1
|
Stanczyk FZ, Mandelbaum RS, Matharu H, Dancz CE, Sherman ME. Endometrial safety of low-dose vaginal estrogens. Menopause 2023; 30:650-658. [PMID: 37022294 DOI: 10.1097/gme.0000000000002177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
ABSTRACT It is estimated that up to 50% to 90% of postmenopausal women may experience genitourinary syndrome of menopause (GSM), which may have a detrimental impact on quality of life. One of the most effective modes of treatment of GSM is low-dose vaginal estrogens. Numerous studies have addressed the safety of these estrogens using endometrial biopsy and/or endometrial thickness on ultrasound. Based on these studies, the consensus is that low-dose vaginal estrogens do not substantially increase the risk of endometrial hyperplasia or cancer; however, the data are severely limited by short duration of follow-up. Although long-term trials are warranted, they are difficult to carry out, costly, and will not yield data for years. More immediate information regarding endometrial safety may be obtained from studies measuring endometrial tissue and serum concentrations of estradiol, estrone, and relevant equine estrogens after administration of different estrogen formulations and doses. This would allow us to understand better the metabolism of estrogens by the vagina and endometrium, and how much estrogen is reaching the endometrium. Here, we discuss metabolism, receptor binding, and signaling of estrogens in vaginal and endometrial tissue, and summarize the existing studies on the endometrial impact of low-dose vaginal estrogen treatment in postmenopausal women.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- From the Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Rachel S Mandelbaum
- From the Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Harpreet Matharu
- From the Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Christina E Dancz
- From the Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
2
|
Sawicka E, Kulbacka J, Drąg-Zalesińska M, Woźniak A, Piwowar A. Effect of Interaction between Chromium(VI) with 17β-Estradiol and Its Metabolites on Breast Cancer Cell Lines MCF-7/WT and MDA-MB-175-VII: Preliminary Study. Molecules 2023; 28:molecules28062752. [PMID: 36985725 PMCID: PMC10052759 DOI: 10.3390/molecules28062752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The number of factors initiating and stimulating the progression of breast cancer are constantly increasing. Estrogens are a risk factor for breast adenocarcinoma, the toxicity of which increases as a result of metabolism and interaction with other factors. Due to the presence of environmental exposure to estrogens and metalloestrogens, we investigated how interactions between estrogens and toxic chromium(VI)[Cr(VI)] affect breast cancer lines and investigated whether estrogens play a protective role. The aim of the study was to investigate the effect of 17β-estradiol and its metabolites: 2-methoxyestradiol (2-MeOE2), 4-hydroxyestradiol (4-OHE2), and 16α-hydroxyestrone (16α-OHE1) in exposure to Cr(VI) on cell viability and DNA cell damage. Two estrogen-dependent breast cancer cell lines, MCF 7/WT and MDA-MB-175-VII, were examined. In addition, the expression of Cu-Zn superoxide dismutase (SOD1) was determined immunocytochemically to elucidate the mechanism of oxidative stress. The effects of single substances and their mixtures were tested in the model of simultaneous and 7-day estrogen pre-incubation. As a result, the viability of MCF-7 and MDA-MB-175-VII cells is lowered most by Cr(VI) and least by 17β-E2. In the combined action of estrogens and metalloestrogens, we observed a protective effect mainly of 17β-E2 against Cr(VI)-induced cytotoxicity. The highest expression of SOD1 was found in MCF-7/WT cells exposed to 17β-E2. Moreover, high apoptosis was caused by both Cr(VI) itself and its interaction with 4-OHE2 and 2-MeOE2. The direction and dynamics of changes in viability are consistent for both lines.
Collapse
Affiliation(s)
- Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-04-53; Fax: +48-71-784-04-52
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embrylogy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chałubińskiego 6a, 50-368 Wroclaw, Poland
| | - Arkadiusz Woźniak
- Students’ Scientific Society at the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Zhao Q, Qi T. The implications and prospect of cuproptosis-related genes and copper transporters in cancer progression. Front Oncol 2023; 13:1117164. [PMID: 36925927 PMCID: PMC10011146 DOI: 10.3389/fonc.2023.1117164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Currently, cancer has become one of the major public health problems worldwide. Apoptosis is an important anti-cancer defense mechanism, which is used in the development of targeted drugs. Because cancer cells have endogenous resistance to apoptosis,the clinical efficacy of related drugs is not ideal. Therefore, non-apoptotic regulatory cell death may bring new therapeutic strategies for cancer treatment. Cuproptosis is a novel form of regulatory cell death which is copper-dependent, regulated and distinct from other known cell death regulatory mechanisms. FDX1,LIAS,and DLAT named cuproptosis-related genes play an essential role in regulating cuproptosis. Meanwhile, abnormal accumulation of copper can be observed in various malignant tumors. The correlation has been established between elevated copper levels in serum and tissues and the progression of several cancers. Copper transporters, CTR1 and Copper-transporting ATPases(ATP7A and ATP7B), are mainly involved in regulating the dynamic balance of copper concentration to maintain copper homeostasis. Thus,cuproptosis-related genes and copper transporters will be the focus of cancer research in future. This review elaborated the basic functions of cuproptosis-related genes and copper transporters by retrievalling PubMed. And then we analyzed their potential relationship with cancer aiming to provide theoretical support and reference in cancer progression, diagnosis and treatment for future study.
Collapse
Affiliation(s)
- Qianwen Zhao
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Tonggang Qi
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Lin Q, Cao J, Du X, Yang K, Yang X, Liang Z, Shi J, Zhang J. CYP1B1-catalyzed 4-OHE2 promotes the castration resistance of prostate cancer stem cells by estrogen receptor α-mediated IL6 activation. Cell Commun Signal 2022; 20:31. [PMID: 35292057 PMCID: PMC8922936 DOI: 10.1186/s12964-021-00807-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to androgen deprivation therapy remains a major challenge for the clinical treatment of patients with castration-resistant prostate cancer (CRPC). CYP1B1, a critical enzyme that catalyzes the conversion of estradiol to 4-Hydroxy-17β-estradiol (4-OHE2), has been reported to promote the development and progression of hormone-related cancer, but its role in CRPC is unclear. Methods To explore the underlying mechanism which CYP1B1 promotes the prostate cancer stem cells (PCSCs) characteristics, bioinformatics analyses of human clinical prostate cancer (PCa) datasets were performed. CYP1B1, IL6, and estrogen receptor-α (ERα) expression levels were evaluated in PCa and CRPC tissues via immunohistochemistry. The high-performance liquid chromatography-mass spectrometry assay was carried out to examine intracellular 4-OHE2 levels. Serum-free suspension culture and flow cytometry assays were performed to evaluate PCSCs. Chromatin immunoprecipitation was used to validate that 4-OHE2 recruited ERα to the IL6 promoter. Results CYP1B1 expression was significantly increased in CRPC tissues and androgen-independent PCa cell lines. CYP1B1+ PCa cells were significantly enriched in bicalutamide-treated LNCaP cells, and CYP1B1 knockdown reduced the cell viability under bicalutamide treatment. In addition, CYP1B1 knockdown decreased the intracellular 4-OHE2 concentration, accompanied by reduced PCSC characteristics. In PCa cells, 4-OHE2 stimulated ERα transcriptional activity and upregulated the expression of IL6 and downstream genes of the IL6-STAT3 signaling. 4-OHE2 increased cell viability under bicalutamide treatment and promoted PCSC characteristics, while IL6 neutralizing antibody reversed these effects. Mechanistically, siERα and the ER antagonist ICI182780 significantly attenuated 4-OHE2-induced IL6 expression, and 4-OHE2 promoted the binding of ERα to the estrogen response element of the IL6 promoter. Conclusions Our findings indicate that CYP1B1-catalyzed 4-OHE2 enhanced PCSC characteristics and attenuated bicalutamide sensitivity by ERα-mediated the IL6-STAT3 pathway activation. Our study further emphasizes the role of CYP1B1 in castration resistance and illustrates a novel mechanism of CRPC development. Graphical Abstract ![]()
Video Abstract.
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00807-x.
Collapse
Affiliation(s)
- Qimei Lin
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiasong Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.,Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, 300071, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Kuo Yang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xu Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhixian Liang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
6
|
Miyamoto T, Shiozawa T. Two-sided role of estrogen on endometrial carcinogenesis: stimulator or suppressor? Gynecol Endocrinol 2019; 35:370-375. [PMID: 30668178 DOI: 10.1080/09513590.2018.1549219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Endometrial carcinoma (EC) often expresses estrogen receptors (ER), and the growth of EC is stimulated by estrogen. Therefore, EC is considered to be an estrogen-dependent tumor. However, the role of estrogen in endometrial carcinogenesis is somewhat unclear because the majority of EC occurs at peri- or post menopause when serum estrogen levels are generally decreased. In this article, we describe the double-edged role of estrogen in the genesis of EC, especially in terms of mismatch repair functions in vitro and in vivo, i.e. when serum estradiol (E2) levels are relatively low (approximately less than 90 pg/ml), and E2 enhance the carcinogenesis, whereas high E2 levels may suppress the carcinogenesis. This will deepen mechanistic insight into unopposed estrogen.
Collapse
Affiliation(s)
- Tsutomu Miyamoto
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tanri Shiozawa
- a Department of Obstetrics and Gynecology , Shinshu University School of Medicine , Matsumoto , Japan
| |
Collapse
|
7
|
Wang P, Zhu BT. Unique effect of 4-hydroxyestradiol and its methylation metabolites on lipid and cholesterol profiles in ovariectomized female rats. Eur J Pharmacol 2017; 800:107-117. [PMID: 28219710 DOI: 10.1016/j.ejphar.2017.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
Animal studies have shown that endogenous estrogens such as 17β-estradiol (E2) can modulate lipid profiles in vivo, and this effect is generally thought to be mediated by the estrogen receptors (ERs). The present study sought to test a hypothesis that some of the endogenous estrogen metabolites that have very weak estrogenic activity may exert some of their modulating effects on lipid metabolism in an ER-independent manner. Using ovariectomized female rats as an in vivo model, we found that 4-hydroxyestradiol (4-OH-E2) has a markedly stronger effect in reducing the adipocyte size and serum cholesterol level in rats compared to E2, despite the weaker estrogenic activity of 4-OH-E2. Moreover, when E2 or 4-OH-E2 is used in combination with ICI-182,780 (an ER antagonist), some of their lipid-modulating effects are not blocked by this antiestrogen. Interestingly, two of the O-methylation metabolites of 4-OH-E2, namely, 4-methoxyestradiol and 4-methoxyestrone, which have much weaker estrogenic activity, were also found to have similar lipid-modulating effects compared to 4-OH-E2. Mechanistically, up-regulation of the expression of leptin, cytochrome P450 7A1 and LXRα genes is observed in the liver of animals treated with E2 or 4-OH-E2, and the up-regulation is essentially not inhibited by co-treatment with ICI-182,780. These results demonstrate that some of the endogenous E2 metabolites are functionally important modulators of lipid metabolic profiles in vivo. In addition, our findings indicate that an ER-independent pathway likely mediates some of the lipid-modulating effects of endogenous estrogens and their metabolic derivatives.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao-Ting Zhu
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
8
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
9
|
Caron P, Turcotte V, Guillemette C. A chromatography/tandem mass spectrometry method for the simultaneous profiling of ten endogenous steroids, including progesterone, adrenal precursors, androgens and estrogens, using low serum volume. Steroids 2015; 104:16-24. [PMID: 26254607 DOI: 10.1016/j.steroids.2015.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Measurement of a large set of sex steroids in clinical epidemiology and laboratory research with reliable methods providing low quantification limits and using a limited volume of blood sample represents a significant challenge. We report a new validated gas chromatography selected reaction monitoring - tandem mass spectrometry assay (GC-MS/MS) for the simultaneous quantification of ten endogenous steroids including progesterone (PROG), dehydroepiandrosterone (DHEA), androstenediol (5-diol), androstenedione (4-dione), testosterone (T), dihydrotestosterone (DHT), androsterone (ADT), 5alpha-androstan-3beta-17beta-diol (3β-diol), estrone (E1) and estradiol (E2). After addition of stable isotope internal standards, the approach involved the combination of liquid-liquid extraction, derivatization and solid-phase extraction for injection into the GC system and multiple reaction monitoring (MRM). The method presents high reproducibility for all analytical parameters in 250 μl serum samples. The lower limit of quantification (LLOQ) were of 100 pg/ml for DHEA, 50 pg/ml for PROG, 5-diol, 4-dione and ADT, 30 pg/ml for T, 10 pg/ml for 3β-diol and DHT, 5 pg/ml for E1, and 1 pg/ml for E2. The applicability of the validated method to determine the concentrations of these 10 steroids was successfully tested on serum from men (n=15), premenopausal (n=10) and postmenopausal women (n=20), and is currently used for larger cancer-related epidemiology studies. One of the most considerable advantages over existing methods is the simultaneous determination of ten steroids in a limited volume of serum that will help conserve important clinical samples from existing biobanks.
Collapse
Affiliation(s)
- Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada.
| |
Collapse
|