1
|
Radomsky T, Anderson RC, Millar RP, Newton CL. Restoring function to inactivating G protein-coupled receptor variants in the hypothalamic-pituitary-gonadal axis 1. J Neuroendocrinol 2024; 36:e13418. [PMID: 38852954 DOI: 10.1111/jne.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/30/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
G protein-coupled receptors (GPCRs) are central to the functioning of the hypothalamic-pituitary-gonadal axis (HPG axis) and include the rhodopsin-like GPCR family members, neurokinin 3 receptor, kappa-opioid receptor, kisspeptin 1 receptor, gonadotropin-releasing hormone receptor, and the gonadotropin receptors, luteinizing hormone/choriogonadotropin receptor and follicle-stimulating hormone receptor. Unsurprisingly, inactivating variants of these receptors have been implicated in a spectrum of reproductive phenotypes, including failure to undergo puberty, and infertility. Clinical induction of puberty in patients harbouring such variants is possible, but restoration of fertility is not always a realisable outcome, particularly for those patients suffering from primary hypogonadism. Thus, novel pharmaceuticals and/or a fundamental change in approach to treating these patients are required. The increasing wealth of data describing the effects of coding-region genetic variants on GPCR function has highlighted that the majority appear to be dysfunctional as a result of misfolding of the encoded receptor protein, which, in turn, results in impaired receptor trafficking through the secretory pathway to the cell surface. As such, these intracellularly retained receptors may be amenable to 'rescue' using a pharmacological chaperone (PC)-based approach. PCs are small, cell permeant molecules hypothesised to interact with misfolded intracellularly retained proteins, stabilising their folding and promoting their trafficking through the secretory pathway. In support of the use of this approach as a viable therapeutic option, it has been observed that many rescued variant GPCRs retain at least a degree of functionality when 'rescued' to the cell surface. In this review, we examine the GPCR PC research landscape, focussing on the rescue of inactivating variant GPCRs with important roles in the HPG axis, and describe what is known regarding the mechanisms by which PCs restore trafficking and function. We also discuss some of the merits and obstacles associated with taking this approach forward into a clinical setting.
Collapse
Affiliation(s)
- Tarryn Radomsky
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ross C Anderson
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Claire L Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Hassan HA, Mazen I, Elaidy A, Kamel AK, Eissa NR, Essawi ML. Expanding the phenotypic spectrum of LHCGR signal peptide insertion variant: novel clinical and allelic findings causing Leydig cell hypoplasia type II. Hormones (Athens) 2024; 23:305-312. [PMID: 38526829 PMCID: PMC11219444 DOI: 10.1007/s42000-024-00546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
PURPOSE Leydig cell hypoplasia (LCH) type II is a rare disease with only a few cases reported. Patients presented with hypospadias, micropenis, undescended testes, or infertility. In this study, we report a new patient with compound heterozygous variants in the LHCGR gene and LCH type II phenotype. METHODS Whole exome sequencing (WES) was performed followed by Sanger sequencing to confirm the detected variants in the patient and his parents. RESULTS A novel missense variant (p.Phe444Cys) was identified in a highly conserved site and is verified to be in trans with the signal peptide's 33-bases insertion variant. CONCLUSION Our research provides a more comprehensive clinical and genetic spectrum of Leydig cell hypoplasia type II. It highlighted the importance of WES in the diagnosis of this uncommon genetic disorder as well as the expansion of the genotype of LCH type II.
Collapse
Affiliation(s)
- Heba Amin Hassan
- Department of Medical Molecular Genetics, Human Genetics & Genome Research Institute, National Research Centre, 33 El-Bohouth street, Cairo, 12311, Egypt.
| | - Inas Mazen
- Department of Clinical Genetics, Human Genetics & Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Aya Elaidy
- Department of Clinical Genetics, Human Genetics & Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Alaa K Kamel
- Department of Human Cytogenetics, Human Genetics & Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Noura R Eissa
- Department of Medical Molecular Genetics, Human Genetics & Genome Research Institute, National Research Centre, 33 El-Bohouth street, Cairo, 12311, Egypt
| | - Mona L Essawi
- Department of Medical Molecular Genetics, Human Genetics & Genome Research Institute, National Research Centre, 33 El-Bohouth street, Cairo, 12311, Egypt
| |
Collapse
|
3
|
Errico A, Vinco S, Ambrosini G, Dalla Pozza E, Marroncelli N, Zampieri N, Dando I. Mitochondrial Dynamics as Potential Modulators of Hormonal Therapy Effectiveness in Males. BIOLOGY 2023; 12:547. [PMID: 37106748 PMCID: PMC10135745 DOI: 10.3390/biology12040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Worldwide the incidence of andrological diseases is rising every year and, together with it, also the interest in them is increasing due to their strict association with disorders of the reproductive system, including impairment of male fertility, alterations of male hormones production, and/or sexual function. Prevention and early diagnosis of andrological dysfunctions have long been neglected, with the consequent increase in the incidence and prevalence of diseases otherwise easy to prevent and treat if diagnosed early. In this review, we report the latest evidence of the effect of andrological alterations on fertility potential in both young and adult patients, with a focus on the link between gonadotropins' mechanism of action and mitochondria. Indeed, mitochondria are highly dynamic cellular organelles that undergo rapid morphological adaptations, conditioning a multitude of aspects, including their size, shape, number, transport, cellular distribution, and, consequently, their function. Since the first step of steroidogenesis takes place in these organelles, we consider that mitochondria dynamics might have a possible role in a plethora of signaling cascades, including testosterone production. In addition, we also hypothesize a central role of mitochondria fission boost on the decreased response to the commonly administrated hormonal therapy used to treat urological disease in pediatric and adolescent patients as well as infertile adults.
Collapse
Affiliation(s)
- Andrea Errico
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Sara Vinco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Nunzio Marroncelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Nicola Zampieri
- Department of Engineering and Innovation Medicine, Paediatric Fertility Lab, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, 37100 Verona, Italy;
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| |
Collapse
|
4
|
Bhattacharya I, Dey S, Banerjee A. Revisiting the gonadotropic regulation of mammalian spermatogenesis: evolving lessons during the past decade. Front Endocrinol (Lausanne) 2023; 14:1110572. [PMID: 37124741 PMCID: PMC10140312 DOI: 10.3389/fendo.2023.1110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Spermatogenesis is a multi-step process of male germ cell (Gc) division and differentiation which occurs in the seminiferous tubules of the testes under the regulation of gonadotropins - Follicle Stimulating Hormone (FSH) and Luteinising hormone (LH). It is a highly coordinated event regulated by the surrounding somatic testicular cells such as the Sertoli cells (Sc), Leydig cells (Lc), and Peritubular myoid cells (PTc). FSH targets Sc and supports the expansion and differentiation of pre-meiotic Gc, whereas, LH operates via Lc to produce Testosterone (T), the testicular androgen. T acts on all somatic cells e.g.- Lc, PTc and Sc, and promotes the blood-testis barrier (BTB) formation, completion of Gc meiosis, and spermiation. Studies with hypophysectomised or chemically ablated animal models and hypogonadal (hpg) mice supplemented with gonadotropins to genetically manipulated mouse models have revealed the selective and synergistic role(s) of hormones in regulating male fertility. We here have briefly summarized the present concept of hormonal control of spermatogenesis in rodents and primates. We also have highlighted some of the key critical questions yet to be answered in the field of male reproductive health which might have potential implications for infertility and contraceptive research in the future.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, School of Biological Science, Central University of Kerala, Kasaragod, Kerala, India
- *Correspondence: Arnab Banerjee, ; Indrashis Bhattacharya,
| | - Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Goa, India
- *Correspondence: Arnab Banerjee, ; Indrashis Bhattacharya,
| |
Collapse
|
5
|
Xia K, Wang F, Lai X, Dong L, Luo P, Zhang S, Yang C, Chen H, Ma Y, Huang W, Ou W, Li Y, Feng X, Yang B, Liu C, Lei Z, Tu X, Ke Q, Mao FF, Deng C, Xiang AP. AAV-mediated gene therapy produces fertile offspring in the Lhcgr-deficient mouse model of Leydig cell failure. Cell Rep Med 2022; 3:100792. [PMID: 36270285 PMCID: PMC9729833 DOI: 10.1016/j.xcrm.2022.100792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Leydig cell failure (LCF) caused by gene mutation results in testosterone deficiency and infertility. Serum testosterone levels can be recovered via testosterone replacement; however, established therapies have shown limited success in restoring fertility. Here, we use a luteinizing hormone/choriogonadotrophin receptor (Lhcgr)-deficient mouse model of LCF to investigate the feasibility of gene therapy for restoring testosterone production and fertility. We screen several adeno-associated virus (AAV) serotypes and identify AAV8 as an efficient vector to drive exogenous Lhcgr expression in progenitor Leydig cells through interstitial injection. We observe considerable testosterone recovery and Leydig cell maturation after AAV8-Lhcgr treatment in pubertal Lhcgr-/- mice. Of note, this gene therapy partially recovers sexual development, substantially restores spermatogenesis, and effectively produces fertile offspring. Furthermore, these favorable effects can be reproduced in adult Lhcgr-/- mice. Our proof-of-concept experiments in the mouse model demonstrate that AAV-mediated gene therapy may represent a promising therapeutic approach for patients with LCF.
Collapse
Affiliation(s)
- Kai Xia
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Fulin Wang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Luo
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cuifeng Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Yuyan Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin Feng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bin Yang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Congyuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhenmin Lei
- Department of OB/GYN and Women’s Health, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Xiang’an Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Frank Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Corresponding author
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Corresponding author
| |
Collapse
|
6
|
Sharif S, Vakili S, Mobini M, Lotfi M, Zarei F, Abbaszadegan MR, Vakili R. A novel variant luteinizing hormone receptor in the first transmembrane helix of two homozygous Iranian patients: case report. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Leydig cell hypoplasia (LCH) is a rare autosomal recessive endocrine syndrome that affects the normal development of male external genitalia in 46, XY individuals and is one of the causes of disorder of sexual differentiation (DSD) in males. The responsible gene of LCH is LHCGR which is located on the chromosome 2 and its various mutations lead to different degrees of the disease ranging from micropenis to complete XY DSD.
Case presentation
In this study, we have investigated the clinical presentation and molecular findings of two siblings with complete male LCH and XY DSD. This is the first detailed report of individuals with LCH from Iran. It aimed to study the molecular and clinical characteristics of two sisters with type 1 LCH. Whole exome sequencing was used for these patients to find the underlying genetic cause of the disease. Our Iranian DSD patients had external genitalia (normal labia major and minor, the external opening of the urethra beneath the clitoris) and bilateral testicular tissues in the inguinal region, which were removed by surgical exploration.
Conclusions
Genetic sequencing showed the homozygous variants of the LHCGR gene in the patients, a novel duplication variant in exon 11, c.1091dupT -or pLeu365Profs*5. This mutation is described as likely pathogenic. We think that this case report can widen the genotypic spectrum of the LHCGR variants. Moreover, this study emphasizes the significant rule of Whole Exome Sequencing in differentiating various causes of disorder of sexual differentiation.
Collapse
|
7
|
Ali ARA, Abdul-Rasheed OF, Al-Kawaz UM. The Impact of Luteinizing Hormone/Chorionic Gonadotropin Hormone Receptor Gene Polymorphism rs68073206 in Men with Non-obstructive Azoospermia: A Case-control Study. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The functional consequences of the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) gene single nucleotide polymorphism (rs68073206) on male infertility in patients with non-obstructive azoospermia (NOA) is not clear.
Objective: To examine whether the presence of LHCGR gene; rs68073206 single nucleotide polymorphisms (SNPs) can be associated with incidence of non-obstructive azoospermia.
Materials and methods: A case-control study comprised of a total of 70 unrelated Iraqi infertile men with non-obstructive azoospermia (zero sperm in semen) whose were on two groups: Group I that were diagnosed to have NOA but didn’t receive infertility treatment yet (33 patient with age of 31.58±1.059 year) and group II that were receiving injectable gonadotropin treatment (37 patient with age of 33.46±1.173 year). In addition to 34 age and BMI matched healthy fertile normozoospermic men (according to the parameters of WHO, 2010). The study population was genotyped by TaqMan assay for LHCGR gene single nucleotide polymorphism (rs68073206). The level of each hormone was estimated by immunoassay technique while the sperm analyses were conducted in accordance with the World Health Organization criteria.
Results: The study revealed a statistically significant higher hormonal level of serum inhibin B in infertile group I patients with wild GG genotype (246.445±224.106 pg/ml), and the p-value is (0.0439) as compared to that hormone levels of GT and TT genotypes carriers that were (85.969±71.685 pg/ml) and (56.420±23.988 pg/ml) respectively. ). The genotyping variations of patients, whether carrying the homozygous GG, heterozygous GT or homozygous TT genotype, did not reveal a statistically significant difference in distribution as compared to control individuals.
Conclusions: The LHCGR gene rs68073206 polymorphisms in our population having non-obstructive azoospermia can be suggested to have a modulating potential in variable gonadotropin sensitivity. The detected non-significant difference in genotypic prevalence can be attributable to the limited sample size.
Collapse
|
8
|
Althumairy D, Zhang X, Baez N, Barisas G, Roess DA, Bousfield GR, Crans DC. Glycoprotein G-protein Coupled Receptors in Disease: Luteinizing Hormone Receptors and Follicle Stimulating Hormone Receptors. Diseases 2020; 8:E35. [PMID: 32942611 PMCID: PMC7565105 DOI: 10.3390/diseases8030035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Signal transduction by luteinizing hormone receptors (LHRs) and follicle-stimulating hormone receptors (FSHRs) is essential for the successful reproduction of human beings. Both receptors and the thyroid-stimulating hormone receptor are members of a subset of G-protein coupled receptors (GPCRs) described as the glycoprotein hormone receptors. Their ligands, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and a structurally related hormone produced in pregnancy, human chorionic gonadotropin (hCG), are large protein hormones that are extensively glycosylated. Although the primary physiologic functions of these receptors are in ovarian function and maintenance of pregnancy in human females and spermatogenesis in males, there are reports of LHRs or FSHRs involvement in disease processes both in the reproductive system and elsewhere. In this review, we evaluate the aggregation state of the structure of actively signaling LHRs or FSHRs, their functions in reproduction as well as summarizing disease processes related to receptor mutations affecting receptor function or expression in reproductive and non-reproductive tissues. We will also present novel strategies for either increasing or reducing the activity of LHRs signaling. Such approaches to modify signaling by glycoprotein receptors may prove advantageous in treating diseases relating to LHRs or FSHRs function in addition to furthering the identification of new strategies for modulating GPCR signaling.
Collapse
Affiliation(s)
- Duaa Althumairy
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Biological Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Xiaoping Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - Nicholas Baez
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - George Barisas
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA;
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| |
Collapse
|
9
|
Yan M, Dilihuma J, Luo Y, Reyilanmu B, Shen Y, Mireguli M. Novel Compound Heterozygous Variants in the LHCGR Gene in a Genetically Male Patient with Female External Genitalia. J Clin Res Pediatr Endocrinol 2019; 11:211-217. [PMID: 30444213 PMCID: PMC6571543 DOI: 10.4274/jcrpe.galenos.2018.2018.0197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The LHCGR gene encodes a G-protein coupled receptor that plays a pivotal role in sexual differentiation in males, ovarian development in females and in fertility via its interaction with luteinizing hormone and chorionic gonadotropin. Inactive variants of the LHCGR gene cause Leydig cell hypoplasia (LCH), which is a rare disease and one of the causes of disorder of sexual differentiation (DSD) in males. The aim of this work was to clarify the clinical and molecular characteristics of a 2.75 year old patient with type 1 LCH. Whole exome sequencing was performed for the patient family and variants in the LHCGR gene were validated by Sanger sequencing. Pathogenicity of the missense variant was evaluated by multiple in silico tools. Our Chinese patient, who exhibited DSD, had female external genitalia (normal labia majora and minora, external opening of urethra under the clitoris and blind-ended vagina) and bilateral testis tissues in the inguinal region. Genetic sequencing revealed compound heterozygous variants in the LHCGR gene in the patient, including a novel missense variant in exon 4 (c.349G>A, p.Gly117Arg) and a novel nonsense variant in exon 10 (c.878C>A, p.Ser293*). The missense variant is in the first leucine-rich repeat domain of the LHCGR protein, which is predicted to affect ligand recognition and binding affinity and thus protein function. The patient is molecularly and clinically diagnosed with type 1 LCH, which is caused by novel, compound heterozygous variants of the LHCGR gene. We believe this report will serve to expand the genotypic spectrum of LHCGR variants.
Collapse
Affiliation(s)
- Mei Yan
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Julaiti Dilihuma
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yanfei Luo
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Baoerhan Reyilanmu
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yiping Shen
- Boston Children’s Hospital Harvard Medical School, Department of Genetics and Genomics, Massachusetts, United States
| | - Maimaiti Mireguli
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China,* Address for Correspondence: First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China Phone: +8618690177527 E-mail:
| |
Collapse
|
10
|
Qiao J, Han B. Diseases caused by mutations in luteinizing hormone/chorionic gonadotropin receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:69-89. [PMID: 30711030 DOI: 10.1016/bs.pmbts.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accumulating evidence showed that the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) is an essential regulator of sexual development and reproduction from zebrafish to human. Activating and inactivating mutations of LHCGR gene have been identified from patients of different phenotypes. Familial male-limited precocious puberty, Leydig cell hypoplasia, and empty follicle syndrome are caused by LHCGR mutations. More than 50 mutations have been reported from subjects of different ethnic backgrounds. Functional analyses of the mutant LHCGR revealed multiple defects, including cell surface expression, ligand binding, and signaling. The difference of the two native ligands and signaling pathway activated by LHCGR are illustrated. Potential therapeutic implications from the analyses of the naturally occurring LHCGR mutations, such as pharmacological chaperones, are highlighted.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Casarini L, Santi D, Brigante G, Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr Rev 2018; 39:549-592. [PMID: 29905829 DOI: 10.1210/er.2018-00065] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
LH and chorionic gonadotropin (CG) are glycoproteins fundamental to sexual development and reproduction. Because they act on the same receptor (LHCGR), the general consensus has been that LH and human CG (hCG) are equivalent. However, separate evolution of LHβ and hCGβ subunits occurred in primates, resulting in two molecules sharing ~85% identity and regulating different physiological events. Pituitary, pulsatile LH production results in an ~90-minute half-life molecule targeting the gonads to regulate gametogenesis and androgen synthesis. Trophoblast hCG, the "pregnancy hormone," exists in several isoforms and glycosylation variants with long half-lives (hours) and angiogenic potential and acts on luteinized ovarian cells as progestational. The different molecular features of LH and hCG lead to hormone-specific LHCGR binding and intracellular signaling cascades. In ovarian cells, LH action is preferentially exerted through kinases, phosphorylated extracellular-regulated kinase 1/2 (pERK1/2) and phosphorylated AKT (also known as protein kinase B), resulting in irreplaceable proliferative/antiapoptotic signals and partial agonism on progesterone production in vitro. In contrast, hCG displays notable cAMP/protein kinase A (PKA)-mediated steroidogenic and proapoptotic potential, which is masked by estrogen action in vivo. In vitro data have been confirmed by a large data set from assisted reproduction, because the steroidogenic potential of hCG positively affects the number of retrieved oocytes, and LH affects the pregnancy rate (per oocyte number). Leydig cell in vitro exposure to hCG results in qualitatively similar cAMP/PKA and pERK1/2 activation compared with LH and testosterone. The supposed equivalence of LH and hCG has been disproved by such data, highlighting their sex-specific functions and thus deeming it an oversight caused by incomplete understanding of clinical data.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giulia Brigante
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
12
|
Szymańska K, Kałafut J, Rivero-Müller A. The gonadotropin system, lessons from animal models and clinical cases. ACTA ACUST UNITED AC 2018; 70:561-587. [PMID: 30264954 DOI: 10.23736/s0026-4784.18.04307-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article centers upon family of gonadotropin hormones which consists of two pituitary hormones - follicle-stimulating hormone (FSH) and luteinizing hormone (LH) as well as one non-pituitary hormone - human chorionic gonadotropin (hCG) secreted by placenta, and their receptors. Gonadotropins play an essential role in proper sexual development, puberty, gametogenesis, maintenance of pregnancy and male sexual differentiation during the fetal development. They belong to the family of glycoprotein hormones thus they constitute heterodimeric proteins built of common α subunit and hormone-specific β-subunit. Hitherto, several mutations in genes encoding both gonadotropins and their receptors have been identified in humans. Their occurrence resulted in a number of different phenotypes including delayed puberty, primary amenorrhea, hermaphroditism, infertility and hypogonadism. In order to understand the effects of mutations on the phenotype observed in affected patients, detailed molecular studies are required to map the relationship between the structure and function of gonadotropins and their receptors. Nonetheless, in vitro assays are often insufficient to understand physiology. Therefore, several animal models have been developed to unravel the physiological roles of gonadotropins and their receptors.
Collapse
|
13
|
Abstract
The gonadotropin receptors (luteinising hormone receptor; LHR and follicle-stimulating hormone receptor; FSHR) are G protein-coupled receptors (GPCRs) that play an important role in the endocrine control of reproduction. Thus genetic mutations that cause impaired function of these receptors have been implicated in a number of reproductive disorders. Disease-causing genetic mutations in GPCRs frequently result in intracellular retention and degradation of the nascent protein through misfolding and subsequent recognition by cellular quality control machinery. The discovery and development of novel compounds termed pharmacological chaperones (pharmacoperones) that can stabilise misfolded receptors and restore trafficking and plasma membrane expression are therefore of great interest clinically, and promising in vitro data describing the pharmacoperone rescue of a number of intracellularly retained mutant GPCRs has provided a platform for taking these compounds into in vivo trials. Thienopyrimidine small molecule allosteric gonadotropin receptor agonists (Org 42599 and Org 41841) have been demonstrated to have pharmacoperone activity. These compounds can rescue cell surface expression and in many cases, hormone responsiveness, of a range of retained mutant gonadotropin receptors. Should gonadotropin receptor selectivity of these compounds be improved, they could offer therapeutic benefit to subsets of patients suffering from reproductive disorders attributed to defective gonadotropin receptor trafficking.
Collapse
Affiliation(s)
- Claire L Newton
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| | - Ross C Anderson
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| |
Collapse
|
14
|
Genetics of gonadotropins and their receptors as markers of ovarian reserve and response in controlled ovarian stimulation. Best Pract Res Clin Obstet Gynaecol 2017; 44:15-25. [PMID: 28506471 DOI: 10.1016/j.bpobgyn.2017.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/03/2017] [Accepted: 04/01/2017] [Indexed: 01/11/2023]
Abstract
Several controlled ovarian stimulation (COS) protocols have been developed to increase the yield of mature oocytes retrieved in assisted reproductive techniques (ARTs). The ovarian reserve (OR) influences the COS response, and it represents the main parameter that helps clinicians in refining clinical treatments in the perspective of a "personalized" ART. This approach is even more needed in particular conditions such as poor OR or polycystic ovary syndrome. Follicle-stimulating hormone, luteinizing hormone, and human chorionic gonadotropin are currently used in COS at different combinations and with different efficacies, even if the best approach definition is controversial. Differences in individual-specific ovarian response to gonadotropin stimulation can be due to alterations of genes encoding for hormones or their receptors. In particular, FSHB c.-211G>T, FSHR p.Asn680Ser, and c.-29G>A SNP allelic combinations may be used as OR and COS response markers. The purpose of this review is to highlight the evidence-based relevance of mutations and polymorphisms in gonadotropins and their receptor genes as predictive markers of OR and COS response to achieve fine-tuned therapeutic regimens.
Collapse
|
15
|
Polymorphism in the Alternative Donor Site of the Cryptic Exon of LHCGR: Functional Consequences and Associations with Testosterone Level. Sci Rep 2017; 7:45699. [PMID: 28367994 PMCID: PMC5377329 DOI: 10.1038/srep45699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/03/2017] [Indexed: 11/09/2022] Open
Abstract
Selective splicing is a feature of luteinizing hormone receptor (LHCGR). A cryptic exon (LHCGR-exon 6A) was found to be derived from alternative splicing in intron 6 of the LHCGR gene, which including two transcripts LHCGR-exon 6A-long and LHCGR-exon 6A-short. We addressed the functional consequences of SNP rs68073206, located at the +5 position of an alternative 5′ splice donor site, and observed its association with male infertility in the subjects with azoospermia, oligoasthenozoospermia and normozoospermia. The translation product of splicing variant LHCGR-exon 6A was expressed in the cytoplasm and exhibited no affinity with [125I]-hCG. No dominant negative effect was observed in cells co-expressed with LHCGR-exon 6A and wild-type LHCGR. The long transcript (LHCGR-exon 6A-long) was significantly elevated in the granulosa cells with G/G genotypes, which could be reproduced in vitro by mini-gene construct transfection. Genotyping analysis showed no association between rs68073206 and male infertility. However, this polymorphism was significantly associated with testosterone levels in normozoospermic subjects (n = 210). In conclusion, SNP rs68073206 in the splicing site of the cryptic exon 6A of the LHCGR gene affect the splicing pattern in the gene, which may play a role in the modulation of the LHCGR sensitivity in the gonads.
Collapse
|
16
|
Yuan P, He Z, Zheng L, Wang W, Li Y, Zhao H, Zhang VW, Zhang Q, Yang D. Genetic evidence of ‘genuine’ empty follicle syndrome: a novel effective mutation in the LHCGR gene and review of the literature. Hum Reprod 2017; 32:944-953. [PMID: 28175319 DOI: 10.1093/humrep/dex015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 01/17/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ping Yuan
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Lingyan Zheng
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Wenjun Wang
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Yu Li
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Haijing Zhao
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Victor Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, one Baylor Plaza, Houston, TX77030, US
- AmCare Genomics Laboratory, International BioIsland, Luoxuan 4th Road, 2-4C-201, Guangzhou, Guangdong 510300, China
| | - Qingxue Zhang
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| | - Dongzi Yang
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, Guangdong 510120, China
| |
Collapse
|
17
|
Newton CL, Anderson RC, Katz AA, Millar RP. Loss-of-Function Mutations in the Human Luteinizing Hormone Receptor Predominantly Cause Intracellular Retention. Endocrinology 2016; 157:4364-4377. [PMID: 27533885 DOI: 10.1210/en.2016-1104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations in G protein-coupled receptors (GPCRs) have been identified for many endocrine hormone signaling deficiencies. Inactivating mutations can impair ligand binding, receptor activation/coupling to signaling pathways, or can cause receptor misfolding and consequent impaired expression at the cell membrane. Here we examine the cell surface expression, ligand binding, and signaling of a range of mutant human luteinizing hormone receptors (LHRs) identified as causing reproductive dysfunction in human patients. The data obtained reveal how mutations in GPCRs can have diverse and severely deleterious effects on receptor function. Furthermore, it was found that impaired functionality of the majority of the mutant LHRs was due to reduced expression at the cell surface (14/20) while only two mutations caused impaired binding affinity and two impaired in signaling. An additional two mutations were found to cause no impairment of receptor function. These data demonstrate that the majority of LHR mutations lead to intracellular retention and highlight the potential for novel pharmacological chaperone therapeutics that can "rescue" expression/function of retained mutant GPCRs.
Collapse
Affiliation(s)
- Claire Louise Newton
- Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa; and Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| | - Ross Calley Anderson
- Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa; and Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| | - Arieh Anthony Katz
- Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa; and Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| | - Robert Peter Millar
- Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa; UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa; and Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| |
Collapse
|
18
|
Ramaswamy S, Weinbauer GF. Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone. SPERMATOGENESIS 2014; 4:e996025. [PMID: 26413400 PMCID: PMC4581062 DOI: 10.1080/21565562.2014.996025] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
Evaluation of testicular functions (production of sperm and androgens) is an important aspect of preclinical safety assessment and testicular toxicity is comparatively far more common than ovarian toxicity. This chapter focuses (1) on the histological sequelae of disturbed reproductive endocrinology in rat, dog and nonhuman primates and (2) provides a review of our current understanding of the roles of gonadotropins and androgens. The response of the rodent testis to endocrine disturbances is clearly different from that of dog and primates with different germ cell types and spermatogenic stages being affected initially and also that the end-stage spermatogenic involution is more pronounced in dog and primates compared to rodents. Luteinizing hormone (LH)/testosterone and follicle-stimulating hormone (FSH) are the pivotal endocrine factors controlling testicular functions. The relative importance of either hormone is somewhat different between rodents and primates. Generally, however, both LH/testosterone and FSH are necessary for quantitatively normal spermatogenesis, at least in non-seasonal species.
Collapse
Affiliation(s)
- Suresh Ramaswamy
- Center for Research in Reproductive Physiology (CRRP); Department of Obstetrics, Gynecology & Reproductive Sciences; University of Pittsburgh School of Medicine; Magee-Womens Research Institute; Pittsburgh, PA USA
| | | |
Collapse
|
19
|
O’Brien TJ, Kalmin MM, Harralson AF, Clark AM, Gindoff I, Simmens SJ, Frankfurter D, Gindoff P. Association between the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) rs4073366 polymorphism and ovarian hyperstimulation syndrome during controlled ovarian hyperstimulation. Reprod Biol Endocrinol 2013; 11:71. [PMID: 23883350 PMCID: PMC3727944 DOI: 10.1186/1477-7827-11-71] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the relationship between a purported luteinizing hormone/chorionic gonadotropin (LHCGR) high function polymorphism (rs4539842/insLQ) and outcome to controlled ovarian hyperstimulation (COH). METHODS This was a prospective study of 172 patients undergoing COH at the Fertility and IVF Center at GWU. DNA was isolated from blood samples and a region encompassing the insLQ polymorphism was sequenced. We also investigated a polymorphism (rs4073366 G > C) that was 142 bp from insLQ. The association of the insLQ and rs4073366 alleles and outcome to COH (number of mature follicles, estradiol level on day of human chorionic gonadotropin (hCG) administration, the number of eggs retrieved and ovarian hyperstimulation syndrome (OHSS)) was determined. RESULTS Increasing age and higher day 3 (basal) FSH levels were significantly associated with poorer response to COH. We found that both insLQ and rs4073366 were in linkage disequilibrium (LD) and no patients were homozygous for both recessive alleles (insLQ/insLQ; C/C). The insLQ variant was not significantly associated with any of the main outcomes to COH. Carrier status for the rs4073366 C variant was associated (P = 0.033) with an increased risk (OR 2.95, 95% CI = 1.09-7.96) of developing OHSS. CONCLUSIONS While age and day 3 FSH levels were predictive of outcome, we found no association between insLQ and patient response to COH. Interestingly, rs4073366 C variant carrier status was associated with OHSS risk. To the best of our knowledge, this is the first report suggesting that LHCGR genetic variation might function in patient risk for OHSS.
Collapse
Affiliation(s)
- Travis J O’Brien
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Mariah M Kalmin
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, USA
| | - Arthur F Harralson
- Department of Pharmacogenomics, Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, VA, USA
| | - Adam M Clark
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Ian Gindoff
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Samuel J Simmens
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, USA
| | - David Frankfurter
- Department of Obstetrics and Gynecology, The George Washington University, Washington, DC, USA
| | - Paul Gindoff
- Department of Obstetrics and Gynecology, The George Washington University, Washington, DC, USA
| |
Collapse
|
20
|
Troppmann B, Kleinau G, Krause G, Gromoll J. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum Reprod Update 2013; 19:583-602. [DOI: 10.1093/humupd/dmt023] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|