1
|
Terra LF, Wailemann RAM, Dos Santos AF, Gomes VM, Silva RP, Laporte A, Meotti FC, Terra WR, Palmisano G, Lortz S, Labriola L. Heat shock protein B1 is a key mediator of prolactin-induced beta-cell cytoprotection against oxidative stress. Free Radic Biol Med 2019; 134:394-405. [PMID: 30699366 DOI: 10.1016/j.freeradbiomed.2019.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022]
Abstract
Maintaining islet cell viability in vitro, although challenging, appears to be a strategy for improving the outcome of pancreatic islet transplantation. We have shown that prolactin (PRL) leads to beta-cell cytoprotection against apoptosis, an effect mediated by heat shock protein B1 (HSPB1). Since the role of HSPB1 in beta-cells is still unclear and the hormone concentration used is not compatible with clinical applications because of all the side effects displayed by the hormone in other tissues, we explored the molecular mechanisms by which HSPB1 mediates beta-cell cytoprotection. Lysates from PRL- and/or cytokine-treated MIN6 beta-cells were subjected to HSPB1 immunoprecipitation followed by identification through mass spectrometry. PRL-treated cells presented an enrichment of several proteins co-precipitating with HSPB1. Of note were oxidative stress resistance-, protein degradation- and carbohydrate metabolism-related proteins. Wild type, HSPB1 silenced or overexpressing MIN6 cells were exposed to menadione and hydrogen peroxide and analysed for several oxidative stress parameters. HSPB1 knockdown rendered cells more sensitive to oxidative stress and led to a reduced antioxidant capacity, while prolactin induced an HSPB1-mediated cytoprotection against oxidative stress. HSPB1 overexpression, however, led to opposite effects. PRL treatment, HSPB1 silencing or overexpression did not change the expression nor activities of antioxidant enzymes, it also did not lead to a modulation of total glutathione levels nor G6PD expression. However, HSPB1 levels are related to a modulation of GSH/GSSG ratio, G6PD activity and NADPH/NADP + ratio. We have shown that HSPB1 is important for pro-survival effects against oxidative stress-induced beta-cell death. These results are in accordance with PRL-induced enrichment of HSPB1-interacting proteins related to protection against oxidative stress. Finally, our results outline the need of further studies investigating the importance of HSPB1 for beta-cell viability, since this could lead to the mitigation of beta-cell death through the up-regulation of an endogenous protective pathway.
Collapse
Affiliation(s)
- Letícia F Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, Brazil; Institute of Clinical Biochemistry, Hannover Medical School (MHH), Carl-Neuberg-Straße, 1, 30625, Hannover, Germany.
| | - Rosangela A M Wailemann
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, Brazil.
| | - Ancély F Dos Santos
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, Brazil.
| | - Vinicius M Gomes
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, Brazil.
| | - Railmara P Silva
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, Brazil.
| | - Anna Laporte
- Institute of Clinical Biochemistry, Hannover Medical School (MHH), Carl-Neuberg-Straße, 1, 30625, Hannover, Germany.
| | - Flávia C Meotti
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, Brazil.
| | - Walter R Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, Brazil.
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas (Edifício II), Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Brazil.
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School (MHH), Carl-Neuberg-Straße, 1, 30625, Hannover, Germany.
| | - Leticia Labriola
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, Brazil.
| |
Collapse
|
2
|
Wailemann RA, Terra LF, Oliveira TC, Dos Santos AF, Gomes VM, Labriola L. Heat shock protein B1 is required for the prolactin-induced cytoprotective effects on pancreatic islets. Mol Cell Endocrinol 2018; 477:39-47. [PMID: 29792912 DOI: 10.1016/j.mce.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
Abstract
The success of islet transplantation has improved lately. Unfortunately, it is still compromised by cell loss. We have shown that prolactin (PRL) inhibits beta-cell apoptosis and up-regulates the antiapoptotic Heat Shock Protein B1 (HSPB1) in human islets. Since its function in pancreatic islets has not been studied, we explored the role of HSPB1 in PRL-induced beta-cell survival. The significant PRL-induced cytoprotection in control cells was abrogated in HSPB1 silenced cells, overexpression of HSPB1 recovered survival. PRL-mediated inhibition of cytokine-induced caspase activities and cytokine-induced decrease of BCL-2/BAX ratio was significantly reverted in knocked-down cells. Kinetics of HSPB1 and HSF1 expression were studied in primary cultures of murine and human pancreatic islets. These findings are highly relevant for the improvement of clinical islet transplantation success rate since our results demonstrated a key role for HSPB1 pointing it as a promising target for beta-cell cytoprotection through the up-regulation of an endogenous protective pathway.
Collapse
Affiliation(s)
| | - Letícia F Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Talita C Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Ancély F Dos Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Vinícius M Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Leticia Labriola
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
3
|
Shen L, Chen C, Yang A, Chen Y, Liu Q, Ni J. Redox proteomics identification of specifically carbonylated proteins in the hippocampi of triple transgenic Alzheimer's disease mice at its earliest pathological stage. J Proteomics 2015; 123:101-13. [PMID: 25890254 DOI: 10.1016/j.jprot.2015.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 01/15/2023]
Abstract
UNLABELLED Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. Attempts to develop therapies for the treatment of the late stage AD have been unsuccessful. Increasing evidences indicate that oxidative stress is an early event of neurodegeneration, however the pathogenic mechanism of AD remains unclarified. In the present study, slot-blot analysis was used to determine the levels of protein carbonyls in the hippocampi of 3-month-old triple transgenic AD mice (3 × Tg-AD). The increased levels of protein carbonyls were observed in the hippocampi of 3 × Tg-AD mice as compared to the non-transgenic controls (non-Tg). Using a redox-proteomic approach, twelve proteins were found to be significantly altered in the levels of protein carbonyls in the hippocampus. These proteins are crucial in energy metabolism, protein folding, cell structure, signal transduction and excitotoxicity. Immunoprecipitation and Western blot were used to validate two proteins identified by the redox proteomics. In addition, increased expression level of carbonyl reductase 1 (CBR1) was observed in the hippocampi of 3 × Tg-AD mice. These results demonstrate that significant protein carbonylation occurs early in the 3-month-old 3 × Tg-AD mice, which support the viewpoint that oxidative stress is an early event in AD progression. BIOLOGICAL SIGNIFICANCE In this study, we have observed increased levels of protein carbonyls in the hippocampi of 3 × Tg-AD mice before the appearance of Aβ plaques and neurofibrillary tangles (NFTs). By redox proteomics, twelve specifically carbonylated proteins were identified. Among them, alpha-enolase (ENO1) and glutamine synthetase (GS) were identified as the common targets of oxidation in the brains of 3 × Tg-AD mice, mild cognitive impairment (MCI) sufferers and AD patients. For the first time, the oxidation of t-complex protein 1 subunit epsilon (CCT5) and protein disulfide-isomerase A3 (PDIA3) were reported to be associated with AD. These results indicated that the combination of monoclonal anti-DNP antibody with digital imaging system could enhance the specificity and accuracy of redox proteomics analysis. Those data support the viewpoint that oxidative stress occurs at the early pathological stage of AD. In addition, this paper provides new information for understanding the pathological process of AD and for developing more appropriate therapies to intervene AD progression.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Cheng Chen
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Aochu Yang
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Youjiao Chen
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, PR China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|