1
|
Morari J, Haddad-Tóvolli R, Silva Nogueira PA, Teixeira CJ, Maróstica R, Tobar N, Ramos CD, Velloso LA, Dias Bobbo VC, Anhê GF. Body mass variability in age-matched outbred male Swiss mice is associated to differential control of food intake by ghrelin. Mol Cell Endocrinol 2022; 550:111646. [PMID: 35413387 DOI: 10.1016/j.mce.2022.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
Abstract
Swiss mice belong to an outbred strain of mice largely used as a model for experimental obesity induced by high fat diet (HFD). We have previously demonstrated that a given cohort of age-matched Swiss mice is hallmarked by heterogeneous changes in body weight when exposed to HFD. The reasons underlying such variability, however, are not completely understood. Therefore we aimed to clarify the mechanisms underlying the variability in spontaneous weight gain in age-matched male swiss mice. To achieve that, individuals in a cohort of age-matched male Swiss mice were categorized as prone to body mass gain (PBMG) and resistant to body mass gain (RBMG). PBMG animals had higher caloric intake and body mass gain. RBMG and PBMG mice had a similar reduction in food intake when challenged with leptin but only RBMG exhibited a drop in ghrelin concentrations after refeeding. PBMG also showed increased midbrain levels of ghrelin receptor (Ghsr) and Dopamine receptor d2 (Drd2) mRNAs upon refeeding. Pharmacological blockade of GHSR with JMV3002 failed to reduce food intake in PMBG mice as it did in RBMG. On the other hand, the response to JMV3002 seen in PBMG was hallmarked by singular transcriptional response in the midbrain characterized by a simultaneous increase in both tyrosine hydroxylase (Th) and Proopiomelanocortin (Pomc) expressions. In conclusion, our data show that differences in the expression of genes related to the reward system in the midbrain as well as in ghrelin concentrations in serum correlate with spontaneous variability in body mass and food intake seen in age-matched male Swiss mice.
Collapse
Affiliation(s)
- Joseane Morari
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, 13083-887, Brazil; Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, Sao Paulo, 13083-864, Brazil; Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Sao Paulo, 13083-881, Brazil.
| | - Roberta Haddad-Tóvolli
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, Sao Paulo, 13083-864, Brazil
| | - Pedro Augusto Silva Nogueira
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, Sao Paulo, 13083-864, Brazil
| | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524. Prof. Lineu Prestes Ave., ICB1, Sao Paulo, SP, 05508-000, Brazil
| | - Rafael Maróstica
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, Sao Paulo, 13083-864, Brazil
| | - Natália Tobar
- Department of Radiology, University of Campinas, Campinas, Sao Paulo, 13084-970, Brazil
| | - Celso Dario Ramos
- Department of Radiology, University of Campinas, Campinas, Sao Paulo, 13084-970, Brazil
| | - Licio Augusto Velloso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, 13083-887, Brazil; Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, Sao Paulo, 13083-864, Brazil
| | - Vanessa Cristina Dias Bobbo
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, Sao Paulo, 13083-864, Brazil
| | - Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Sao Paulo, 13083-881, Brazil
| |
Collapse
|
2
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
3
|
Holubová M, Blechová M, Kákonová A, Kuneš J, Železná B, Maletínská L. In Vitro and In Vivo Characterization of Novel Stable Peptidic Ghrelin Analogs: Beneficial Effects in the Settings of Lipopolysaccharide-Induced Anorexia in Mice. J Pharmacol Exp Ther 2018; 366:422-432. [PMID: 29914876 DOI: 10.1124/jpet.118.249086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023] Open
Abstract
Ghrelin, the only known orexigenic gut hormone produced primarily in the stomach, has lately gained attention as a potential treatment of anorexia and cachexia. However, its biologic stability is highly limited; therefore, a number of both peptide and nonpeptide ghrelin analogs have been synthesized. In this study, we provide in vitro and in vivo characterization of a series of novel peptide growth hormone secretagogue receptor (GHS-R1a) agonists, both under nonpathologic conditions and in the context of lipopolysaccharide (LPS)-induced anorexia. These analogs were based on our previous series modified by replacing the Ser3 with diaminopropionic acid (Dpr), the N-terminal Gly with sarcosine, and Phe4 with various noncoded amino acids. New analogs were further modified by replacing the n-octanoyl bound to Dpr3 with longer or unsaturated fatty acid residues, by incorporation of the second fatty acid residue into the molecule, or by shortening the peptide chain. These modifications preserved the ability of ghrelin analogs to bind to the membranes of cells transfected with GHS-R1a, as well as the GHS-R1a signaling activation. The selected analogs exhibited long-lasting and potent orexigenic effects after a single s.c. administration in mice. The stability of new ghrelin analogs in mice after s.c. administration was significantly higher when compared with ghrelin and [Dpr3]ghrelin, with half-lives of approximately 2 hours. A single s.c. injection of the selected ghrelin analogs in mice with LPS-induced anorexia significantly increased food intake via the activation of orexigenic pathways and normalized blood levels of proinflammatory cytokines, demonstrating the anti-inflammatory potential of the analogs.
Collapse
Affiliation(s)
- Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Anna Kákonová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| |
Collapse
|
4
|
Popelová A, Kákonová A, Hrubá L, Kuneš J, Maletínská L, Železná B. Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol Res 2018; 67:339-346. [PMID: 29303606 DOI: 10.33549/physiolres.933761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are increasing in prevalence. Currently, there are no effective and specific treatments for these disorders. Recently, positive effects of the orexigenic hormone ghrelin on memory and learning were demonstrated in mouse models of AD and PD. In this study, we tested the potential neuroprotective properties of a stable and long-lasting ghrelin analog, Dpr(3)ghrelin (Dpr(3)ghr), in SH-SY5Y neuroblastoma cells stressed with 1.2 mM methylglyoxal (MG), a toxic endogenous by-product of glycolysis, and we examined the impact of Dpr(3)ghr on apoptosis. Pre-treatment with both 10(-5) and 10(-7) M Dpr(3)ghr resulted in increased viability in SH-SY5Y cells (determined by MTT staining), as well as reduced cytotoxicity of MG in these cells (determined by LDH assay). Dpr(3)ghr increased viability by altering pro-apoptotic and viability markers: Bax was decreased, Bcl-2 was increased, and the Bax/Bcl-2 ratio was attenuated. The ghrelin receptor GHS-R1 and Dpr(3)ghr-induced activation of PBK/Akt were immuno-detected in SH-SY5Y cells to demonstrate the presence of GHS-R1 and GHS-R1 activation, respectively. We demonstrated that Dpr(3)ghr protected SH-SY5Y cells against MG-induced neurotoxicity and apoptosis. Our data suggest that stable ghrelin analogs may be candidates for the effective treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- A Popelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
5
|
Hassouna R, Labarthe A, Tolle V. Hypothalamic regulation of body growth and appetite by ghrelin-derived peptides during balanced nutrition or undernutrition. Mol Cell Endocrinol 2016; 438:42-51. [PMID: 27693419 DOI: 10.1016/j.mce.2016.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022]
Abstract
Among the gastrointestinal hormones that regulate food intake and energy homeostasis, ghrelin plays a unique role as the first one identified to increases appetite and stimulate GH secretion. This review highlights the latest mechanism by which ghrelin modulates body growth, appetite and energy metabolism by exploring pharmacological actions of the hormone and consequences of genetic or pharmacological blockade of the ghrelin/GHS-R (Growth Hormone Secretagogue Receptor) system on physiological responses in specific nutritional situations. Within the hypothalamus, novel mechanisms of action of this hormone involve its interaction with other ghrelin-derived peptides, such as desacyl ghrelin and obestatin, which are thought to act as functional ghrelin antagonists, and possible modulation of the GHS-R with other G-protein coupled receptors. During chronic undernutrition such as anorexia nervosa, variations of ghrelin-derived peptides may be an adaptative metabolic response to maintain normal glycemic control. Interestingly, some of ghrelin's metabolic actions are thought to be relayed through modulation of GH, an anabolic and hyperglycemic agent.
Collapse
Affiliation(s)
- Rim Hassouna
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France; Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexandra Labarthe
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France
| | - Virginie Tolle
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France.
| |
Collapse
|
6
|
Mikulášková B, Maletínská L, Zicha J, Kuneš J. The role of food intake regulating peptides in cardiovascular regulation. Mol Cell Endocrinol 2016; 436:78-92. [PMID: 27450151 DOI: 10.1016/j.mce.2016.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems. Therefore, it is important to determine the common mechanisms regulating both food intake and blood pressure. Several hormones produced by peripheral tissues work together with neuropeptides involved in the regulation of both food intake and blood pressure. Anorexigenic (food intake lowering) hormones such as leptin, glucagon-like peptide-1 and cholecystokinin cooperate with α-melanocyte-stimulating hormone, cocaine- and amphetamine-regulated peptide as well as prolactin-releasing peptide. Curiously their collective actions result in increased sympathetic activity, especially in the kidney, which could be one of the factors responsible for the blood pressure increases seen in obesity. On the other hand, orexigenic (food intake enhancing) peptides, especially ghrelin released from the stomach and acting in the brain, cooperates with orexins, neuropeptide Y, melanin-concentrating hormone and galanin, which leads to decreased sympathetic activity and blood pressure. This paradox should be intensively studied in the future. Moreover, it is important to know that the hypothalamus together with the brainstem seem to be major structures in the regulation of food intake and blood pressure. Thus, the above mentioned regions might be essential brain components in the transmission of peripheral signals to the central effects. In this short review, we summarize the current information on cardiovascular effects of food intake regulating peptides.
Collapse
Affiliation(s)
- B Mikulášková
- Institute of Physiology AS CR, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - L Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - J Zicha
- Institute of Physiology AS CR, Prague, Czech Republic
| | - J Kuneš
- Institute of Physiology AS CR, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic.
| |
Collapse
|
7
|
Maingot M, Blayo AL, Denoyelle S, M'Kadmi C, Damian M, Mary S, Gagne D, Sanchez P, Aicher B, Schmidt P, Müller G, Teifel M, Günther E, Marie J, Banères JL, Martinez J, Fehrentz JA. New ligands of the ghrelin receptor based on the 1,2,4-triazole scaffold by introduction of a second chiral center. Bioorg Med Chem Lett 2016; 26:2408-2412. [PMID: 27072910 DOI: 10.1016/j.bmcl.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 12/25/2022]
Abstract
Introducing a second chiral center on our previously described 1,2,4-triazole, allowed us to increase diversity and elongate the 'C-terminal part' of the molecule. Therefore, we were able to explore mimics of the substance P analogs described as inverse agonists. Some compounds presented affinities in the nanomolar range and potent biological activities, while one exhibited a partial inverse agonist behavior similar to a Substance P analog.
Collapse
Affiliation(s)
- Mathieu Maingot
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Anne-Laure Blayo
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Séverine Denoyelle
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Céline M'Kadmi
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Sophie Mary
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Didier Gagne
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Pierre Sanchez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Babette Aicher
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt am Main, Germany
| | - Peter Schmidt
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt am Main, Germany
| | - Gilbert Müller
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt am Main, Germany
| | - Michael Teifel
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt am Main, Germany
| | - Eckhard Günther
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt am Main, Germany
| | - Jacky Marie
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, BP 14491, Faculté de Pharmacie, bât. E, 3(ème) étage, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France.
| |
Collapse
|
8
|
Abstract
After many years of research, obesity is still a disease with an unmet medical need. Very few compounds have been approved, acting mainly on neuromediators; researches, in recent years, pointed toward compounds potentially safer than first-generation antiobesity drugs, able to interact with one or more (multitarget therapy) receptors for substances produced by the gut, adipose tissue and other targets outside CNS. Other holistic approaches, such as those involving gut microbiota and plant extracts, appeared recently in the literature, and undoubtedly will contribute to the discovery of a valuable therapy for this disease. This review deals with the positive results and the pitfalls obtained following these approaches, with a view on their clinical trial studies.
Collapse
|