1
|
Fan P, Jordan VC. Estrogen Receptor and the Unfolded Protein Response: Double-Edged Swords in Therapy for Estrogen Receptor-Positive Breast Cancer. Target Oncol 2022; 17:111-124. [PMID: 35290592 PMCID: PMC9007905 DOI: 10.1007/s11523-022-00870-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
Estrogen receptor α (ERα) is a target for the treatment of ER-positive breast cancer patients. Paradoxically, it is also the initial site for estrogen (E2) to induce apoptosis in endocrine-resistant breast cancer. How ERα exhibits distinct functions, in different contexts, is the focus of numerous investigations. Compelling evidence demonstrated that unfolded protein response (UPR) is closely correlated with ER-positive breast cancer. Treatment with antiestrogens initially induces mild UPR through ERα with activation of three sensors of UPR-PRK-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6)-in the endoplasmic reticulum. Subsequently, these sensors interact with stress-associated transcription factors such as c-MYC, nuclear factor-κB (NF-κB), and hypoxia-inducible factor 1α (HIF1α), leading to acquired endocrine resistance. Paradoxically, E2 further activates sustained secondary UPR via ERα to induce apoptosis in endocrine-resistant breast cancer. Specifically, PERK plays a key role in inducing apoptosis, whereas IRE1α and ATF6 are involved in endoplasmic reticulum stress-associated degradation after E2 treatment. Furthermore, persistent activation of PERK deteriorates stress responses in mitochondria and triggers of NF-κB/tumor necrosis factor α (TNFα) axis, ultimately determining cell fate to apoptosis. The discovery of E2-induced apoptosis has clinical relevance for treatment of endocrine-resistant breast cancer. All of these findings demonstrate that ERα and associated UPR are double-edged swords in therapy for ER-positive breast cancer, depending on the duration and intensity of UPR stress. Herein, we address the mechanistic progress on how UPR leads to endocrine resistance and commits E2 to inducing apoptosis in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA
| | - V Craig Jordan
- Department of Breast Medical Oncology, Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA.
| |
Collapse
|
2
|
Wan P, Chen Z, Huang M, Jiang H, Wu H, Zhong K, Ding G, Wang B. miR-200a-3p facilitates bladder cancer cell proliferation by targeting the A20 gene. Transl Androl Urol 2022; 10:4262-4274. [PMID: 34984191 PMCID: PMC8661264 DOI: 10.21037/tau-21-941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNAs (miRs) are endogenous, single-stranded, noncoding RNAs that are involved in various physiological processes, and the development and the progression of various types of cancer. Specifically, the role of miR-200a-3p has been implicated in various types of cancer in contributing to a diverse array of cancer types has been previously reported. The present study aimed to investigate the expression levels of miR-200a-3p in human bladder cancer, as well as its potential role in disease pathogenesis. Methods Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expression of has-mir-200a-3p and tumor necrosis factor α (TNF-α) induced protein 3 (A20) in tumor tissues and cell lines. Dual-luciferase reporter assay and combination with the expression intervention of hsa-mir-200a-3p and A20 in bladder cancer cell lines to clarify the binding relationship between hsa-mir-200a-3p and A20.After the expression intervention of hsa-mir-200a-3p and A20 in bladder cancer cells, the changes of cell proliferation, cell apoptosis, cell cycle, wound-healing ability and migration ability were detected by CCK8, flow cytometry, wound-healing and Transwell methods. Xenograft transplantation model was performed subcutaneously in nude mice by implantation of J82 and T24 cells, and then the bladder cancer growth curve was calculated from mice exposed to has-mir-200a-3p minic or minic-NC. Results Bladder cancer tissues demonstrated significantly upregulated miR-200a-3p expression levels. Moreover, increased miR-200a-3p expression was significantly associated with distant metastasis and advanced stage. In addition, compared with the miR-control (Ctr) group, miR-200a-3p overexpression promoted bladder cancer cell proliferation, migration, invasion, cell cycle, and release of inflammatory cytokines, but inhibited cell apoptosis. Mechanistically, A20 was identified as a target gene of miR-200a-3p in bladder cancer cell lines. Moreover, compared with the miR-Ctr group, the miR-200a-3p overexpression group exhibited significantly promoted tumor growth in vivo, and A20 overexpression blocked the promoting effect of miR-200a-3p on bladder cancer. Conclusions The results of the present study indicated that miR-200a-3p might serve act as an oncogene in human bladder cancer by targeting a novel the gene A20 gene; therefore, miR-200a-3p and A20 might serve could serve as novel therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Pei Wan
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Zhilin Chen
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Minzhi Huang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Huiming Jiang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Huajun Wu
- Department of Urology, Shangrao Municipal Hospital, Shangrao, China
| | - Kaihua Zhong
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Guodong Ding
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Bing Wang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| |
Collapse
|
3
|
Vlasov IN, Alieva AK, Novosadova EV, Arsenyeva EL, Rosinskaya AV, Partevian SA, Grivennikov IA, Shadrina MI. Transcriptome Analysis of Induced Pluripotent Stem Cells and Neuronal Progenitor Cells, Derived from Discordant Monozygotic Twins with Parkinson's Disease. Cells 2021; 10:3478. [PMID: 34943986 PMCID: PMC8700621 DOI: 10.3390/cells10123478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's Disease (PD) is a widespread severe neurodegenerative disease that is characterized by pronounced deficiency of the dopaminergic system and disruption of the function of other neuromodulator systems. Although heritable genetic factors contribute significantly to PD pathogenesis, only a small percentage of sporadic cases of PD can be explained using known genetic risk factors. Due to that, it could be inferred that changes in gene expression could be important for explaining a significant percentage of PD cases. One of the ways to investigate such changes, while minimizing the effect of genetic factors on experiment, are the study of PD discordant monozygotic twins. In the course of the analysis of transcriptome data obtained from IPSC and NPCs, 20 and 1906 differentially expressed genes were identified respectively. We have observed an overexpression of TNF in NPC cultures, derived from twin with PD. Through investigation of gene interactions and gene involvement in biological processes, we have arrived to a hypothesis that TNF could play a crucial role in PD-related changes occurring in NPC derived from twins with PD, and identified INHBA, WNT7A and DKK1 as possible downstream effectors of TNF.
Collapse
Affiliation(s)
- Ivan N. Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Anelya Kh. Alieva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Ekaterina V. Novosadova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Elena L. Arsenyeva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Anna V. Rosinskaya
- State Public Health Institution Primorsk Regional Clinical Hospital No. 1, 57 Aleutskaya St., 690091 Vladivostok, Russia;
| | - Suzanna A. Partevian
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| |
Collapse
|
4
|
Mauri F, Schepkens C, Lapouge G, Drogat B, Song Y, Pastushenko I, Rorive S, Blondeau J, Golstein S, Bareche Y, Miglianico M, Nkusi E, Rozzi M, Moers V, Brisebarre A, Raphaël M, Dubois C, Allard J, Durdu B, Ribeiro F, Sotiriou C, Salmon I, Vakili J, Blanpain C. NR2F2 controls malignant squamous cell carcinoma state by promoting stemness and invasion and repressing differentiation. NATURE CANCER 2021; 2:1152-1169. [PMID: 35122061 PMCID: PMC7615150 DOI: 10.1038/s43018-021-00287-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
The nongenetic mechanisms required to sustain malignant tumor state are poorly understood. During the transition from benign tumors to malignant carcinoma, tumor cells need to repress differentiation and acquire invasive features. Using transcriptional profiling of cancer stem cells from benign tumors and malignant skin squamous cell carcinoma (SCC), we identified the nuclear receptor NR2F2 as uniquely expressed in malignant SCC. Using genetic gain of function and loss of function in vivo, we show that NR2F2 is essential for promoting the malignant tumor state by controlling tumor stemness and maintenance in mouse and human SCC. We demonstrate that NR2F2 promotes tumor cell proliferation, epithelial-mesenchymal transition and invasive features, while repressing tumor differentiation and immune cell infiltration by regulating a common transcriptional program in mouse and human SCCs. Altogether, we identify NR2F2 as a key regulator of malignant cancer stem cell functions that promotes tumor renewal and restricts differentiation to sustain a malignant tumor state.
Collapse
Affiliation(s)
- Federico Mauri
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Corentin Schepkens
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Lapouge
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Benjamin Drogat
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sandrine Rorive
- Centre Universitaire Inter Régional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), Jumet, Belgium
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jeremy Blondeau
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Golstein
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yacine Bareche
- Breast Cancer Translational Research Laboratory, J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Erwin Nkusi
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Milena Rozzi
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Moers
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Audrey Brisebarre
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maylis Raphaël
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Benoit Durdu
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Floriane Ribeiro
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Salmon
- Centre Universitaire Inter Régional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), Jumet, Belgium
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jalal Vakili
- ChromaCure SA, Grandbonpré 11/5, Mont-Saint-Guibert, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.
| |
Collapse
|
5
|
Belachew EB, Sewasew DT. Molecular Mechanisms of Endocrine Resistance in Estrogen-Positive Breast Cancer. Front Endocrinol (Lausanne) 2021; 12:599586. [PMID: 33841325 PMCID: PMC8030661 DOI: 10.3389/fendo.2021.599586] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The estrogen receptor is a vital receptor for therapeutic targets in estrogen receptor-positive breast cancer. The main strategy for the treatment of estrogen receptor-positive breast cancers is blocking the estrogen action on estrogen receptors by endocrine therapy but this can be restricted via endocrine resistance. Endocrine resistance occurs due to both de novo and acquired resistance. This review focuses on the mechanisms of the ligand-dependent and ligand-independent pathways and other coregulators, which are responsible for endocrine resistance. It concludes that combinatorial drugs that target different signaling pathways and coregulatory proteins together with endocrine therapy could be a novel therapeutic modality to stop endocrine resistance.
Collapse
Affiliation(s)
- Esmael Besufikad Belachew
- Biology, Mizan Tepi University, Addis Ababa, Ethiopia
- Microbial, Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
6
|
Yun SH, Park JI. Recent progress on the role and molecular mechanism of chicken ovalbumin upstream promoter-transcription factor II in cancer. J Int Med Res 2020; 48:300060520919236. [PMID: 32338091 PMCID: PMC7218465 DOI: 10.1177/0300060520919236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan receptor that regulates the expression of genes involved in development and homeostasis. COUP-TFII is also dysregulated in cancer, where it plays important roles in oncogenesis and malignant progression. Recent studies have also investigated altered microRNA-mediated regulation of COUP-TFII in cancer. Although many investigators have studied the expression and clinical significance of COUP-TFII in several cancer types, there remain many controversies regarding its role in these diseases. In this review, we will describe the functions and underlying molecular mechanisms of COUP-TFII in several cancers, especially colorectal, gastric, breast, and prostate cancer; additionally, we will briefly summarize what is known about microRNA-mediated regulation of COUP-TFII.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
7
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
8
|
Wang X, Fang Y, Sun W, Xu Z, Zhang Y, Wei X, Ding X, Xu Y. Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review). Int J Oncol 2020; 56:1064-1074. [PMID: 32319568 DOI: 10.3892/ijo.2020.4990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) and breast cancer (BCa) are two common sex hormone‑related cancer types with high rates of morbidity, and are leading causes of cancer death globally in men and women, respectively. The biological function of androgen or estrogen is a key factor for PCa or BCa tumorigenesis, respectively. Nevertheless, after hormone deprivation therapy, the majority of patients ultimately develop hormone‑independent malignancies that are resistant to endocrinotherapy. It is widely recognized, therefore, that understanding of the mechanisms underlying the process from hormone dependence towards hormone independence is critical to discover molecular targets for the control of advanced PCa and BCa. This review aimed to dissect the important mechanisms involved in the therapeutic resistance of PCa and BCa. It was concluded that activation of the NF‑κB pathway is an important common mechanism for metastasis and therapeutic resistance of the two types of cancer; in particular, the RelB‑activated noncanonical NF‑κB pathway appears to be able to lengthen and strengthen NF‑κB activity, which has been a focus of recent investigations.
Collapse
Affiliation(s)
- Xiumei Wang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yao Fang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Wenbo Sun
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Zhi Xu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Yong Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
9
|
Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in Health and Disease. Cells 2019; 9:E101. [PMID: 31906104 PMCID: PMC7016888 DOI: 10.3390/cells9010101] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors (NRs) belong to a vast family of evolutionary conserved proteins acting as ligand-activated transcription factors. Functionally, NRs are essential in embryogenesis and organogenesis and in adulthood they are involved in almost every physiological and pathological process. Our knowledge of NRs action has greatly improved in recent years, demonstrating that both their expression and activity are tightly regulated by a network of signaling pathways, miRNA and reciprocal interactions. The Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII, NR2F2) is a NR classified as an orphan due to the lack of a known natural ligand. Although its expression peaks during development, and then decreases considerably, in adult tissues, COUP-TFII is an important regulator of differentiation and it is variably implicated in tissues homeostasis. As such, alterations of its expression or its transcriptional activity have been studied and linked to a spectrum of diseases in organs and tissues of different origins. Indeed, an altered COUP-TFII expression and activity may cause infertility, abnormality in the vascular system and metabolic diseases like diabetes. Moreover, COUP-TFII is actively investigated in cancer research but its role in tumor progression is yet to be fully understood. In this review, we summarize the current understanding of COUP-TFII in healthy and pathological conditions, proposing an updated and critical view of the many functions of this NR.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
- Department of Experimental and Clinical Medicine, University of Florence, largo Brambilla 50, 50139 Firenze, Italy
| | - Sara Pepe
- Istituto per la Ricerca, la Prevenzione e la rete Oncologica (ISPRO), viale Pieraccini 6, 50139 Firenze, Italy;
- Department of Medical Biotechnologies, University of Siena, via M. Bracci 16, 53100 Siena, Italy
| | - Stefano Milani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| |
Collapse
|
10
|
Tajbakhsh A, Rivandi M, Abedini S, Pasdar A, Sahebkar A. Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Crit Rev Oncol Hematol 2019; 140:17-27. [DOI: 10.1016/j.critrevonc.2019.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
|
11
|
Transcriptomic response of breast cancer cells to anacardic acid. Sci Rep 2018; 8:8063. [PMID: 29795261 PMCID: PMC5966448 DOI: 10.1038/s41598-018-26429-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Anacardic acid (AnAc), a potential dietary agent for preventing and treating breast cancer, inhibited the proliferation of estrogen receptor α (ERα) positive MCF-7 and MDA-MB-231 triple negative breast cancer cells. To characterize potential regulators of AnAc action, MCF-7 and MDA-MB-231 cells were treated for 6 h with purified AnAc 24:1n5 congener followed by next generation transcriptomic sequencing (RNA-seq) and network analysis. We reported that AnAc-differentially regulated miRNA transcriptomes in each cell line and now identify AnAc-regulated changes in mRNA and lncRNA transcript expression. In MCF-7 cells, 80 AnAc-responsive genes were identified, including lncRNA MIR22HG. More AnAc-responsive genes (886) were identified in MDA-MB-231 cells. Only six genes were commonly altered by AnAc in both cell lines: SCD, INSIG1, and TGM2 were decreased and PDK4, GPR176, and ZBT20 were increased. Modeling of AnAc-induced gene changes suggests that AnAc inhibits monounsaturated fatty acid biosynthesis in both cell lines and increases endoplasmic reticulum stress in MDA-MB-231 cells. Since modeling of downregulated genes implicated NFκB in MCF-7, we confirmed that AnAc inhibited TNFα-induced NFκB reporter activity in MCF-7 cells. These data identify new targets and pathways that may account for AnAc’s anti-proliferative and pro-apoptotic activity.
Collapse
|
12
|
Schultz DJ, Muluhngwi P, Alizadeh-Rad N, Green MA, Rouchka EC, Waigel SJ, Klinge CM. Genome-wide miRNA response to anacardic acid in breast cancer cells. PLoS One 2017; 12:e0184471. [PMID: 28886127 PMCID: PMC5590942 DOI: 10.1371/journal.pone.0184471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity.
Collapse
Affiliation(s)
- David J. Schultz
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Negin Alizadeh-Rad
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Madelyn A. Green
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Eric C. Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, Louisville, Kentucky, United States of America
| | - Sabine J. Waigel
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
13
|
Zhang W, Liu J, Qiu J, Fu X, Tang Q, Yang F, Zhao Z, Wang H. MicroRNA-382 inhibits prostate cancer cell proliferation and metastasis through targeting COUP-TFII. Oncol Rep 2016; 36:3707-3715. [PMID: 27748848 DOI: 10.3892/or.2016.5141] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators in cancer that are implicated in regulation of various cellular processes. miR-382 has been proposed as a tumor suppressor by several recent studies. However, the function of miR-382 in prostate cancer remains unknown. In this study, we aimed to investigate the potential function of miR-382 in prostate cancer. We found that miR-382 was significantly decreased in prostate cancer specimens and cancer cell lines. The overexpression of miR-382 in prostate cancer cells markedly inhibited cell proliferation, migration, and invasion. In contrast, miR-382 suppression exhibited an opposite effect. Target analysis predicted that chicken ovalbumin upstream promoter transcription factor II (COUP‑TFII) was a direct target of miR-382. This prediction was experimentally confirmed by dual-luciferase reporter assay, real-time quantitative polymerase chain reaction, and western blot analysis. Our results further demonstrated that miR-382 inhibited the downstream genes of COUP‑TFII, including Snail and matrix metalloproteinase 2 (MMP2). Moreover, the restoration of COUP‑TFII expression significantly blocked the inhibitory effect of miR-382 on cell proliferation, migration, and invasion, and Snail expression. Taken together, this study suggests that miR-382 inhibits prostate cancer cell proliferation and metastasis through inhibiting COUP‑TFII, representing an important new mechanism for understanding prostate cancer pathogenesis and providing a novel therapeutic candidate target for prostate cancer therapy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jianzhou Liu
- Department of Urology, Central Hospital of Baoji, Baoji, Shaanxi 721008, P.R. China
| | - Jianxin Qiu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaoliang Fu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhiguang Zhao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - He Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
14
|
Sikora MJ, Jacobsen BM, Levine K, Chen J, Davidson NE, Lee AV, Alexander CM, Oesterreich S. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines. Breast Cancer Res 2016; 18:92. [PMID: 27650553 PMCID: PMC5028957 DOI: 10.1186/s13058-016-0748-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. METHODS The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. RESULTS ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. CONCLUSIONS WNT4 drives a novel signaling pathway in ILC cells, with a critical role in estrogen-induced growth that may also mediate endocrine resistance. WNT4 signaling may represent a novel target to modulate endocrine response specifically for patients with ILC.
Collapse
Affiliation(s)
- Matthew J Sikora
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,Present address: Department of Pathology, University of Colorado - Anschutz Medical Campus, Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin Levine
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jian Chen
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nancy E Davidson
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Légaré S, Basik M. Minireview: The Link Between ERα Corepressors and Histone Deacetylases in Tamoxifen Resistance in Breast Cancer. Mol Endocrinol 2016; 30:965-76. [PMID: 27581354 DOI: 10.1210/me.2016-1072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Approximately 70% of breast cancers express the estrogen receptor (ER)α and are treated with the ERα antagonist, tamoxifen. However, resistance to tamoxifen frequently develops in advanced breast cancer, in part due to a down-regulation of ERα corepressors. Nuclear receptor corepressors function by attenuating hormone responses and have been shown to potentiate tamoxifen action in various biological systems. Recent genomic data on breast cancers has revealed that genetic and/or genomic events target ERα corepressors in the majority of breast tumors, suggesting that the loss of nuclear receptor corepressor activity may represent an important mechanism that contributes to intrinsic and acquired tamoxifen resistance. Here, the biological functions of ERα corepressors are critically reviewed to elucidate their role in modifying endocrine sensitivity in breast cancer. We highlight a mechanism of gene repression common to corepressors previously shown to enhance the antitumorigenic effects of tamoxifen, which involves the recruitment of histone deacetylases (HDACs) to DNA. As an indicator of epigenetic disequilibrium, the loss of ERα corepressors may predispose cancer cells to the cytotoxic effects of HDAC inhibitors, a class of drug that has been shown to effectively reverse tamoxifen resistance in numerous studies. HDAC inhibition thus appears as a promising therapeutic approach that deserves to be further explored as an avenue to restore drug sensitivity in corepressor-deficient and tamoxifen-resistant breast cancers.
Collapse
Affiliation(s)
- Stéphanie Légaré
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| | - Mark Basik
- Division of Experimental Medicine, Department of Oncology and Surgery, Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada H3T 1E2
| |
Collapse
|
16
|
Loss of the N-terminal methyltransferase NRMT1 increases sensitivity to DNA damage and promotes mammary oncogenesis. Oncotarget 2016; 6:12248-63. [PMID: 25909287 PMCID: PMC4494936 DOI: 10.18632/oncotarget.3653] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/27/2015] [Indexed: 12/31/2022] Open
Abstract
Though discovered over four decades ago, the function of N-terminal methylation has mostly remained a mystery. Our discovery of the first mammalian N-terminal methyltransferase, NRMT1, has led to the discovery of many new functions for N-terminal methylation, including regulation of DNA/protein interactions, accurate mitotic division, and nucleotide excision repair (NER). Here we test whether NRMT1 is also important for DNA double-strand break (DSB) repair, and given its previously known roles in cell cycle regulation and the DNA damage response, assay if NRMT1 is acting as a tumor suppressor. We find that NRMT1 knockdown significantly enhances the sensitivity of breast cancer cell lines to both etoposide treatment and γ-irradiation, as well as, increases proliferation rate, invasive potential, anchorage-independent growth, xenograft tumor size, and tamoxifen sensitivity. Interestingly, this positions NRMT1 as a tumor suppressor protein involved in multiple DNA repair pathways, and indicates, similar to BRCA1 and BRCA2, its loss may result in tumors with enhanced sensitivity to diverse DNA damaging chemotherapeutics.
Collapse
|
17
|
Roshan-Moniri M, Hsing M, Butler MS, Cherkasov A, Rennie PS. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Cancer Treat Rev 2015; 40:1137-52. [PMID: 25455729 DOI: 10.1016/j.ctrv.2014.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers.
Collapse
|
18
|
Zhang C, Han Y, Huang H, Qu L, Shou C. High NR2F2 transcript level is associated with increased survival and its expression inhibits TGF-β-dependent epithelial-mesenchymal transition in breast cancer. Breast Cancer Res Treat 2014; 147:265-81. [DOI: 10.1007/s10549-014-3095-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023]
|
19
|
Abstract
Sustained estrogenic exposure increases the risk and/or the progression of various cancers, including those of the breast, endometrium and ovary. Unexpectedly, physiological level of estrogen together with a novel IKKα inhibitor BAY11-7082 could effectively induce cell apoptosis in ER-positive breast cancer cells, suggesting combining estrogen with IKKα inhibition may be beneficial for breast cancer patients. This opinion article touches upon the dual role estrogen played in inducing cancer cell death and asks whether use of estrogen in combination with IKKα-targeted therapy would be possible reconsider the newly identified crosstalk between ER and NFκB pathway which can be utilized to switch the effects of estrogen on cell death.
Collapse
Affiliation(s)
- Wen Zhou
- Braman Family Breast Cancer Institute, University of Miami Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Fl 33136, USA ; Department of Biological Sciences, Columbia University, New York, 10027, USA
| | - Xiaoxia Zhu
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| |
Collapse
|