1
|
Spicer LJ, Evans JR, Schreiber NB. Hormone regulation of thrombospondin-1 mRNA in porcine granulosa cells in vitro. Anim Reprod Sci 2022; 244:107048. [PMID: 35914333 PMCID: PMC10867812 DOI: 10.1016/j.anireprosci.2022.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
Thrombospondin-1 (THBS1) is involved in the process of angiogenesis and is down-regulated by insulin-like growth factor 1 (IGF1) in porcine granulosa cells (GC), but what other hormones regulate GC THBS1 and its role in follicular growth is unclear. Thus, six experiments were conducted to determine the influence of other hormones on THBS1 gene expression in porcine GC, and to determine if THBS1 mRNA changes during follicular development. For Exp. 1-5, small (1-5 mm) follicles from ovaries of abattoir gilts were aspirated, GC collected and treated with FSH, IGF1, fibroblast growth factor 9 (FGF9), Sonic hedgehog (SHH), estradiol, cortisol, and/or prostaglandin E2 (PGE2). FSH, IGF1 and FGF9 each decreased (P < 0.05) THBS1 mRNA abundance. Alone, PGE2 increased (P < 0.05) THBS1 mRNA abundance. PGE2 significantly attenuated the FSH-induced inhibition of THBS1 mRNA expression. Estradiol, cortisol, and SHH had no effect on THBS1 mRNA abundance. In Exp. 6, small (1-3 mm), medium (4-6 mm) and large (7-14 mm) follicles were aspirated to measure abundance of THBS1 mRNA in GC which did not differ (P > 0.10) between small and medium-sized follicles but was threefold greater (P < 0.05) in large compared to small or medium follicles. We hypothesize that the inhibitory effects of FSH, IGF1 and FGF9 on the antiangiogenic gene THBS1 could contribute to promoting angiogenesis in the developing follicle, while stimulation of THBS1 mRNA by PGE2 may help reduce angiogenesis during the preovulatory period when PGE2 and THBS1 mRNA are at their greatest levels.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - John R Evans
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nicole B Schreiber
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Bu Q, Liu S, Wang Z, Zou J, Wang P, Cao H, Li D, Cao B, An X, Song Y, Li G. PITX2 regulates steroidogenesis in granulosa cells of dairy goat by the WNT/β-catenin pathway. Gen Comp Endocrinol 2022; 321-322:114027. [PMID: 35300988 DOI: 10.1016/j.ygcen.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
Abstract
Paired-like homeodomain transcription factor 2 (PITX2), a major driver of multiple tissue development, is a transcription factor that regulates gene expression in organisms. However, it is unknown if PITX2 regulates goat granulosa cell (GC) steroidogenesis. Therefore, we investigated the role and mechanism of PITX2 in GC steroidogenesis. In our study, PITX2 significantly facilitated the secretion level of estrogen and progesterone through increasing CYP11A1, CYP19A1, and STAR mRNA and protein expressions in GCs. Furthermore, PITX2 participated in the WNT pathway, enhancing the production of E2 and P4 in GCs. PITX2 in GCs increased the DVL-1 and CTNNB1 expression, involved in the WNT/β-catenin signaling pathway related to steroidogenesis. Moreover, GC steroidogenesis-related gene translation was decreased by CTNNB1-siRNA but enhanced when transfected with PITX2. PITX2 regulates secretion of E2 and P4 from GCs via the WNT/β-catenin pathway and alters GC proliferation and steroidogenesis. These findings will help understand the role of PITX2 in goat ovarian follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Qiqi Bu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiahao Zou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dexian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Dri M, Klinger FG, De Felici M. The ovarian reserve as target of insulin/IGF and ROS in metabolic disorder-dependent ovarian dysfunctions. REPRODUCTION AND FERTILITY 2022; 2:R103-R112. [PMID: 35118400 PMCID: PMC8801032 DOI: 10.1530/raf-21-0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
It is known for a long time that metabolic disorders can cause ovarian dysfunctions and affect a woman’s fertility either by direct targeting follicular cells and/or the oocytes or by indirect interference with the pituitary-hypothalamic axis, resulting in dysfunctional oogenesis. Such disorders may also influence the efficiency of the embryo implantation and the quality of the embryo with permanent effects on the fertility and health of the offspring. Thanks to the expanding knowledge on the molecular mechanisms governing oogenesis and folliculogenesis in mammals, we are beginning to understand how such disorders can negatively affect this process and consequently fertility in women. In the present review, we point out and discuss how the disturbance of insulin/IGF-dependent signalling and increased reactive oxygen species (ROS) level in the ovary typically associated to metabolic disorders such as type II diabetes and obesity can dysregulate the dynamics of the ovarian reserve and/or impair the survival and competence of the oocytes.
Collapse
Affiliation(s)
- Maria Dri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Foster BM, Langsten KL, Mansour A, Shi L, Kerr BA. Tissue distribution of stem cell factor in adults. Exp Mol Pathol 2021; 122:104678. [PMID: 34450114 PMCID: PMC8516741 DOI: 10.1016/j.yexmp.2021.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
Stem cell factor (SCF) is an essential cytokine during development and is necessary for gametogenesis, hematopoiesis, mast cell development, stem cell function, and melanogenesis. Here, we measure SCF concentration and distribution in adult humans and mice using gene expression analysis, tissue staining, and organ protein lysates. We demonstrate continued SCF expression in many cell types and tissues into adulthood. Tissues with high expression in adult humans included stomach, spleen, kidney, lung, and pancreas. In mice, we found high SCF expression in the esophagus, ovary, uterus, kidney, and small intestine. Future studies may correlate our findings of increased, organ-specific SCF concentrations within adult tissues with increased risk of SCF/CD117-related disease.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kendall L Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Ammar Mansour
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
5
|
Yamochi T, Hashimoto S, Morimoto Y. Mural granulosa cells support to maintain the viability of growing porcine oocytes and its developmental competence after insemination. J Assist Reprod Genet 2021; 38:2591-2599. [PMID: 33970370 DOI: 10.1007/s10815-021-02212-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To enhance the in vitro growth of porcine oocytes, we studied the effect of mural granulosa cells (MGCs) on the viability of oocytes attached to granulosa cells (oocyte-granulosa cell complexes, OGCs) that were obtained from early antral follicles. METHODS AND RESULTS When OGCs were cultured with MGCs for 12 days, there were significant improvement (P < 0.05) in the robustness of gap junctional communication between the oocyte and the granulosa cells (82% vs. 59%), the survival rate of oocytes (57% vs. 39%), and the diameter of survived oocytes (118 μm vs. 112 μm). The rate of oocyte release of OGCs cultured with MGCs on the 12th day (1.9%) was significantly lower than that of OGCs cultured without MGCs (26%). Complete meiotic arrest was maintained in the group with MGCs (100%), while partial resumption of spontaneous meiosis was noticed in the absence of MGCs (10-19%). Furthermore, the presence of MGCs increased the oocyte maturation rate after maturation culture in both 12- and 14-day culture groups (P < 0.05, 85-88%) compared to OGCs cultured without MGCs (48-60%). MGCs also significantly improved the blastocyst formation rate (day 7) after ICSI (P < 0.05). CONCLUSIONS The data of this study thus shows that the presence of MGCs during in vitro oocyte growth plays a crucial role in supporting the developmental competence of growing porcine oocytes attached to the granulosa cells via enhancement of their viability.
Collapse
Affiliation(s)
- Takayuki Yamochi
- Reproductive Science Laboratory, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan.,IVF Namba Clinic, Osaka, 550-0015, Japan
| | - Shu Hashimoto
- Reproductive Science Laboratory, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan. .,IVF Namba Clinic, Osaka, 550-0015, Japan.
| | | |
Collapse
|
6
|
Activation-induced cytidine deaminase is a possible regulator of cross-talk between oocytes and granulosa cells through GDF-9 and SCF feedback system. Sci Rep 2021; 11:3833. [PMID: 33589683 PMCID: PMC7884688 DOI: 10.1038/s41598-021-83529-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID, Aicda) is a master gene regulating class switching of immunoglobulin genes. In this study, we investigated the significance of AID expression in the ovary. Immunohistological study and RT-PCR showed that AID was expressed in murine granulosa cells and oocytes. However, using the Aicda-Cre/Rosa-tdRFP reporter mouse, its transcriptional history in oocytes was not detected, suggesting that AID mRNA in oocytes has an exogenous origin. Microarray and qPCR validation revealed that mRNA expressions of growth differentiation factor-9 (GDF-9) in oocytes and stem cell factor (SCF) in granulosa cells were significantly decreased in AID-knockout mice compared with wild-type mice. A 6-h incubation of primary granuloma cells markedly reduced AID expression, whereas it was maintained by recombinant GDF-9. In contrast, SCF expression was induced by more than threefold, whereas GDF-9 completely inhibited its increase. In the presence of GDF-9, knockdown of AID by siRNA further decreased SCF expression. However, in AID-suppressed granulosa cells and ovarian tissues of AID-knockout mice, there were no differences in the methylation of SCF and GDF-9. These findings suggest that AID is a novel candidate that regulates cross-talk between oocytes and granulosa cells through a GDF-9 and SCF feedback system, probably in a methylation-independent manner.
Collapse
|
7
|
Ghezelayagh Z, Abtahi NS, Rezazadeh Valojerdi M, Mehdizadeh A, Ebrahimi B. The combination of basic fibroblast growth factor and kit ligand promotes the proliferation, activity and steroidogenesis of granulosa cells during human ovarian cortical culture. Cryobiology 2020; 96:30-36. [PMID: 32871128 DOI: 10.1016/j.cryobiol.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
Different factors, such as basic fibroblast growth factor (bFGF) and kit ligand (KL), are used in ovarian cortical culture to promote activation of primordial follicles. In the present study, the effects of bFGF and KL, alone and in combination, were evaluated on human follicular activation and growth during in-situ cortical culture. Slow frozen-thawed human ovarian cortical tissues (n = 6) were cultured in 4 different groups: 1) control (base medium), 2) KL (base medium; BM + 100 ng/ml KL), 3) bFGF (BM + 100 ng/ml bFGF) and 4) bFGF + KL (BM + 100 ng/ml KL + 100 ng/ml bFGF) for a week. The proportion of morphologically normal and degenerated follicles at different developmental stages, secreted hormonal levels and specific gene expressions were compared. Although the proportion of growing follicles was higher than primordial counterpart in all cultured groups, no significant differences were observed among the cultured groups. In all cultured groups, anti-Müllerian hormone (AMH), progesterone and estradiol hormones levels increased after 7 days of culture; however, this increase was only significant for estradiol in the bFGF + KL group. The expression of Ki67 gene indicated an increase in ovarian cell proliferation in the three experimental groups compared to the control group, however this increment was only significant for the bFGF + KL group. It can be concluded that KL and bFGF factors individually have no beneficial effects on in-situ follicular growth, but their combination positively influences steroidogenesis of granulosa cells without significantly increasing the number of growing follicles.
Collapse
Affiliation(s)
- Zeinab Ghezelayagh
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Aboulfazl Mehdizadeh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Xi G, Wang W, Fazlani SA, Yao F, Yang M, Hao J, An L, Tian J. C-type natriuretic peptide enhances mouse preantral follicle growth. Reproduction 2020; 157:445-455. [PMID: 30817314 DOI: 10.1530/rep-18-0470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/25/2019] [Indexed: 01/03/2023]
Abstract
Compared to ovarian antral follicle development, the mechanism underlying preantral follicle growth has not been well documented. Although C-type natriuretic peptide (CNP) involvement in preantral folliculogenesis has been explored, its detailed role has not been fully defined. Here, we used mouse preantral follicles and granulosa cells (GCs) as a model for investigating the dynamic expression of CNP and natriuretic peptide receptor 2 (NPR2) during preantral folliculogenesis, the regulatory role of oocyte-derived growth factors (ODGFs) in natriuretic peptide type C (Nppc) and Npr2 expression, and the effect of CNP on preantral GC viability. Both mRNA and protein levels of Nppc and Npr2 were gradually activated during preantral folliculogenesis. CNP supplementation in culture medium significantly promoted the growth of in vitro-cultured preantral follicles and enhanced the viability of cultured GCs in a follicle-stimulating hormone (FSH)-independent manner. Using adult and prepubertal mice as an in vivo model, CNP pre-treatment via intraperitoneal injection before conventional superovulation also had a beneficial effect on promoting the ovulation rate. Furthermore, ODGFs enhanced Nppc and Npr2 expression in the in vitro-cultured preantral follicles and GCs. Mechanistic study demonstrated that the regulation of WNT signaling and estrogen synthesis may be implicated in the promoting role of CNP in preantral folliculogenesis. This study not only proves that CNP is a critical regulator of preantral follicle growth, but also provides new insight in understanding the crosstalk between oocytes and somatic cells during early folliculogenesis.
Collapse
Affiliation(s)
- Guangyin Xi
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Sarfaraz A Fazlani
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China.,Lasbela University of Agriculture, Water and Marine Science, Lasbela, Balochistan, Pakistan
| | - Fusheng Yao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jing Hao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Jones ASK, Shikanov A. Follicle development as an orchestrated signaling network in a 3D organoid. J Biol Eng 2019; 13:2. [PMID: 30647770 PMCID: PMC6327556 DOI: 10.1186/s13036-018-0134-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/13/2018] [Indexed: 02/12/2023] Open
Abstract
The ovarian follicle is the structural and functional unit of the ovary, composed of the female gamete (the oocyte) and supportive somatic cells. Follicles are not only the source of a female's germ cell supply, but also secrete important hormones necessary for proper endocrine function. Folliculogenesis, the growth and maturation of the follicular unit, is a complex process governed by both intrafollicular crosstalk and pituitary-secreted hormones. While the later stages of this process are gonadotropin-dependent, early folliculogenesis appears to be controlled by the ovarian microenvironment and intrafollicular paracrine and autocrine signaling. In vitro follicle culture remains challenging because of the limited knowledge of growth factors and other cytokines influencing early follicle growth. Here we discuss the current state of knowledge on paracrine and autocrine signaling influencing primary follicles as they develop into the antral stage. Given the importance of intrafollicular signaling and the ovarian microenvironment, we reviewed the current engineering approaches for in vitro follicle culture, including 3D systems using natural hydrogels such as alginate and synthetic hydrogels such as poly(ethylene glycol). Our discussion is focused on what drives the proliferation of granulosa cells, development of the thecal layer, and antrum formation-three processes integral to follicle growth up to the antral stage. Further research in this area may reveal the mechanisms behind these complex signaling relationships within the follicle, leading to more successful and physiologically-relevant in vitro culture methods that will translate well to clinical applications.
Collapse
Affiliation(s)
- Andrea S. K. Jones
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
10
|
Sun XF, Li YP, Pan B, Wang YF, Li J, Shen W. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte in vivo. Cell Cycle 2018; 17:2230-2242. [PMID: 30244637 DOI: 10.1080/15384101.2018.1520557] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs which can bind to completely or partially complementary sequences in the 3'UTR of target mRNAs, therefore degrading the mRNA or repressing translation. We previously reported that miR-378 played a role in estradiol production via suppression of aromatase translation in porcine granulosa cells and could affect oocyte maturation in vitro by inhibiting cumulus cell expansion. However, the role of miR-378 on ovary development in vivo is unknown. The current study aimed to uncover the molecular mechanism of miR-378 in regulating mouse follicular development via micro-injection of CMV-miR-378 lentivirus into the bursa of mouse ovary. The results showed that CMV-miR-378 lentivirus transduction in the mouse ovaries resulted in reduced ovary size, extended oestrous cycle (6-7 d in miR-378 overexpression group and 4-5 dyas in GFP control group) due to continuous oestrum, decreased percentage of oocytes in vitro maturation rate (IVM 60.8% vs. 89.4% in GFP control), increased apoptosis rate (Bax/Bcl2 in mRNA and protein level), decreased expression of genes associated with gap junction, such as connexin 43 (Cx-43) and connexin (Cx-37) and decreased expression of genes associated with follicular development, such as BMP15 and GDF9. Moreover, the number of pups/litter was consistently lower in the miR-378 group in each batch of the paired breeding. Our data suggest that miR-378 alters gene expression in cumulus cells and indirectly influences oocyte maturation competency, possibly via inhibition of oocyte-cumulus interaction or induction of apoptosis.
Collapse
Affiliation(s)
- Xiao-Feng Sun
- a College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao , China
| | - Ya-Peng Li
- b College of Animal Science and Technology , Qingdao Agricultural University , Qingdao , China
| | - Bo Pan
- c Department of Animal BioSciences , University of Guelph , Guelph , Ontario , Canada
| | - Yu-Feng Wang
- a College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao , China
| | - Julang Li
- c Department of Animal BioSciences , University of Guelph , Guelph , Ontario , Canada
| | - Wei Shen
- a College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao , China
| |
Collapse
|
11
|
Nteeba J, Ganesan S, Madden JA, Dickson MJ, Keating AF. Progressive obesity alters ovarian insulin, phosphatidylinositol-3 kinase, and chemical metabolism signaling pathways and potentiates ovotoxicity induced by phosphoramide mustard in mice. Biol Reprod 2018; 96:478-490. [PMID: 28203716 DOI: 10.1095/biolreprod.116.143818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
Mechanisms underlying obesity-associated reproductive impairment are ill defined. Hyperinsulinemia is a metabolic perturbation often observed in obese subjects. Insulin activates phosphatidylinositol 3-kinase (PI3K) signaling, which regulates ovarian folliculogenesis, steroidogenesis, and xenobiotic metabolism. The impact of progressive obesity on ovarian genes encoding mRNA involved in insulin-mediated PI3K signaling and xenobiotic biotransformation [insulin receptor (Insr), insulin receptor substrate 1 (Irs1), 2 (Irs2), and 3 (Irs3); kit ligand (Kitlg), stem cell growth factor receptor (Kit), protein kinase B (AKT) alpha (Akt1), beta (Akt2), forkhead transcription factor (FOXO) subfamily 1 (Foxo1), and subfamily 3 (Foxo3a), microsomal epoxide hydrolase (Ephx1), cytochrome P450 family 2, subfamily E, polypeptide 1 (Cyp2e1), glutathione S-transferase (GST) class Pi (Gstp1) and class mu 1 (Gstm1)] was determined in normal wild-type nonagouti (a/a; lean) and lethal yellow mice (KK.CG-Ay/J; obese) at 6, 12, 18, or 24 weeks of age. At 6 weeks, ovaries from obese mice had increased (P < 0.05) Insr and Irs3 but decreased (P < 0.05) Kitlg, Foxo1, and Cyp2e1 mRNA levels. Interestingly, at 12 weeks, an increase (P < 0.05) in Kitlg and Kit mRNA, pIRS1Ser302, pAKTThr308, EPHX1, and GSTP1 protein level was observed due to obesity, while Cyp2e1 mRNA and protein were reduced. A phosphoramide mustard (PM) challenge increased (P < 0.05) ovarian EPHX1 protein abundance in lean but not obese females. In addition, lung tissue from PM-exposed animals had increased (P < 0.05) EPHX1 protein with no impact of obesity thereon. Taken together, progressive obesity affected ovarian signaling pathways potentially involved in obesity-associated reproductive disorders.
Collapse
Affiliation(s)
- Jackson Nteeba
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Shanthi Ganesan
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Jill A Madden
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Mackenzie J Dickson
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Aileen F Keating
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Cao C, Li L, Li H, He X, Wu G, Yu X. Cyclic biaxial tensile strain promotes bone marrow-derived mesenchymal stem cells to differentiate into cardiomyocyte-like cells by miRNA-27a. Int J Biochem Cell Biol 2018; 99:125-132. [DOI: 10.1016/j.biocel.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
|
13
|
Da Broi MG, Giorgi VSI, Wang F, Keefe DL, Albertini D, Navarro PA. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. J Assist Reprod Genet 2018; 35:735-751. [PMID: 29497954 PMCID: PMC5984887 DOI: 10.1007/s10815-018-1143-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/19/2018] [Indexed: 01/03/2023] Open
Abstract
An equilibrium needs to be established by the cellular and acellular components of the ovarian follicle if developmental competence is to be acquired by the oocyte. Both cumulus cells (CCs) and follicular fluid (FF) are critical determinants for oocyte quality. Understanding how CCs and FF influence oocyte quality in the presence of deleterious systemic or pelvic conditions may impact clinical decisions in the course of managing infertility. Given that the functional integrities of FF and CCs are susceptible to concurrent pathological conditions, it is important to understand how pathophysiological factors influence natural fertility and the outcomes of pregnancy arising from the use of assisted reproduction technologies (ARTs). Accordingly, this review discusses the roles of CCs and FF in ensuring oocyte competence and present new insights on pathological conditions that may interfere with oocyte quality by altering the intrafollicular environment.
Collapse
Affiliation(s)
- M. G. Da Broi
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, SP CEP: 14049-900 Brazil
| | - V. S. I. Giorgi
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, SP CEP: 14049-900 Brazil
| | - F. Wang
- Department of Obstetrics and Gynecology, Laboratory of Reproductive Medicine, NYU School of Medicine, 180 Varick Street, New York, NY 10014 USA
| | - D. L. Keefe
- Department of Obstetrics and Gynecology, Laboratory of Reproductive Medicine, NYU School of Medicine, 180 Varick Street, New York, NY 10014 USA
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY 10016 USA
| | - D. Albertini
- The Center for Human Reproduction, New York, NY USA
| | - P. A. Navarro
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, SP CEP: 14049-900 Brazil
| |
Collapse
|
14
|
Estienne A, Price CA. The fibroblast growth factor 8 family in the female reproductive tract. Reproduction 2018; 155:R53-R62. [DOI: 10.1530/rep-17-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Several growth factor families have been shown to be involved in the function of the female reproductive tract. One subfamily of the fibroblast growth factor (FGF) superfamily, namely the FGF8 subfamily (including FGF17 and FGF18), has become important as Fgf8 has been described as an oocyte-derived factor essential for glycolysis in mouse cumulus cells and aberrant expression ofFGF18has been described in ovarian and endometrial cancers. In this review, we describe the pattern of expression of these factors in normal ovaries and uteri in rodents, ruminants and humans, as well as the expression of their receptors and intracellular negative feedback regulators. Expression of these molecules in gynaecological cancers is also reviewed. The role of FGF8 and FGF18 in ovarian and uterine function is described, and potential differences between rodents and ruminants have been highlighted especially with respect to FGF18 signalling within the ovarian follicle. Finally, we identify major questions about the reproductive biology of FGFs that remain to be answered, including (1) the physiological concentrations within the ovary and uterus, (2) which cell types within the endometrial stroma and theca layer express FGFs and (3) which receptors are activated by FGF8 subfamily members in reproductive tissues.
Collapse
|
15
|
Son YJ, Lee SE, Hyun H, Shin MY, Park YG, Jeong SG, Kim EY, Park SP. Fibroblast growth factor 10 markedly improves in vitro maturation of porcine cumulus-oocyte complexes. Mol Reprod Dev 2017; 84:67-75. [PMID: 27862569 DOI: 10.1002/mrd.22756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022]
Abstract
Growth factors synthesized by ovarian somatic cells affect cumulus cell expansion and oocyte maturation in vitro. Fibroblast growth factor 10 (FGF10), for example, is a known regulator of mammalian cumulus-oocyte complex maturation. In this study, we investigated the effects of 0, 5, 10, 50, and 100 ng/mL FGF10 (5F, 10F, 50F, and 100F, respectively) on in vitro cumulus cell expansion, oocyte maturation, and embryo development. The percentage of fully expanded cumulus cells at the oocyte's metaphase-II (MII) stage was significantly higher in the 10F-treated group than in the control. Transcript abundance of the cumulus cell expansion-related gene encoding hyaluronian synthase 2 (HAS2) in cumulus cells at oocyte germinal vesicle breakdown (GVBD) was significantly higher in the 10F- and 50F-treated groups compared to untreated controls, whereas the mRNA abundance of the protease cathepsin B (CTSB) at the oocyte MII stage was remarkably decreased in the 10F-treated group. The percentage of oocytes with normal spindles was greater in the 10F- and 50F-treated group at GVBD than in the other groups; the 5F-, 10F-, and 100F-treated groups were higher than the control; and the 50F-treated group was highest at MII. The abundance of GDF9 and BMP15 transcript at GVBD and BMP15 and CCNB1 transcripts at MII increased in the 10F-treated group. Cleavage rate, blastocyst formation rate, and total cell number were significantly higher in the 5F- to 50F-treated groups. These results demonstrate that FGF10 markedly improves cumulus cell expansion, oocyte maturation, and subsequent embryo development. Mol. Reprod. Dev. 84: 67-75, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yeo-Jin Son
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Stem Cell Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Stem Cell Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea
| | - Hyuk Hyun
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Stem Cell Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea
| | - Min-Young Shin
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Stem Cell Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea
| | - Yun-Gwi Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Stem Cell Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea
| | - Sang-Gi Jeong
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Stem Cell Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Stem Cell Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Mirae Cell Bio, Gwangjin-Gu, Seoul, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Stem Cell Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, Korea.,Mirae Cell Bio, Gwangjin-Gu, Seoul, Korea
| |
Collapse
|
16
|
Lima PF, Ormond CM, Caixeta ES, Barros RG, Price CA, Buratini J. Effect of kit ligand on natriuretic peptide precursor C and oocyte maturation in cattle. Reproduction 2016; 152:481-9. [DOI: 10.1530/rep-16-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/04/2016] [Indexed: 01/03/2023]
Abstract
In vitro maturation (IVM) of oocytes in cattle is inefficient, and there is great interest in the development of approaches to improve maturation and fertilization rates. Intraovarian signalling molecules are being explored as potential additives to IVM media. One such factor is kit ligand (KITL), which stimulates the growth of oocytes. We determined if KITL enhances oocyte maturation in cattle. The two main isoforms of KITL (KITL1 and KITL2) were expressed in bovine cumulus–oocyte complexes (COC), and levels of mRNA increased during FSH-stimulated IVM. The addition of KITL to the culture medium increased the percentage of oocytes that reached meiosis II but did not affect cumulus expansion after 22 h of IVM. Addition of KITL reduced the levels of mRNA encoding natriuretic peptide precursor C (NPPC), a protein that holds oocytes in meiotic arrest, and increased the levels of mRNA encoding YBX2, an oocyte-specific factor involved in meiosis. Removal of the oocyte from the COC resulted in increased KITL mRNA levels and decreased NPPC mRNA levels in cumulus cells, and addition of denuded oocytes reversed these effects. Taken together, our results suggest that KITL enhances bovine oocyte nuclear maturation through a mechanism that involves NPPC, and that the oocyte regulates cumulus expression of KITL mRNA.
Collapse
|
17
|
Rossi V, Lispi M, Longobardi S, Mattei M, Di Rella F, Salustri A, De Felici M, Klinger FG. LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse. Cell Death Differ 2016; 24:72-82. [PMID: 27689876 PMCID: PMC5260508 DOI: 10.1038/cdd.2016.97] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/09/2023] Open
Abstract
Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy.
Collapse
Affiliation(s)
- Valerio Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Monica Lispi
- Medical Affair Department Fertility TA, Merck-Serono SAS, Rome, Italy
| | | | - Maurizio Mattei
- STA, Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Di Rella
- UOC Oncologia Medica Senologica, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione G. Pascale, Naples, Italy
| | - Antonietta Salustri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesca G Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
Abdi S, Salehnia M, Hosseinkhani S. Quality of Oocytes Derived from Vitrified Ovarian Follicles Cultured in Two- and Three-Dimensional Culture System in the Presence and Absence of Kit Ligand. Biopreserv Biobank 2016; 14:279-88. [DOI: 10.1089/bio.2015.0069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Shabnam Abdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
An X, Song Y, Bu S, Ma H, Gao K, Hou J, Wang S, Lei Z, Cao B. Association of polymorphisms at the microRNA binding site of the caprine KITLG 3'-UTR with litter size. Sci Rep 2016; 6:25691. [PMID: 27168023 PMCID: PMC4863368 DOI: 10.1038/srep25691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/21/2016] [Indexed: 01/23/2023] Open
Abstract
This study identified three novel single nucleotide polymorphisms (SNPs) (c.1389C > T, c.1457A > C and c.1520G > A) in the caprine KITLG 3'-UTR through DNA sequencing. The three SNP loci were closely linked in Guanzhong dairy (GD) goats. Two alleles of the c.1457A > C SNP introduced two miRNA sites (chi-miR-204-5p and chi-miR-211). Individuals with combined genotype TT-CC-AA had a higher litter size compared with those with combined genotypes CC-AA-GG, TC-CC-GA and CC-AC-GG (P < 0.05). Luciferase assays showed that chi-miR-204-5p and chi-miR-211 suppressed luciferase expression in the presence of allele 1457A compared with negative control (NC) and allele 1457C (P < 0.05). Western blot revealed that KITLG significantly decreased in the granulosa cells (GCs) of genotype AA compared with that in the GCs of genotype CC and NC (P < 0.05). The KITLG mRNA levels of the CC-AA-GG carriers significantly decreased compared with those of the TT-CC-AA, TC-CC-GA and CC-AC-GG carriers. In addition, cell proliferation was reduced in haplotype C-A-G GCs compared with that in haplotype T-C-A GCs. These results suggest that SNPs c.1389C > T, c.1457A > C and c.1520G > A account for differences in the litter size of GD goats because chi-miR-204-5p and chi-miR-211 could change the expression levels of the KITLG gene and reduce GC proliferation.
Collapse
Affiliation(s)
- Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shuhai Bu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Haidong Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jinxing Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhang Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
20
|
Yang S, Li WS, Dong F, Sun HM, Wu B, Tan J, Zou WJ, Zhou DS. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells. J Cell Mol Med 2014; 18:2092-102. [PMID: 25213795 PMCID: PMC4244023 DOI: 10.1111/jcmm.12368] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/26/2014] [Indexed: 01/24/2023] Open
Abstract
MiR-34c is considered a potent tumour suppressor because of its negative regulation of multiple target mRNAs that are critically associated with tumorigenesis and metastasis. In the present study, we demonstrated a novel target of miR-34c, KITLG, which has been implicated in colorectal cancer (CRC). First, we found a significant negative relationship between miR-34c and KITLG mRNA expression levels in CRC cell lines, including HT-29, HCT-116, SW480 and SW620 CRC cell lines. In silico analysis predicted putative binding sites for miR-34c in the 3' untranslated region (3'UTR) of KITLG mRNA. A dual-luciferase reporter assay further confirmed that KITLG is a direct target of miR-34c. Then, the cell lines were infected with lentiviruses expressing miR-34c or a miR-34c specific inhibitor. Restoration of miR-34c dramatically reduced the expression of KITLG mRNA and protein, while silencing of endogenous miR-34c increased the expression of KITLG protein. The miR-34c-mediated down-regulation of KITLG was associated with the suppression on proliferation, cellular transformation, migration and invasion of CRC cells, as well as the promotion on apoptosis. Knockdown of KITLG by its specific siRNA confirmed a critical role of KITLG down-regulation for the tumour-suppressive effects of miR-34c in CRC cells. In conclusion, our results demonstrated that miR-34c might interfere with KITLG-related CRC and could be a novel molecular target for CRC patients.
Collapse
Affiliation(s)
- Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility? ACTA ACUST UNITED AC 2014; 49:1-19. [DOI: 10.1016/j.proghi.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
22
|
Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev 2013; 81:284-314. [DOI: 10.1002/mrd.22285] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Sarah L Field
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Tathagata Dasgupta
- Department of Systems Biology; Harvard Medical School; 200 Longwood Avenue Boston Massachusetts
| | - Michele Cummings
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Nicolas M. Orsi
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| |
Collapse
|
23
|
Fenwick MA, Mora JM, Mansour YT, Baithun C, Franks S, Hardy K. Investigations of TGF-β signaling in preantral follicles of female mice reveal differential roles for bone morphogenetic protein 15. Endocrinology 2013; 154:3423-36. [PMID: 23782946 DOI: 10.1210/en.2012-2251] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are 2 closely related TGF-β ligands implicated as key regulators of follicle development and fertility. Animals harboring mutations of these factors often exhibit a blockage in follicle development beyond the primary stage and therefore little is known about the role of these ligands during subsequent (preantral) stages. Preantral follicles isolated from immature mice were cultured with combinations of BMP15, GDF9, and activin receptor-like kinase (ALK) inhibitors. Individually, GDF9 and BMP15 promoted follicle growth during the first 24 hours, whereas BMP15 subsequently (48-72 h) caused follicle shrinkage and atresia with increased granulosa cell apoptosis. Inhibition of ALK6 prevented the BMP15-induced reduction in follicle size and under basal conditions promoted a rapid increase in granulosa cell proliferation, suggesting BMP15 signals through ALK6, which in turn acts to restrain follicle growth. In the presence of GDF9, BMP15 no longer promoted atresia and in fact follicle growth was increased significantly more than with either ligand alone. This cooperative effect was accompanied by differential expression of Id1-3, Smad6-7, and Has2 and was blocked by the same ALK5 inhibitor used to block GDF9 signaling. Immunostaining for SMAD2/3 and SMAD1/5/8, representing the 2 main branches of TGF-β signaling, supported the fact that both canonical pathways have the potential to be active in growing follicles, whereas primordial follicles only express SMAD2/3. Overall results highlight differential effects of the 2 main TGF-β signaling pathways during preantral follicle growth.
Collapse
Affiliation(s)
- Mark A Fenwick
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
24
|
Nteeba J, Ross JW, Perfield JW, Keating AF. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression. Reprod Toxicol 2013; 42:68-77. [PMID: 23954404 DOI: 10.1016/j.reprotox.2013.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022]
Abstract
Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3 K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: (1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); (2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); (3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and (4) microRNA's 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression.
Collapse
Affiliation(s)
- J Nteeba
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
25
|
Nakamura E, Otsuka F, Inagaki K, Tsukamoto N, Ogura-Ochi K, Miyoshi T, Toma K, Takeda M, Makino H. Involvement of bone morphogenetic protein activity in somatostatin actions on ovarian steroidogenesis. J Steroid Biochem Mol Biol 2013; 134:67-74. [PMID: 23137853 DOI: 10.1016/j.jsbmb.2012.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/27/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Somatostatin is expressed in the hypothalamus, pancreas and gastrointestinal tracts and it inhibits the secretion of various hormones in vivo. In the rodent ovary, somatostatin receptor (SSTR) subtypes 2 and 5 are expressed in granulosa cells and oocytes. Somatostatin analogs have been clinically used for treatment of endocrine tumors. For this purpose, relatively high-dose or long-term treatments of somatostatin analogs are necessary; however, the direct and continuous impact of somatostatin analogs on gonadal functions has yet to be elucidated. In the present study, we investigated the effects of somatostatin analogs (octreotide and pasireotide) on ovarian steroidogenesis by rat primary granulosa cell culture. The expression levels of SSTR2 and SSTR5 in granulosa cells were upregulated by FSH treatment. Treatment with somatostatin analogs decreased FSH-induced estradiol production with reduction in aromatase mRNA expression, while the treatment also suppressed FSH-induced progesterone production with reduction of mRNAs levels of StAR, P450scc and 3βHSD2 in granulosa cells. This trend was also observed in a granulosa/oocyte co-culture condition. The effect of pasireotide was more potent than that of octreotide. FSH-induced synthesis of steroids and cAMP was also suppressed by somatostatin analog treatment. Notably, pretreatment with a BMP-binding protein, noggin reversed the suppressive effects of somatostatin analogs on progesterone and cAMP production, suggesting that the endogenous BMP system is functionally involved in the SSTR effects in granulosa cells. Treatment with BMP-2, -4, -6 and -7 decreased the mRNA expression of inhibitory Smads6 and 7, leading to enhancement of BMP actions detected by Id-1 transcription in granulosa cells. Collectively, the results revealed that SSTR activation modulates ovarian steroidogenesis by upregulating endogenous BMP activity in growing follicles.
Collapse
Affiliation(s)
- Eri Nakamura
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
During oogenesis in mammals, the germ line interacts with ovarian somatic cells as follicles assemble, grow, ovulate, and die. As a result, these interactions with granulosa cells determine germ cell fate as the oocyte undergoes hypertrophy, the final stages of meiosis, and preparations required for successful fertilization. Over the past 15 years, investigators using a range of experimental approaches have uncovered the existence of multiple modalities for signaling between the oocyte and companion granulosa cells that play essential and sometimes overlapping roles during the growth and maturative phases of oogenesis. Five modalities of intercellular signaling are considered in the context of regulating oocyte gene expression, metabolism, spatial patterning, and the cell cycle. While some forms of signaling predominate at specific stages of oogenesis, such as during the assembly of primordial follicles, it is apparent that combinations of modalities work in concert to control events associated with ovulation when both nuclear and cytoplasmic maturation occur. A final key feature of the signaling platform underscoring the protracted process of oogenesis is the existence of negative and positive feedback loops designed to coordinate the tempo of oogenesis and folliculogenesis at key developmental transitions.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Missouri, USA
| | | | | |
Collapse
|