression of axin2 and Wnt/β-catenin signaling inhibitor Dkk-1 was found to be upregulated, which caused the reduced interaction of Wnt7a and FZD6. Nuclear accumulation of β-catenin was found to be decreased by compound K-1. K-1 also suppressed the pPI3K/pAkt survival pathway and induced the cleavage of caspases and PARP, thus subsequently causing the apoptosis of endometrial hyperplasial cells. In conclusion, compound K-1 suppressed the growth of human primary endometrial hyperplasial cells through discontinued Wnt/β-catenin signaling and induced apoptosis via inhibiting the PI3K/Akt survival pathway.
Collapse
Affiliation(s)
- V Chandra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - I Fatima
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - M Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - P Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - V K Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - M K Hussain
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - K Hajela
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - P Sankhwar
- Department of Obstetrics & Gynecology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - A Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Hussain MK, Ansari MI, Yadav N, Gupta PK, Gupta AK, Saxena R, Fatima I, Manohar M, Kushwaha P, Khedgikar V, Gautam J, Kant R, Maulik PR, Trivedi R, Dwivedi A, Kumar KR, Saxena AK, Hajela K. Design and synthesis of ERα/ERβ selective coumarin and chromene derivatives as potential anti-breast cancer and anti-osteoporotic agents. RSC Adv 2014. [DOI: 10.1039/c3ra45749d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
10
|
Qu J, Liu W, Huang C, Xu C, Du G, Gu A, Wang X. Estrogen receptors are involved in polychlorinated biphenyl-induced apoptosis on mouse spermatocyte GC-2 cell line. Toxicol In Vitro 2013; 28:373-80. [PMID: 24216299 DOI: 10.1016/j.tiv.2013.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/28/2013] [Accepted: 10/23/2013] [Indexed: 01/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent environmental contaminants which have been shown to have reproductive toxicity and to disturb spermatogenesis. But the precise mechanism is not clear. A mouse pachytene spermatocyte-derived cell line, GC-2 cells were used in the present study to investigate the toxic effect of PCBs (Aroclor 1254) and explore the underlying molecular mechanism. Results showed that Aroclor 1254 inhibited cell proliferation, caused the arrest of cells in G0/G1 phase and induced apoptosis which might be partly explained by the decreased expression of Bcl-2 and cell cycle regulator cyclin D1 together with the activation of caspase-3. Besides, the treatment of Aroclor 1254 decreased the protein expression of estrogen receptor (ER)-α while increasing that of ERβ. Then the administration of selective ERα agonist PPT partly reversed Aroclor 1254-induced alteration in Bcl-2, caspase-3 and cyclin D1 protein expression while selective ERβ agonist DPN accelerated it. These results suggest that Aroclor 1254, working through ERα and ERβ, interferes with the expression of proteins involved in the balance between cellular apoptosis and proliferation.
Collapse
Affiliation(s)
- Jianhua Qu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; School of Public Health, NanTong University, 9 Seyuan Road, Nantong 226019, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Saxena R, Fatima I, Chandra V, Blesson CS, Kharkwal G, Hussain MK, Hajela K, Roy BG, Dwivedi A. Benzopyran derivative CDRI-85/287 induces G2-M arrest in estrogen receptor-positive breast cancer cells via modulation of estrogen receptors α- and β-mediated signaling, in parallel to EGFR signaling and suppresses the growth of tumor xenograft. Steroids 2013; 78:1071-86. [PMID: 23891847 DOI: 10.1016/j.steroids.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 05/07/2013] [Accepted: 07/15/2013] [Indexed: 12/27/2022]
Abstract
In an endeavor to develop novel and improved selective estrogen receptor modulators as anti-breast cancer agents, the benzopyran compounds have been synthesized and identified which act as potent anti-estrogen at uterine level. The present study evaluates the anti-tumor activity of 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) and explores the mechanism of action with a view to describe its potential to inhibit proliferation in ER-positive breast cancer cells MCF-7 and T47D. The compound decreased the expression of ERα while increased the expression of ERβ thereby altering ERα/ERβ ratio in both cell lines. Although the compound showed low binding affinity to ERs, it acted as ERα antagonist and ERβ agonist in decreasing ERE- or AP-1-mediated transcriptional activation in these cells. Transactivation studies in ERα/β-transfected MDA-MB231 cells suggested that at cyclin D1 promoter, compound antagonized the action of ERα-mediated E2 response while acted as estrogen agonist via ERβ. Further, the compound led to decreased expression of ERα-dependent proliferation markers and ERβ-dependent cell cycle progression markers. The expression of cell cycle inhibitory protein p21 was increased leading to G2/M phase arrest. In parallel, compound also interfered with EGFR activation, caused inhibition of PI-3-K/Akt pathway and subsequent induction of apoptosis via intrinsic pathway. A significant reduction in tumor mass and volume was observed in 85/287-treated mice bearing MCF-7 xenograft. We conclude that compound 85/287 exhibits significant anti-tumor activity via modulation of genomic as well as non-genomic mechanisms involved in cellular growth and arrested the cells in G2 phase in both MCF-7 and T47D breast cancer cells. Study suggests that CDRI-85/287 may have therapeutic potential in ER-positive breast cancer.
Collapse
Affiliation(s)
- Ruchi Saxena
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fatima I, Saxena R, Kharkwal G, Hussain MK, Yadav N, Hajela K, Sankhwar PL, Dwivedi A. The anti-proliferative effect of 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b) pyran is potentiated via induction of estrogen receptor beta and p21 in human endometrial adenocarcinoma cells. J Steroid Biochem Mol Biol 2013; 138:123-31. [PMID: 23688837 DOI: 10.1016/j.jsbmb.2013.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Abstract
In an effort to develop novel therapeutic agents for endometrial cancer, benzopyran derivatives synthesized at our institute display significant inhibitory activity on cellular growth in uterine cancer cells. The current study was undertaken to demonstrate and explore the estrogen receptor (ER) subtype mediated mechanism of action of benzopyran derivative 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b) pyran (K-1) in human endometrial cancer cells. K-1 competitively inhibited the estradiol binding to human ERα and ERβ and showed growth inhibitory activity in human endometrial Ishikawa, HEC1B and primary endometrial adenocarcinoma cells. Transient transactivation assays carried out in COS-1 cells have demonstrated the diminished ERα-ERE mediated- and induced the ERβ-ERE mediated-transactivation triggered by compound. It also induced ER-mediated transactivation of the cyclin-dependent kinase inhibitor (CDKI) p21(WAF-1) in both COS-1 cells and in Ishikawa cells. ERβ inducing effects of compound were blocked by ICI182,780. In endometrial adenocarcinoma cells, it induced ERβ and p21 expression significantly whereas the expression of fos, jun and ERα were significantly reduced. In addition, compound promoted ERα-β heterodimerization as observed in Ishikawa cells. These results demonstrate that the benzopyran compound suppressed the cellular growth via ERβ agonism, induction of p21 and via promoting the ERα-β heterodimerization, in addition to its antagonistic effects exerted on ERα, in human endometrial cancer cells. The study suggests that the dual action of benzopyran molecule may be of significant therapeutic value in ERα/β-positive cases of endometrial cancer.
Collapse
Affiliation(s)
- I Fatima
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226001, U.P., India
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chemotherapeutic Potential of 2-[Piperidinoethoxyphenyl]-3-Phenyl-2H-Benzo(b)pyran in Estrogen Receptor- Negative Breast Cancer Cells: Action via Prevention of EGFR Activation and Combined Inhibition of PI-3-K/Akt/FOXO and MEK/Erk/AP-1 Pathways. PLoS One 2013; 8:e66246. [PMID: 23840429 PMCID: PMC3686794 DOI: 10.1371/journal.pone.0066246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Inhibition of epidermal growth factor receptor (EGFR) signaling is considered to be a promising treatment strategy for estrogen receptor (ER)-negative breast tumors. We have investigated here the anti-breast cancer properties of a novel anti-proliferative benzopyran compound namely, 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) in ER- negative and EGFR- overexpressing breast cancer cells. The benzopyran compound selectively inhibited the EGF-induced growth of MDA-MB 231 cells and ER-negative primary breast cancer cell culture. The compound significantly reduced tumor growth in xenograft of MDA-MB 231 cells in nude mice. The compound displayed better binding affinity for EGFR than inhibitor AG1478 as demonstrated by molecular docking studies. CDRI-85/287 significantly inhibited the activation of EGFR and downstream effectors MEK/Erk and PI-3-K/Akt. Subsequent inhibition of AP-1 promoter activity resulted in decreased transcription activation and expression of c-fos and c-jun. Dephosphorylation of downstream effectors FOXO-3a and NF-κB led to increased expression of p27 and decreased expression of cyclin D1 which was responsible for decreased phosphorylation of Rb and prevented the transcription of E2F- dependent genes involved in cell cycle progression from G1/S phase. The compound induced apoptosis via mitochondrial pathway and it also inhibited EGF-induced invasion of MDA-MB 231 cells as evidenced by decreased activity of MMP-9 and expression of CTGF. These results indicate that benzopyran compound CDRI-85/287 could constitute a powerful new chemotherapeutic agent against ER-negative and EGFR over-expressing breast tumors.
Collapse
|
14
|
Chandra V, Fatima I, Saxena R, Hussain M, Hajela K, Sankhwar P, Roy B, Chandna S, Dwivedi A. Anti-tumorigenic action of 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b)pyran: Evidence for involvement of GPR30/EGFR signaling pathway. Gynecol Oncol 2013; 129:433-42. [DOI: 10.1016/j.ygyno.2013.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/11/2013] [Accepted: 02/03/2013] [Indexed: 01/01/2023]
|
15
|
(-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation. J Nutr Biochem 2012; 24:940-7. [PMID: 22959059 DOI: 10.1016/j.jnutbio.2012.06.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 01/26/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit carcinogenesis of various tumor types. The aim of this study was to elucidate the antiproliferative potential of EGCG and its mechanism in human endometrial cancer cells (Ishikawa cells) and primary endometrial adenocarcinoma cells. The antiproliferative effect of EGCG was evaluated by cell viability assay. Apoptosis was measured by annexin/propidium iodide staining. Reactive oxygen species (ROS) generation was measured by using 2',7'-dichlorofluorescin diacetate dye. Expression of mitogen-activated protein kinases, proliferation and apoptotic markers were measured by immunoblot analysis. EGCG was found to inhibit proliferation in Ishikawa as well as in primary endometrial adenocarcinoma cells and effectively down-regulated the expression of proliferation markers, i.e., estrogen receptor α, progesterone receptor, proliferating cell nuclear antigen and cyclin D1. EGCG also decreased the activation of ERK and downstream transcription factors fos and jun. EGCG caused apoptotic cell death accompanied by up-regulation of proapoptotic Bax and down-regulation of antiapoptotic protein Bcl2. EGCG induced the cleavage of caspase-3 and poly(ADP-ribose) polymerase, the hallmark of apoptosis. EGCG significantly induced the ROS generation as well as p38 activation in Ishikawa cells, which appeared to be a critical mediator in EGCG-induced apoptosis. The apoptotic effect of EGCG and the p38 activation were blocked by pretreatment of cells with the ROS scavenger N-acetylcysteine. EGCG reduced the glutathione levels, which might be responsible for enhanced ROS generation causing oxidative stress in endometrial cancer cells. Taken together, these results suggest that EGCG inhibits cellular proliferation via inhibiting ERK activation and inducing apoptosis via ROS generation and p38 activation in endometrial carcinoma cells.
Collapse
|