1
|
Biscetti F, Polito G, Rando MM, Nicolazzi MA, Eraso LH, DiMuzio PJ, Massetti M, Gasbarrini A, Flex A. Residual Traditional Risk in Non-Traditional Atherosclerotic Diseases. Int J Mol Sci 2025; 26:535. [PMID: 39859250 PMCID: PMC11765428 DOI: 10.3390/ijms26020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Individuals with chronic inflammatory and immune disorders are at an increased risk of atherosclerotic events and premature cardiovascular (CV) disease. Despite extensive literature exploring the relationship between "non-traditional" atherosclerotic conditions and CV risk, many aspects remain unresolved, including the underlying mechanisms promoting the "non-traditional CV risk", the development of an innovative and comprehensive CV risk assessment tool, and recommendations for tailored interventions. This review aims to evaluate the available evidence on key "non-traditional" CV risk-enhancer conditions, with a focus on assessing and managing CV risk factors. We conducted a comprehensive review of 412 original articles, narrative and systematic reviews, and meta-analyses addressing the CV risk associated with "non-traditional" atherosclerotic conditions. The analysis examined the underlying mechanisms of these relationships and identified strategies for assessing and mitigating elevated risk. A major challenge highlighted is the difficulty in quantifying the contribution of individual risk factors and disease-specific elements to CV risk. While evidence supports the cardiovascular benefits of statins beyond lipid lowering, such as pleiotropic and endothelial effects, current guidelines lack specific recommendations for the use of statins or other therapies targeting non-traditional CV risk factors. Additionally, the absence of validated cardiovascular risk scores that incorporate non-traditional risk factors hinders accurate CV risk evaluation and management. The growing prevalence of "non-traditional CV risk-enhancer conditions" underscores the need for improved awareness of CV risk assessment and management. A thorough understanding of all contributing factors, including disease-specific elements, is crucial for accurate prediction of cardiovascular disease (CVD) risk. This represents an essential foundation for informed decision-making in primary and secondary prevention. We advocate for future research to focus on developing innovative, disease-specific CV risk assessment tools that incorporate non-traditional risk factors, recognizing this as a promising avenue for translational and clinical outcome research.
Collapse
Affiliation(s)
- Federico Biscetti
- Cardiovascular Internal Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giorgia Polito
- Cardiovascular Internal Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Maria Anna Nicolazzi
- Cardiovascular Internal Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. DiMuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Massetti
- Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Andrea Flex
- Cardiovascular Internal Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
2
|
El-Shitany NA, El-Saidy EA, El-Naggar ME, Sokar SS. Cilostazol protects against gastric ulcers by regulating PPAR-γ, HO-1, PECAM-1, pErk-1, NF-κB, Bcl-2, and cleaved caspase-3 protein expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9033-9050. [PMID: 38884677 PMCID: PMC11522149 DOI: 10.1007/s00210-024-03176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Millions of individuals worldwide, across all age groups, suffer from the widespread health issue of gastric ulcers. In many experiments, cilostazol (Cls), a phosphodiesterase-3 inhibitor, was recently shown to have anti-ulcer activity. Notably, Cls increases the expression and transcriptional activity of PPAR-γ in vitro and in vivo. This study aimed to evaluate the protective effect of Cls against ethanol-induced gastric ulcers and clarify the possible underlying mechanisms with an emphasis on the role of PPAR-γ. Male albino rats were treated with ethanol to induce gastric ulcers, or they were pretreated with Cls, omeprazole (Omp), GW9662, or Cls + GW9662 for 14 consecutive days before receiving ethanol. Cls protects against ethanol-induced gastric ulcers. Cls treatment significantly reduced ethanol-induced upregulation of the pro-inflammatory markers (IL-1β, IL-6, TNF-α, and NF-κB), MDA (a marker of lipid peroxidation), and caspase-3 and cleaved caspase-3 (apoptotic markers). On the other hand, Cls treatment counteracted ethanol-induced downregulation of PPAR-γ, pErk-1, HO-1 and GSH (antioxidant markers), PECAM-1 and NO (healing markers), and Bcl-2 (antiapoptotic marker). However, when combined with GW9662, a potent antagonist of PPAR-γ, Cls loses its effects. In conclusion, these results suggest that PPAR-γ and pErk-1 are essential for Cls's protective effects against ethanol-induced gastric ulcers.
Collapse
Affiliation(s)
- Nagla A El-Shitany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Eman A El-Saidy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mostafa E El-Naggar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Samia S Sokar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Narkar VA. Exercise and Ischemia-Activated Pathways in Limb Muscle Angiogenesis and Vascular Regeneration. Methodist Debakey Cardiovasc J 2023; 19:58-68. [PMID: 38028974 PMCID: PMC10655757 DOI: 10.14797/mdcvj.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise has a profound effect on cardiovascular disease, particularly through vascular remodeling and regeneration. Peripheral artery disease (PAD) is one such cardiovascular condition that benefits from regular exercise or rehabilitative physical therapy in terms of slowing the progression of disease and delaying amputations. Various rodent pre-clinical studies using models of PAD and exercise have shed light on molecular pathways of vascular regeneration. Here, I review key exercise-activated signaling pathways (nuclear receptors, kinases, and hypoxia inducible factors) in the skeletal muscle that drive paracrine regenerative angiogenesis. The rationale for highlighting the skeletal muscle is that it is the largest organ recruited during exercise. During exercise, skeletal muscle releases several myokines, including angiogenic factors and cytokines that drive tissue vascular regeneration via activation of endothelial cells, as well as by recruiting immune and endothelial progenitor cells. Some of these core exercise-activated pathways can be extrapolated to vascular regeneration in other organs. I also highlight future areas of exercise research (including metabolomics, single cell transcriptomics, and extracellular vesicle biology) to advance our understanding of how exercise induces vascular regeneration at the molecular level, and propose the idea of "exercise-mimicking" therapeutics for vascular recovery.
Collapse
Affiliation(s)
- Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, US
| |
Collapse
|
4
|
Cecchini AL, Biscetti F, Manzato M, Lo Sasso L, Rando MM, Nicolazzi MA, Rossini E, Eraso LH, Dimuzio PJ, Massetti M, Gasbarrini A, Flex A. Current Medical Therapy and Revascularization in Peripheral Artery Disease of the Lower Limbs: Impacts on Subclinical Chronic Inflammation. Int J Mol Sci 2023; 24:16099. [PMID: 38003290 PMCID: PMC10671371 DOI: 10.3390/ijms242216099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CeVD) are characterized by atherosclerosis and inflammation as their underlying mechanisms. This paper aims to conduct a literature review on pharmacotherapy for PAD, specifically focusing on how different drug classes target pro-inflammatory pathways. The goal is to enhance the choice of therapeutic plans by considering their impact on the chronic subclinical inflammation that is associated with PAD development and progression. We conducted a comprehensive review of currently published original articles, narratives, systematic reviews, and meta-analyses. The aim was to explore the relationship between PAD and inflammation and evaluate the influence of current pharmacological and nonpharmacological interventions on the underlying chronic subclinical inflammation. Our findings indicate that the existing treatments have added anti-inflammatory properties that can potentially delay or prevent PAD progression and improve outcomes, independent of their effects on traditional risk factors. Although inflammation-targeted therapy in PAD shows promising potential, its benefits have not been definitively proven yet. However, it is crucial not to overlook the pleiotropic properties of the currently available treatments, as they may provide valuable insights for therapeutic strategies. Further studies focusing on the anti-inflammatory and immunomodulatory effects of these treatments could enhance our understanding of the mechanisms contributing to the residual risk in PAD and pave the way for the development of novel therapies.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Manzato
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Lo Sasso
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Anna Nicolazzi
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enrica Rossini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Massetti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Flex
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Kumar A, Narkar VA. Nuclear receptors as potential therapeutic targets in peripheral arterial disease and related myopathy. FEBS J 2023; 290:4596-4613. [PMID: 35942640 PMCID: PMC9908775 DOI: 10.1111/febs.16593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, UTHealth McGovern Medical School, Houston, TX, 77030
- University of Texas MD Anderson and UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030
| |
Collapse
|
6
|
Wagner N, Wagner KD. Pharmacological Utility of PPAR Modulation for Angiogenesis in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24032345. [PMID: 36768666 PMCID: PMC9916802 DOI: 10.3390/ijms24032345] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator activated receptors, including PPARα, PPARβ/δ, and PPARγ, are ligand-activated transcription factors belonging to the nuclear receptor superfamily. They play important roles in glucose and lipid metabolism and are also supposed to reduce inflammation and atherosclerosis. All PPARs are involved in angiogenesis, a process critically involved in cardiovascular pathology. Synthetic specific agonists exist for all PPARs. PPARα agonists (fibrates) are used to treat dyslipidemia by decreasing triglyceride and increasing high-density lipoprotein (HDL) levels. PPARγ agonists (thiazolidinediones) are used to treat Type 2 diabetes mellitus by improving insulin sensitivity. PPARα/γ (dual) agonists are supposed to treat both pathological conditions at once. In contrast, PPARβ/δ agonists are not in clinical use. Although activators of PPARs were initially considered to have favorable effects on the risk factors for cardiovascular disease, their cardiovascular safety is controversial. Here, we discuss the implications of PPARs in vascular biology regarding cardiac pathology and focus on the outcomes of clinical studies evaluating their benefits in cardiovascular diseases.
Collapse
|
7
|
Numaga-Tomita T, Shimauchi T, Kato Y, Nishiyama K, Nishimura A, Sakata K, Inada H, Kita S, Iwamoto T, Nabekura J, Birnbaumer L, Mori Y, Nishida M. Inhibition of transient receptor potential cation channel 6 promotes capillary arterialization during post-ischaemic blood flow recovery. Br J Pharmacol 2023; 180:94-110. [PMID: 36068079 PMCID: PMC10092707 DOI: 10.1111/bph.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Capillary arterialization, characterized by the coverage of pre-existing or nascent capillary vessels with vascular smooth muscle cells (VSMCs), is critical for the development of collateral arterioles to improve post-ischaemic blood flow. We previously demonstrated that the inhibition of transient receptor potential 6 subfamily C, member 6 (TRPC6) channels facilitate contractile differentiation of VSMCs under ischaemic stress. We here investigated whether TRPC6 inhibition promotes post-ischaemic blood flow recovery through capillary arterialization in vivo. EXPERIMENTAL APPROACH Mice were subjected to hindlimb ischaemia by ligating left femoral artery. The recovery rate of peripheral blood flow was calculated by the ratio of ischaemic left leg to non-ischaemic right one. The number and diameter of blood vessels were analysed by immunohistochemistry. Expression and phosphorylation levels of TRPC6 proteins were determined by western blotting and immunohistochemistry. KEY RESULTS Although the post-ischaemic blood flow recovery is reportedly dependent on endothelium-dependent relaxing factors, systemic TRPC6 deletion significantly promoted blood flow recovery under the condition that nitric oxide or prostacyclin production were inhibited, accompanying capillary arterialization. Cilostazol, a clinically approved drug for peripheral arterial disease, facilitates blood flow recovery by inactivating TRPC6 via phosphorylation at Thr69 in VSMCs. Furthermore, inhibition of TRPC6 channel activity by pyrazole-2 (Pyr2; BTP2; YM-58483) promoted post-ischaemic blood flow recovery in Apolipoprotein E-knockout mice. CONCLUSION AND IMPLICATIONS Suppression of TRPC6 channel activity in VSMCs could be a new strategy for the improvement of post-ischaemic peripheral blood circulation.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Shinshu University School of Medicine, Nagano, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan
| | - Kosuke Sakata
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inada
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Satomi Kita
- Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | | | - Junichi Nabekura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Lutz Birnbaumer
- NIEHS, NIH, Research Triangle Park, North Carolina, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Tseng SY, Chang HY, Li YH, Chao TH. Effects of Cilostazol on Angiogenesis in Diabetes through Adiponectin/Adiponectin Receptors/Sirtuin1 Signaling Pathway. Int J Mol Sci 2022; 23:14839. [PMID: 36499166 PMCID: PMC9739574 DOI: 10.3390/ijms232314839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Cilostazol is an antiplatelet agent with vasodilating effects that functions by increasing the intracellular concentration of cyclic adenosine monophosphate. We have previously shown that cilostazol has favorable effects on angiogenesis. However, there is no study to evaluate the effects of cilostazol on adiponectin. We investigated the effects of cilostazol on angiogenesis in diabetes in vitro and in vivo through adiponectin/adiponectin receptors (adipoRs) and the sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signaling pathway. Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were cocultured under high glucose (HG) conditions. Adiponectin concentrations in the supernatants were significantly increased when HASMCs were treated with cilostazol but not significantly changed when only HUVECs were treated with cilostazol. Cilostazol treatment enhanced the expression of SIRT1 and upregulated the phosphorylation of AMPK in HG-treated HUVECs. By sequential knockdown of adipoRs, SIRT1, and AMPK, our data demonstrated that cilostazol prevented apoptosis and stimulated proliferation, chemotactic motility, and capillary-like tube formation in HG-treated HUVECs through the adipoRs/SIRT1/AMPK signaling pathway. The phosphorylation of downstream signaling molecules, including acetyl-CoA carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), was downregulated when HUVECs were treated with a SIRT1 inhibitor. In streptozotocin-induced diabetic mice, cilostazol treatment could improve blood flow recovery 21-28 days after inducing hindlimb ischemia as well as increase the circulating of CD34+CD45dim cells 14-21 days after operation; moreover, these effects were significantly attenuated by the knockdown of adipoR1 but not adipoR2. The expression of SIRT1 and phosphorylation of AMPK/ACC and Akt/eNOS in ischemic muscles were significantly attenuated by the gene knockdown of adipoRs. Cilostazol improves HG-induced endothelial dysfunction in vascular endothelial cells and enhances angiogenesis in diabetic mice by upregulating the expression of adiponectin/adipoRs and its SIRT1/AMPK downstream signaling pathway.
Collapse
Affiliation(s)
- Shih-Ya Tseng
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Heng Li
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Health Management Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
9
|
Biscetti F, Cecchini AL, Rando MM, Nardella E, Gasbarrini A, Massetti M, Flex A. Principal predictors of major adverse limb events in diabetic peripheral artery disease: A narrative review. ATHEROSCLEROSIS PLUS 2021; 46:1-14. [PMID: 36643723 PMCID: PMC9833249 DOI: 10.1016/j.athplu.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 01/18/2023]
Abstract
Background and aims The increasing prevalence of diabetes mellitus is causing a massive growth of peripheral artery disease incidences, a disabling complication of diabetic atherosclerosis, which leads often to the amputation of the affected limb. Critical limb ischemia is the terminal disease stage, which requires a prompt intervention to relieve pain and save limbs. However, patients undergoing revascularization often suffer from cardiovascular, cerebrovascular and major adverse limb events with poor outcomes. Furthermore, the same procedure performed in apparently similar patients has various outcomes and lack of an outcome predictive support causes a high lower limb arterial revascularization rate with disastrous effects for patients. We collected the main risk factors of major adverse limb events in a more readable and immediate format of the topic, to propose an overview of parameters to manage effectively peripheral artery disease patients and to propose basics of a new predictive tool to prevent from disabling vascular complications of the disease. Methods Most recent and updated literature about the prevalence of major adverse limb events in peripheral artery disease was reviewed to identify possible main predictors. Results In this article, we summarized major risk factors of limb revascularization failure and disabling vascular complications collecting those parameters principally responsible for major adverse limb events, which provides physio-pathological explanation of their role in peripheral artery disease. Conclusion We evaluated and listed a panel of possible predictors of MALE (Major Adverse Limb Event) in order to contribute to the development of a predictive score, based on a summary of the main risk factors reported in scientific articles, which could improve the management of peripheral artery disease by preventing vascular accidents.
Collapse
Affiliation(s)
- Federico Biscetti
- Internal and Cardiovascular Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy,Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Roma, Italy,Corresponding author. Internal and Cardiovascular Medicine Unit. Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, Rome, 00168, Italy.
| | | | - Maria Margherita Rando
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Elisabetta Nardella
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Universitá Cattolica del Sacro Cuore, Roma, Italy
| | - Massimo Massetti
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Andrea Flex
- Internal and Cardiovascular Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy,Department of Medical and Surgical Sciences, Universitá Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
10
|
Mannan A, Garg N, Singh TG, Kang HK. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res 2021; 46:2800-2831. [PMID: 34282491 DOI: 10.1007/s11064-021-03402-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic injury is a leading cause of death and long-term disability throughout the world. Peroxisome proliferator-activated receptor gamma (PPAR-ɣ) is a ligand-activated nuclear transcription factor that is a member of the PPAR family. PPAR-ɣ has been shown in several in vitro and in vivo models to prevent post-ischemic inflammation and neuronal damage by negatively controlling the expression of genes modulated by cerebral ischemic injury, indicating a neuroprotective effect during cerebral ischemic injury. A extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the mechanistic role of Peroxisome proliferator activated receptor gamma and its modulation in Cerebral ischemic injury. PPAR-ɣ can interact with specific DNA response elements to control gene transcription and expression when triggered by its ligand. It regulates lipid metabolism, improves insulin sensitivity, modulates antitumor mechanisms, reduces oxidative stress, and inhibits inflammation. This review article provides insights on the current state of research into the neuroprotective effects of PPAR-ɣ in cerebral ischemic injury, as well as the cellular and molecular mechanisms by which these effects are modulated, such as inhibition of inflammation, reduction of oxidative stress, suppression of pro-apoptotic production, modulation of transcription factors, and restoration of injured tissue through neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Harmeet Kaur Kang
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
11
|
Biscetti F, Tinelli G, Rando MM, Nardella E, Cecchini AL, Angelini F, Straface G, Filipponi M, Arena V, Pitocco D, Gasbarrini A, Massetti M, Flex A. Association between carotid plaque vulnerability and high mobility group box-1 serum levels in a diabetic population. Cardiovasc Diabetol 2021; 20:114. [PMID: 34044825 PMCID: PMC8161555 DOI: 10.1186/s12933-021-01304-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background Carotid atherosclerosis represents one of the complications of diabetes mellitus. In particular, plaque instability contributes to disease progression and stroke incidence. High mobility group box-1 (HMGB1) is a nuclear protein involved in promotion and progression of atherosclerosis and cardiovascular diseases. The aim of this study was to analyze the relationship between HMGB1 serum levels, main inflammatory cytokines, the presence of internal carotid stenosis and unstable plaque in a diabetic population. Research design and methods We studied 873 diabetic patients, including 347 patients with internal carotid artery stenosis (ICAS) who underwent carotid endarterectomy and 526 diabetic patients without internal carotid artery stenosis (WICAS). At baseline, HMGB1 and the main inflammatory cytokines serum levels were evaluated. For ICAS patients, the histological features of carotid plaque were also collected to differentiate them in patients with stable or unstable atherosclerotic lesions. Results We found that HMGB1 serum levels, osteoprotegerin, high-sensitivity C-reactive protein, tumor necrosis factor-alpha and interleukin-6, were significantly higher in diabetic ICAS patients compared to diabetic WICAS patients. Among ICAS patients, individuals with unstable plaque had higher levels of these cytokines, compared to patients with stable plaque. A multivariable stepwise logistic regression analysis showed that HMGB1 and osteoprotegerin remained independently associated with unstable plaque in ICAS patients. Conclusions The present study demonstrated that HMGB1 is an independent risk factor for carotid plaque vulnerability in an Italian population with diabetes mellitus, representing a promising biomarker of carotid plaque instability and a possible molecular target to treat unstable carotid plaques and to prevent stroke.
Collapse
Affiliation(s)
- Federico Biscetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy. .,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy. .,Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Giovanni Tinelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Vascular Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maria Margherita Rando
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy
| | - Elisabetta Nardella
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Flavia Angelini
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giuseppe Straface
- Department of Internal Medicine, St. M. Goretti Hospital, Roma, Italy
| | | | - Vincenzo Arena
- Department of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Dario Pitocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Massimo Massetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Cardiovascular Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Andrea Flex
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy.,Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
12
|
Cilostazol mitigates mesenteric ischemia/reperfusion-induced lung lesion: Contribution of PPAR-γ, NF-κB, and STAT3 crosstalk. Life Sci 2020; 266:118882. [PMID: 33310046 DOI: 10.1016/j.lfs.2020.118882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
AIMS Cilostazol (Cilo), a phosphodiesterase-III inhibitor, has signified its efficacy against different ischemia/reperfusion (IS/RE) models. Nevertheless, it has not fully illuminated its potential effect against intestinal IS/RE-induced lung injury. Consequently, the study was fashioned to evaluate the feasible mechanism of action of Cilo against intestinal IS/RE-induced lung injury. MAIN METHODS Wistar rats were treated with Cilo (0.1 g/kg, p.o.) or with a vehicle for 14 days prior to IS/RE, induced by clamping of the superior mesenteric artery for 30 min with subsequent clamp removal for 2 h. KEY FINDINGS The mechanistic study disclosed that Cilo protected the two studied organs, viz., lung, and intestine partially by intensifying the expression/content of PPAR-γ accompanied by reducing the expression/content of NF-қB-p65 and STAT3. In addition to normalizing MDA, iNOS, and NOx, the Cilo antioxidant power was confirmed by intensifying tissues content of the total antioxidant capacity. With regard to the anti-inflammatory effect, Cilo reduced the effects of TNF-α, IL-6, and ICAM-1, which were reflected in MPO activity. Furthermore, Cilo had an anti-apoptotic attribute demonstrated by enhancing Bcl-2 content and lessening caspase-3 level. SIGNIFICANCE Cilo provided conceivable protective mechanisms to modulate events concomitant with mesenteric IS/RE partly by modulating oxidative stress, inflammation, and apoptosis feasibly via the participation of PPAR-γ, STAT3, and NF-κB p65 signaling pathways.
Collapse
|
13
|
Wagner N, Wagner KD. PPARs and Angiogenesis-Implications in Pathology. Int J Mol Sci 2020; 21:ijms21165723. [PMID: 32785018 PMCID: PMC7461101 DOI: 10.3390/ijms21165723] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes: PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands have been proposed as potential therapies for a variety of diseases such as metabolic syndrome, cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies. In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process that plays important roles in numerous pathological conditions for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
14
|
Zheng H, Yang H, Gong D, Mai L, Qiu X, Chen L, Su X, Wei R, Zeng Z. Progress in the Mechanism and Clinical Application of Cilostazol. Curr Top Med Chem 2020; 19:2919-2936. [PMID: 31763974 DOI: 10.2174/1568026619666191122123855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Cilostazol is a unique platelet inhibitor that has been used clinically for more than 20 years. As a phosphodiesterase type III inhibitor, cilostazol is capable of reversible inhibition of platelet aggregation and vasodilation, has antiproliferative effects, and is widely used in the treatment of peripheral arterial disease, cerebrovascular disease, percutaneous coronary intervention, etc. This article briefly reviews the pharmacological mechanisms and clinical application of cilostazol.
Collapse
Affiliation(s)
- Huilei Zheng
- Department of Medical Examination & Health Management, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Hua Yang
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Department of Critical Care Medicine, Second People's Hospital of Nanning, Nanning, Guangxi, China
| | - Danping Gong
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Cardiology Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lanxian Mai
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Disciplinary Construction Office, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoling Qiu
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Lidai Chen
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Xiaozhou Su
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Ruoqi Wei
- Department of Computer Science and Engineering, University of Bridgeport,126 Park Ave, BRIDGEPORT, CT 06604, United States
| | - Zhiyu Zeng
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Cardiology Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Biscetti F, Gentileschi S, Bertucci F, Servillo M, Arena V, Angelini F, Stigliano E, Bonanno G, Scambia G, Sacchetti B, Pierelli L, Landolfi R, Flex A. The angiogenic properties of human adipose-derived stem cells (HASCs) are modulated by the High mobility group box protein 1 (HMGB1). Int J Cardiol 2017; 249:349-356. [PMID: 28967436 DOI: 10.1016/j.ijcard.2017.09.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/04/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Abstract
Peripheral arterial disease (PAD), is a major health problem. Many studies have been focused on the possibilities of treatment offered by vascular regeneration. Human adipose-derived stem cells (HASCs), multipotent CD34+ stem cells found in the stromal-vascular fraction of adipose tissues, which are capable to differentiate into multiple mesenchymal cell types. The High mobility group box 1 protein (HMGB1) is a nuclear protein involved in angiogenesis. The aim of the study was to define the role of HMGB1 in cell therapy with HASCs, in an animal model of PAD. We induced unilateral ischemia in mice and we treated them with HASCs, with the specific HMGB1-inihibitor BoxA, with HMGB1 protein, and with the specific VEGF inhibitor sFlt1, alternately or concurrently. We measured the blood flow recovery in all mice. Immunohistochemical and ELISA analyses was performed to evaluate the number of vessels and the VEGF tissue content. None auto-amputation occurred and there have been no rejection reactions to the administration of HASCs. Animals co-treated with HASCs and HMGB1 protein had an improved blood flow recovery, compared to HASCs-treated mice. The post-ischemic angiogenesis was reduced when the HMGB1 pathway was blocked or when the VEGF activity was inhibited, in mice co-treated with HASCs and HMGB1. In conclusion, the HASCs treatment can be used in a mouse model of PAD to induce post-ischemic angiogenesis, modulating angiogenesis by HMGB1. This effect is mediated by VEGF activity. Although further data are needed, these findings shed light on possible new cell treatments for patients with PAD.
Collapse
Affiliation(s)
- Federico Biscetti
- Division of Rheumatology, Institute of Rheumatology & Related Sciences, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy; Laboratory of Vascular Biology and Genetics, Department of Medicine, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy.
| | - Stefano Gentileschi
- Division of Plastic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | - Flavio Bertucci
- Laboratory of Vascular Biology and Genetics, Department of Medicine, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | - Maria Servillo
- Division of Plastic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | - Vincenzo Arena
- Department of Pathology, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | - Flavia Angelini
- Laboratory of Vascular Biology and Genetics, Department of Medicine, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | - Egidio Stigliano
- Department of Pathology, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | - Giuseppina Bonanno
- Division of Gynecology, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | - Giovanni Scambia
- Division of Gynecology, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | | | - Luca Pierelli
- Immunohematology and Transfusion Medicine, San Camillo Forlanini Hospital, Rome, Italy; Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Raffaele Landolfi
- Department of Internal Medicine, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| | - Andrea Flex
- Laboratory of Vascular Biology and Genetics, Department of Medicine, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy; Department of Internal Medicine, Fondazione Policlinico Universitario "A. Gemelli", Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
16
|
Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes 2017; 9:434-449. [PMID: 28044409 DOI: 10.1111/1753-0407.12521] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/06/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells, as well as their major products nitric oxide (NO) and prostacyclin, play a key role in the regulation of vascular homeostasis. Diabetes mellitus is an important risk factor for cardiovascular disease. Diabetes-induced endothelial dysfunction is a critical and initiating factor in the genesis of diabetic vascular complications. The present review focuses on both large blood vessels and the microvasculature. The endothelial dysfunction in diabetic macrovascular complications is characterized by reduced NO bioavailability, poorly compensated for by increased production of prostacyclin and/or endothelium-dependent hyperpolarizations, and increased production or action of endothelium-derived vasoconstrictors. The endothelial dysfunction of microvascular complications is primarily characterized by decreased release of NO, enhanced oxidative stress, increased production of inflammatory factors, abnormal angiogenesis, and impaired endothelial repair. In addition, non-coding RNAs (microRNAs) have emerged as participating in numerous cellular processes. Thus, this reviews pays special attention to microRNAs and their modulatory role in diabetes-induced vascular dysfunction. Some therapeutic strategies for preventing and restoring diabetic endothelial dysfunction are also highlighted.
Collapse
Affiliation(s)
- Yi Shi
- Biomedical Research Centre, Shanghai Key Laboratory of organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
17
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Chao TH, Chen IC, Lee CH, Chen JY, Tsai WC, Li YH, Tseng SY, Tsai LM, Tseng WK. Cilostazol Enhances Mobilization of Circulating Endothelial Progenitor Cells and Improves Endothelium-Dependent Function in Patients at High Risk of Cardiovascular Disease. Angiology 2016; 67:638-46. [DOI: 10.1177/0003319715606249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This is the first study to investigate the vasculoangiogenic effects of cilostazol on endothelial progenitor cells (EPCs) and flow-mediated dilatation (FMD) in patients at high risk of cardiovascular disease (CVD). This double-blind, placebo-controlled study included 71 patients (37 received 200 mg/d cilostazol and 34 received placebo for 12 weeks). Use of cilostazol, but not placebo, significantly increased circulating EPC (kinase insert domain receptor+CD34+) counts (percentage changes: 149.0% [67.9%-497.8%] vs 71.9% [−31.8% to 236.5%], P = .024) and improved triglyceride and high-density lipoprotein cholesterol levels ( P = .002 and P = .003, respectively). Plasma levels of vascular endothelial growth factor (VEGF)-A165 and FMD significantly increased (72.5% [32.9%-120.4%] vs −5.8% [−46.0% to 57.6%], P = .001; 232.8% ± 83.1% vs −46.9% ± 21.5%, P = .003, respectively) in cilostazol-treated patients. Changes in the plasma triglyceride levels significantly inversely correlated with the changes in the VEGF-A165 levels and FMD. Cilostazol significantly enhanced the mobilization of EPCs and improved endothelium-dependent function by modifying some metabolic and angiogenic markers in patients at high risk of CVD.
Collapse
Affiliation(s)
- Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - I-Chih Chen
- Department of Internal Medicine, Tainan Municipal Hospital, Tainan, Taiwan
| | - Cheng-Han Lee
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ju-Yi Chen
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Wei-Chuan Tsai
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Ya Tseng
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Miin Tsai
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Wei-Kung Tseng
- Division of Cardiology, Department of Internal Medicine, E-Da University College of Medicine and Hospital, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Tseng SY, Chao TH, Li YH, Liu PY, Lee CH, Cho CL, Wu HL, Chen JH. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway. J Vasc Surg 2016; 63:1051-62.e3. [DOI: 10.1016/j.jvs.2014.10.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 02/06/2023]
|
20
|
PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL. Apoptosis 2015; 21:60-8. [DOI: 10.1007/s10495-015-1186-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Katome T, Namekata K, Mitamura Y, Semba K, Egawa M, Naito T, Harada C, Harada T. Expression of intraocular peroxisome proliferator-activated receptor gamma in patients with proliferative diabetic retinopathy. J Diabetes Complications 2015; 29:275-81. [PMID: 25468312 DOI: 10.1016/j.jdiacomp.2014.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 11/16/2022]
Abstract
AIMS To determine whether peroxisome proliferator-activated receptor gamma (PPARγ), which is recognized as a component of the exosomes circulating in plasma, is expressed intraocularly in patients with proliferative diabetic retinopathy (PDR). METHODS The concentrations of PPARγ and vascular endothelial growth factor (VEGF) in the aqueous humor and vitreous of 50 eyes with PDR and 38 control eyes were determined by ELISA. The levels of the mRNA and protein of PPARγ were determined in proliferative membranes from 12 PDR and 5 control eyes by quantitative RT-PCR and immunohistochemical analyses. RESULTS PPARγ was detected in the culture media of human umbilical vein endothelial cells indicating that PPARγ can be released into the extracellular fluid. The PPARγ concentrations in the aqueous humor and vitreous fluid were significantly higher in PDR patients than in controls (P<0.0005). There was a significant positive correlation between the PPARγ and VEGF concentrations (P<0.0005). The level of PPARγ increased as the clinical stage advanced. The expressions of the mRNA and protein of PPARγ were higher in the membranes of PDR than those of controls. Anti-VEGF therapy significantly reduced the VEGF concentration (P<0.0001) but not the PPARγ concentration. CONCLUSIONS PPARγ may play an important role in the pathogenesis of PDR.
Collapse
Affiliation(s)
- Takashi Katome
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan; Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | - Kentaro Semba
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan; Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mariko Egawa
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Takeshi Naito
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan; Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
22
|
Lin YC, Kao CH, Chen CC, Ke CJ, Yao CH, Chen YS. Time-course effect of electrical stimulation on nerve regeneration of diabetic rats. PLoS One 2015; 10:e0116711. [PMID: 25689049 PMCID: PMC4331087 DOI: 10.1371/journal.pone.0116711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/13/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Electrical stimulation (ES) has been shown to promote nerve regeneration in rats with experimental diabetes induced using streptozotocin (STZ). However, the time-course effect of ES on nerve regeneration of diabetic animals has not been reported in previous studies. The present study attempted to examine the effect of different timing of ES after peripheral nerve transection in diabetic rats. METHODOLOGY/FINDINGS Fifty Sprague-Dawley rats were used in the study. They were classified into five groups. STZ-induced diabetes was created in groups A to D. Normal animals in group E were used as the non-diabetic controls. The sciatic nerve was transected and repaired using a silicone rubber conduit across a 10-mm gap in all groups. Groups A to C received ES for 15 minutes every other day for 2 weeks. Stimulation was initiated on day 1 following the nerve repair for group A, day 8 for group B, and day 15 for group C. The diabetic control group D and the normal control group E received no ES. At 30 days after surgery in group A, histological evaluations showed a higher success percentage of regeneration across the 10-mm nerve gap, and the electrophysiological results showed significantly larger mean values of evoked muscle action potential area and amplitude of the reinnervated gastrocnemius muscle compared with group D. CONCLUSIONS/SIGNIFICANCE It is concluded that an immediate onset of ES may improve the functional recovery of large nerve defect in diabetic animals.
Collapse
Affiliation(s)
- Yu-Ching Lin
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hong Kao
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chung-Chia Chen
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Linsen (Chinese Medicine) Branch, Taipei City Hospital, Taipei, Taiwan
| | - Cherng-Jyh Ke
- Department of Orthopedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsu Yao
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Wufeng District, Taichung, Taiwan
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
23
|
PPARγ activation but not PPARγ haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors. Cardiovasc Diabetol 2014; 13:150. [PMID: 25361524 PMCID: PMC4233236 DOI: 10.1186/s12933-014-0150-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor-γ (PPARγ) agonists, which have been used as insulin sensitizers in diabetic patients, may improve functions of endothelial cells (ECs). We investigated the effect of PPARγ on angiogenic activities of murine ECs and bone marrow-derived proangiogenic cells (PACs). Methods PACs were isolated from bone marrow of 10–12 weeks old, wild type, db/db and PPARγ heterozygous animals. Cells were cultured on fibronectin and gelatin coated dishes in EGM-2MV medium. For in vitro stimulations, rosiglitazone (10 μmol/L) or GW9662 (10 μmol/L) were added to 80% confluent cell cultures for 24 hours. Angiogenic potential of PACs and ECs was tested in vitro and in vivo in wound healing assay and hind limb ischemia model. Results ECs and PACs isolated from diabetic db/db mice displayed a reduced angiogenic potential in ex vivo and in vitro assays, the effect partially rescued by incubation of cells with rosiglitazone (PPARγ activator). Correction of diabetes by administration of rosiglitazone in vivo did not improve angiogenic potential of isolated PACs or ECs. In a hind limb ischemia model we demonstrated that local injection of conditioned media harvested from wild type PACs improved the blood flow restoration in db/db mice, confirming the importance of paracrine action of the bone marrow-derived cells. Transcriptome analysis showed an upregulation of prooxidative and proinflammatory pathways, and downregulation of several proangiogenic genes in db/db PACs. Interestingly, db/db PACs had also a decreased level of PPARγ and changed expression of PPARγ-regulated genes. Using normoglycemic PPARγ+/− mice we demonstrated that reduced expression of PPARγ does not influence neovascularization either in wound healing or in hind limb ischemia models. Conclusions In summary, activation of PPARγ by rosiglitazone improves angiogenic potential of diabetic ECs and PACs, but decreased expression of PPARγ in diabetes does not impair angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12933-014-0150-7) contains supplementary material, which is available to authorized users.
Collapse
|