1
|
Yan C, Song MH, Jiang D, Ren JL, Lv Y, Chang J, Huang S, Zaher H, Li JT. Genomic evidence reveals intraspecific divergence of the hot-spring snake (Thermophis baileyi), an endangered reptile endemic to the Qinghai-Tibet plateau. Mol Ecol 2023; 32:1335-1350. [PMID: 36073004 DOI: 10.1111/mec.16687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Understanding how and why species evolve requires knowledge on intraspecific divergence. In this study, we examined intraspecific divergence in the endangered hot-spring snake (Thermophis baileyi), an endemic species on the Qinghai-Tibet Plateau (QTP). Whole-genome resequencing of 58 sampled individuals from 15 populations was performed to identify the drivers of intraspecific divergence and explore the potential roles of genes under selection. Our analyses resolved three groups, with major intergroup admixture occurring in regions of group contact. Divergence probably occurred during the Pleistocene as a result of glacial climatic oscillations, Yadong-Gulu rift, and geothermal fields differentiation, while complex gene flow between group pairs reflected a unique intraspecific divergence pattern on the QTP. Intergroup fixed loci involved selected genes functionally related to divergence and local adaptation, especially adaptation to hot spring microenvironments in different geothermal fields. Analysis of structural variants, genetic diversity, inbreeding, and genetic load indicated that the hot-spring snake population has declined to a low level with decreased diversity, which is important for the conservation management of this endangered species. Our study demonstrated that the integration of demographic history, gene flow, genomic divergence genes, and other information is necessary to distinguish the evolutionary processes involved in speciation.
Collapse
Affiliation(s)
- Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Meng-Huan Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Song Huang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hussam Zaher
- Museu de Zoologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Mangkang Biodiversity and Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| |
Collapse
|
2
|
Hawkes CP, Al Jubeh JM, Li D, Tucker SE, Rajiyah T, Levine MA. Novel PTH Gene Mutations Causing Isolated Hypoparathyroidism. J Clin Endocrinol Metab 2022; 107:e2449-e2458. [PMID: 35165722 PMCID: PMC9113798 DOI: 10.1210/clinem/dgac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Parathyroid hormone (PTH) gene mutations represent a rare cause of familial isolated hypoparathyroidism (FIH). These defects can cause hypoparathyroidism with increased or decreased serum levels of PTH through 1) impaired PTH synthesis; 2) induction of parathyroid cell apoptosis; or 3) secretion of bioinactive PTH molecules. Eight pathogenic mutations of this gene have been described previously. OBJECTIVE Through describing 2 novel mutations of the PTH gene, we aim to extend the molecular basis for FIH and further refine the proposed mechanisms by which PTH mutations cause hypoparathyroidism. METHODS Proband case reports were compiled with extended family analysis. The probands in both kindreds presented before age 10 days with hypocalcemia and elevated phosphate levels. Proband A had low PTH levels, whereas these levels were elevated in Proband B. Proband B was initially diagnosed with pseudohypoparathyroidism. Methylation analysis was performed of CpG dinucleotides within 3 GNAS differentially methylated regions; whole-genome sequencing; and PTH infusion with analysis of nephrogenous 3',5'-cyclic adenosine 5'-monophosphate. RESULTS Proband A had a novel heterozygous sequence change in exon 2 of the PTH gene, c.46_47delinsAA (p.Ala16Lys), and proband B had a novel homozygous nucleotide transition in PTH exon 3 (c.128G > A; p.G43E) that led to replacement of glycine by glutamic acid at position 12 of PTH 1-84. PTH 1-34 infusion demonstrated that renal responsiveness to PTH was intact and not antagonized by circulating bioinactive PTH. CONCLUSION PTH gene mutations are uncommon causes of hypoparathyroidism, but can be misdiagnosed as disorders of gland development or receptor function if PTH levels are decreased or elevated, respectively. Genetic testing should be considered early in the diagnostic approach to these presentations.
Collapse
Affiliation(s)
- Colin P Hawkes
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Jamal M Al Jubeh
- Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Dong Li
- Center for Applied Genomics, CHOP, Philadelphia, Pennsylvania, USA
| | - Susan E Tucker
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois, USA
| | - Tara Rajiyah
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Correspondence: Michael A. Levine, MD, Division of Pediatric Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, ARC510A, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Moon JE, Yang HY, Wee G, ParK SH, Ko CW. A cell function study on calcium regulation of a novel calcium-sensing receptor mutation (p.Tyr825Phe). Ann Pediatr Endocrinol Metab 2021; 26:24-30. [PMID: 32871647 PMCID: PMC8026336 DOI: 10.6065/apem.2040022.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Autosomal dominant hypocalcemia with hypercalciuria is a genetic disease characterized by hypoparathyroidism with hypercalciuria. We discovered a novel variant (p.Tyr825Phe[Y825F]) of the CASR gene in a neonate with congenital hypoparathyroidism and hypercalciuria and conducted a cell function study to determine whether the CASR-Y825F variant was pathogenic. METHODS To perform a functional study on CaSR-Y825F, we constructed expression vectors expressing wild-type (WT) CASR and CASR-Y825F. After transfection of each expression vector into HEK293 cells, we examined alterations in intracellular signaling. Mitogen-activated protein kinase (MAPK) signaling activity of HEK293 cells expressing CASR-WT or CASR-Y825F was determined. Changes in intracellular calcium ions ([Ca2+]i) by extracellular calcium ion ([Ca2+]e) stimulation were quantitatively compared and analyzed. RESULTS Cells expressing CASR-Y825F showed elevated of MAPK signaling (phospho-ERK [pERK], phospho-JNK [pJNK], phospho-p38 [pp38]) and increased [Ca2+]i levels at low [Ca2+]e stimulation compared with cells expressing CASR-WT. Additionally, [Ca2+]i levels in HEK293 cells expression CASR-WT and CASR-Y825F were determined at 340 nm/380 nm wavelength ratios using Fura-2 AM. At [Ca2+]e concentrations of 2.5 mM and 3 mM, the ratios of CASR-Y825F cells were higher (2.6 and 3.5, respectively) than those of CASR-WT cells (1.04 and 1.40, respectively). CONCLUSION This cell function study proved that the CASR-Y825F expressed in HEK293 cells elevated MAPK signaling (pERK, pJNK, pp38) and increased [Ca2+]i to induce hypocalcemia.
Collapse
Affiliation(s)
- Jung Eun Moon
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Yang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea
| | - Suk-Hyun ParK
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Cheol Woo Ko
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea,Address for correspondence: Cheol Woo Ko Department of Pediatric Endocrinology, Kyungpook National University Children's Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea
| |
Collapse
|
4
|
Hawkes CP, Shulman DI, Levine MA. Recombinant human parathyroid hormone (1-84) is effective in CASR-associated hypoparathyroidism. Eur J Endocrinol 2020; 183:K13-K21. [PMID: 33112267 PMCID: PMC7853300 DOI: 10.1530/eje-20-0710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Gain-of-function mutations in the CASR gene cause Autosomal Dominant Hypocalcemia Type 1 (ADH1), the most common genetic cause of isolated hypoparathyroidism. Subjects have increased calcium sensitivity in the renal tubule, leading to increased urinary calcium excretion, nephrocalcinosis and nephrolithiasis when compared with other causes of hypoparathyroidism. The traditional approach to treatment includes activated vitamin D but this further increases urinary calcium excretion. METHODS In this case series, we describe the use of recombinant human parathyroid hormone (rhPTH)1-84 to treat subjects with ADH1, with improved control of serum and urinary calcium levels. RESULTS We describe two children and one adult with ADH1 due to heterozygous CASR mutations who were treated with rhPTH(1-84). Case 1 was a 9.4-year-old female whose 24-h urinary calcium decreased from 7.5 to 3.9 mg/kg at 1 year. Calcitriol and calcium supplementation were discontinued after titration of rhPTH(1-84). Case 2 was a 9.5-year-old male whose 24-h urinary calcium decreased from 11.7 to 1.7 mg/kg at 1 year, and calcitriol was also discontinued. Case 3 was a 24-year-old female whose treatment was switched from multi-dose teriparatide to daily rhPTH(1-84). All three subjects achieved or maintained target serum levels of calcium and normal or improved urinary calcium levels with daily rhPTH(1-84) monotherapy. CONCLUSIONS We have described three subjects with ADH1 who were treated effectively with rhPTH(1-84). In all cases, hypercalciuria improved by comparison to treatment with conventional therapy consisting of calcium supplementation and calcitriol.
Collapse
Affiliation(s)
- Colin Patrick Hawkes
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dorothy I Shulman
- University of South Florida Diabetes Center, USF Morsani College of Medicine, Tampa, FL, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Abstract
Parathyroid hormone is an essential regulator of extracellular calcium and phosphate. PTH enhances calcium reabsorption while inhibiting phosphate reabsorption in the kidneys, increases the synthesis of 1,25-dihydroxyvitamin D, which then increases gastrointestinal absorption of calcium, and increases bone resorption to increase calcium and phosphate. Parathyroid disease can be an isolated endocrine disorder or part of a complex syndrome. Genetic mutations can account for diseases of parathyroid gland formulation, dysregulation of parathyroid hormone synthesis or secretion, and destruction of the parathyroid glands. Over the years, a number of different options are available for the treatment of different types of parathyroid disease. Therapeutic options include surgical removal of hypersecreting parathyroid tissue, administration of parathyroid hormone, vitamin D, activated vitamin D, calcium, phosphate binders, calcium-sensing receptor, and vitamin D receptor activators to name a few. The accurate assessment of parathyroid hormone also provides essential biochemical information to properly diagnose parathyroid disease. Currently available immunoassays may overestimate or underestimate bioactive parathyroid hormone because of interferences from truncated parathyroid hormone fragments, phosphorylation of parathyroid hormone, and oxidation of amino acids of parathyroid hormone.
Collapse
Affiliation(s)
- Edward Ki Yun Leung
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
6
|
Gomes V, Silvestre C, Ferreira F, Bugalho MJGM. Autosomal dominant hypocalcaemia: identification of two novel variants of CASR gene. BMJ Case Rep 2020; 13:13/6/e234391. [PMID: 32513763 DOI: 10.1136/bcr-2020-234391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant hypocalcaemia is a rare aetiology of hypocalcaemia, caused by gain-of-function mutations of the calcium-sensing receptor (CASR) gene. We present two cases of two asymptomatic women (50-year-old-case 1 and 25-year-old-case 2), referred to our endocrinology department for investigation of hypocalcaemia, hyperphosphatemia and inappropriately low parathormone. Both patients had relatives with the same laboratorial findings. At diagnosis, both patients presented basal ganglia calcifications. Genetic analysis was performed, identifying two novel heterozygous CASR variants: c.2269G>A (p.Glu757Lys) and c.2086C>G (p.Leu696Val), respectively, for case 1 and case 2. Affected individuals started oral calcium and vitamin D analogues, aiming to a low-normal calcium level. They remain under observation and are asymptomatic.
Collapse
Affiliation(s)
- Vânia Gomes
- Endocrinology, Diabetes and Metabolism Department, Hospital de Santa Maria, Lisboa, Portugal
| | - Catarina Silvestre
- Endocrinology, Diabetes and Metabolism Department, Hospital de Santa Maria, Lisboa, Portugal
| | - Florbela Ferreira
- Endocrinology, Diabetes and Metabolism Department, Hospital de Santa Maria, Lisboa, Portugal
| | | |
Collapse
|
7
|
Affiliation(s)
- Rachel I Gafni
- From the Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Michael T Collins
- From the Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Cavaco BM, Canaff L, Nolin-Lapalme A, Vieira M, Silva TN, Saramago A, Domingues R, Rutter MM, Hudon J, Gleason JL, Leite V, Hendy GN. Homozygous Calcium-Sensing Receptor Polymorphism R544Q Presents as Hypocalcemic Hypoparathyroidism. J Clin Endocrinol Metab 2018; 103:2879-2888. [PMID: 29846619 DOI: 10.1210/jc.2017-02407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/22/2018] [Indexed: 02/11/2023]
Abstract
CONTEXT Autosomal dominant hypocalcemia type 1 (ADH1) is caused by heterozygous activating mutations in the calcium-sensing receptor gene (CASR). Whether polymorphisms that are benign in the heterozygous state pathologically alter receptor function in the homozygous state is unknown. OBJECTIVE To identify the genetic defect in an adolescent female with a history of surgery for bilateral cataracts and seizures. The patient has hypocalcemia, hyperphosphatemia, and low serum PTH level. The parents of the proband are healthy. METHODS Mutation testing of PTH, GNA11, GCM2, and CASR was done on leukocyte DNA of the proband. Functional analysis in transfected cells was conducted on the gene variant identified. Public single nucleotide polymorphism (SNP) databases were searched for the presence of the variant allele. RESULTS No mutations were identified in PTH, GNA11, and GCM2 in the proband. However, a germline homozygous variant (c.1631G>A; p.R544Q) in exon 6 of the CASR was identified. Both parents are heterozygous for the variant. The variant allele frequency was near 0.1% in SNP databases. By in vitro functional analysis, the variant was significantly more potent in stimulating both the Ca2+i and MAPK signaling pathways than wild type when transfected alone (P < 0.05) but not when transfected together with wild type. The overactivity of the mutant CaSR is due to loss of a critical structural cation-π interaction. CONCLUSIONS The patient's hypoparathyroidism is due to homozygosity of a variant in the CASR that normally has weak or no phenotypic expression in heterozygosity. Although rare, this has important implications for genetic counseling and clinical management.
Collapse
Affiliation(s)
- Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Lucie Canaff
- Departments of Medicine, Physiology, and Human Genetics, McGill University Health Centre Research Institute, McGill University, Montréal, Quebec, Canada
| | - Alexis Nolin-Lapalme
- Departments of Medicine, Physiology, and Human Genetics, McGill University Health Centre Research Institute, McGill University, Montréal, Quebec, Canada
| | - Margarida Vieira
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Tiago N Silva
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Ana Saramago
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Rita Domingues
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Meilan M Rutter
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jonathan Hudon
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - James L Gleason
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Valeriano Leite
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Geoffrey N Hendy
- Departments of Medicine, Physiology, and Human Genetics, McGill University Health Centre Research Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
9
|
Fukami M, Suzuki E, Igarashi M, Miyado M, Ogata T. Gain-of-function mutations in G-protein-coupled receptor genes associated with human endocrine disorders. Clin Endocrinol (Oxf) 2018; 88:351-359. [PMID: 29029377 DOI: 10.1111/cen.13496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022]
Abstract
The human genome encodes more than 700 G-protein-coupled receptors (GPCRs), many of which are involved in hormone secretion. To date, more than 100 gain-of-function (activating) mutations in at least ten genes for GPCRs, in addition to several loss-of-function mutations, have been implicated in human endocrine disorders. Previously reported gain-of-function GPCR mutations comprise various missense substitutions, frameshift mutations, intragenic inframe deletions and copy-number gains. Such mutations appear in both germline and somatic tumour cells, and lead to various hormonal abnormalities reflecting excessive receptor activity. Phenotypic consequences of these mutations include distinctive endocrine syndromes, as well as relatively common hormonal abnormalities. Such mutations encode hyperfunctioning receptors with increased constitutive activity, broadened ligand specificity, increased ligand sensitivity and/or delayed receptor desensitization. Furthermore, recent studies proposed a paradoxical gain-of-function mechanism caused by inactive GPCR mutants. Molecular diagnosis of GPCR activating mutations serves to improve the clinical management of mutation-positive patients. This review aims to introduce new aspects regarding gain-of-function mutations in GPCR genes associated with endocrine disorders.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Igarashi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
10
|
Maruca K, Brambilla I, Mingione A, Bassi L, Capelli S, Brasacchio C, Soldati L, Cisternino M, Mora S. Autosomal dominant hypocalcemia due to a truncation in the C-tail of the calcium-sensing receptor. Mol Cell Endocrinol 2017; 439:187-193. [PMID: 27561204 DOI: 10.1016/j.mce.2016.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/01/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
Abstract
Autosomal Dominant Hypocalcemia (ADH) is an endocrine disorder due to activating mutations of the calcium-sensing receptor (CASR) gene. We report on a young boy who presented low serum calcium with hypercalciuria, hyperphosphatemia and low serum concentration of parathyroid hormone, not accompanied by classic clinical signs of hypocalcemia. Treatment with calcitriol and calcium did not normalize serum calcium and renal calcium excretion. The use of thiazide diuretics slightly reduced calciuria. Despite high calcium excretion, no signs of nephrocalcinosis were detected. The patient had a prolonged Q-T interval at ECG, which did not normalize during treatment. PCR amplification of CASR coding sequence and direct sequencing of PCR products. showed a novel heterozygous deletion of a cytosine (c.2682delC), responsible for a frameshift (p.S895Pfs*44) and a premature stop codon resulting in a truncation of the CaSR's C-tail. Functional studies indicated increased activity of mutant receptor compared to the wild-type.
Collapse
Affiliation(s)
- Katia Maruca
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Ilaria Brambilla
- Department of Pediatrics, IRCCS Policlinico San Matteo, University of Pavia, viale C. Golgi 19, 27100, Pavia, Italy
| | - Alessandra Mingione
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20124, Milan, Italy
| | - Lorenzo Bassi
- Department of Pediatrics, IRCCS Policlinico San Matteo, University of Pavia, viale C. Golgi 19, 27100, Pavia, Italy
| | - Silvia Capelli
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Caterina Brasacchio
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20124, Milan, Italy
| | - Laura Soldati
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20124, Milan, Italy
| | - Mariangela Cisternino
- Department of Pediatrics, IRCCS Policlinico San Matteo, University of Pavia, viale C. Golgi 19, 27100, Pavia, Italy
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|