1
|
Wang S, Tong S, Jin X, Li N, Dang P, Sui Y, Liu Y, Wang D. Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure. Neural Regen Res 2024; 19:2522-2531. [PMID: 38526288 PMCID: PMC11090430 DOI: 10.4103/1673-5374.389363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00032/figure1/v/2024-03-08T184507Z/r/image-tiff High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases, yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown. Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel (Healaflow®). Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure. Our results identified a total of 12 cell types, namely retinal pigment epithelial cells, rod-photoreceptor cells, bipolar cells, Müller cells, microglia, cone-photoreceptor cells, retinal ganglion cells, endothelial cells, retinal progenitor cells, oligodendrocytes, pericytes, and fibroblasts. The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells, with ganglion cells decreased by 23%. Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure. We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression. We found upregulation of the B3gat2 gene, which is associated with neuronal migration and adhesion, and downregulation of the Tsc22d gene, which participates in inhibition of inflammation. This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure. These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
Collapse
Affiliation(s)
- Shaojun Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Siti Tong
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Xin Jin
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Na Li
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Pingxiu Dang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yang Sui
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Ying Liu
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Dajiang Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
El-Mayet F, Jones C. Stress Can Induce Bovine Alpha-Herpesvirus 1 (BoHV-1) Reactivation from Latency. Viruses 2024; 16:1675. [PMID: 39599791 PMCID: PMC11599084 DOI: 10.3390/v16111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are importantsites for latency. Reactivation from latency can lead to reproductive problems in pregnant cows, virus transmission to young calves, suppression of immune responses, and bacterial pneumonia. BoHV-1 is also a significant cofactor in bovine respiratory disease (BRD). Stress, as mimicked by the synthetic corticosteroid dexamethasone, reproducibly initiates reactivation from latency. Stress-mediated activation of the glucocorticoid receptor (GR) stimulates viral replication and transactivation of viral promoters that drive the expression of infected cell protein 0 (bICP0) and bICP4. Notably, GR and Krüppel-like factor 15 (KLF15) form a feed-forward transcription loop that cooperatively transactivates immediate early transcription unit 1 (IEtu1 promoter). Two pioneer transcription factors, GR and KLF4, cooperatively transactivate the bICP0 early promoter. Pioneer transcription factors bind silent viral heterochromatin, remodel chromatin, and activate gene expression. Thus, wepredict that these novel transcription factors mediate early stages of BoHV-1 reactivation from latency.
Collapse
Affiliation(s)
- Fouad El-Mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Benha 74078, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
3
|
Deochand DK, Dacic M, Bale MJ, Daman AW, Chaudhary V, Josefowicz SZ, Oliver D, Chinenov Y, Rogatsky I. Mechanisms of epigenomic and functional convergence between glucocorticoid- and IL4-driven macrophage programming. Nat Commun 2024; 15:9000. [PMID: 39424780 PMCID: PMC11489752 DOI: 10.1038/s41467-024-52942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2IL4). Glucocorticoids (GC), widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2GC), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2IL4 and M2GC transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets. This core homeostatic program is enacted by transcriptional effectors KLF4 and the glucocorticoid receptor, whose genome-wide occupancy and actions are integrated in a stimulus-specific manner by the nuclear receptor cofactor GRIP1. Indeed, many of the M2IL4:M2GC-shared transcriptomic changes were GRIP1-dependent. Consistently, GRIP1 loss attenuated phagocytic activity of both populations in vitro and macrophage tissue-repair properties in the murine colitis model in vivo. These findings provide a mechanistic framework for homeostatic macrophage programming by distinct signals, to better inform anti-inflammatory drug design.
Collapse
Affiliation(s)
- Dinesh K Deochand
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Michael J Bale
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Andrew W Daman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vidyanath Chaudhary
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - David Oliver
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
| | - Yurii Chinenov
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
4
|
Sevilla LM, Pons-Alonso O, Gallego A, Azkargorta M, Elortza F, Pérez P. Glucocorticoid receptor controls atopic dermatitis inflammation via functional interactions with P63 and autocrine signaling in epidermal keratinocytes. Cell Death Dis 2024; 15:535. [PMID: 39069531 DOI: 10.1038/s41419-024-06926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Atopic dermatitis (AD), a prevalent chronic inflammatory disease with multifactorial etiology, features epidermal barrier defects and immune overactivation. Synthetic glucocorticoids (GCs) are widely prescribed for treating AD due to their anti-inflammatory actions; however, mechanisms are incompletely understood. Defective local GC signaling due to decreased production of endogenous ligand and/or GC receptor (GR) levels was reported in prevalent inflammatory skin disorders; whether this is a consequence or contributing factor to AD pathology is unclear. To identify the chromatin-bound cell-type-specific GR protein interactome in keratinocytes, we used rapid immunoprecipitation of endogenous proteins and mass spectrometry identifying 145 interactors that increased upon dexamethasone treatment. GR-interacting proteins were enriched in p53/p63 signaling, including epidermal transcription factors with critical roles in AD pathology. Previous analyses indicating mirrored AD-like phenotypes between P63 overexpression and GR loss in epidermis, and our data show an intricate relationship between these transcription factors in human keratinocytes, identifying TP63 as a direct GR target. Dexamethasone treatment counteracted transcriptional up-regulation of inflammatory markers by IL4/IL13, known to mimic AD, causing opposite shifts in GR and P63 genomic binding. Indeed, IL4/IL13 decreased GR and increased P63 levels in cultured keratinocytes and human epidermal equivalents (HEE), consistent with GR down-regulation and increased P63 expression in AD lesions vs normal skin. Moreover, GR knockdown (GRKD) resulted in constitutive increases in P63, phospho-P38 and S100A9, IL6, and IL33. Also, GRKD culture supernatants showed increased autocrine production of TH2-/TH1-/TH17-TH22-associated factors including IL4, CXCL10, CXCL11, and CXCL8. GRKD HEEs showed AD-like features including hyperplasia and abnormal differentiation, resembling phenotypes observed with GR antagonist or IL4/IL13 treatment. The simultaneous GR/P63 knockdown partially reversed constitutive up-regulation of inflammatory genes in GRKD. In summary, our data support a causative role for GR loss in AD pathogenesis via functional interactions with P63 and autocrine signaling in epidermal keratinocytes.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Omar Pons-Alonso
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Andrea Gallego
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain.
| |
Collapse
|
5
|
Carceller-Zazo E, Sevilla LM, Pons-Alonso O, Chiner-Oms Á, Amazit L, An Vu T, Vitellius G, Viengchareun S, Comas I, Jaszczyszyn Y, Abella M, Alegre-Martí A, Estébanez-Perpiñá E, Lombès M, Pérez P. The mineralocorticoid receptor modulates timing and location of genomic binding by glucocorticoid receptor in response to synthetic glucocorticoids in keratinocytes. FASEB J 2023; 37:e22709. [PMID: 36527388 DOI: 10.1096/fj.202201199rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Glucocorticoids (GCs) exert potent antiproliferative and anti-inflammatory properties, explaining their therapeutic efficacy for skin diseases. GCs act by binding to the GC receptor (GR) and the mineralocorticoid receptor (MR), co-expressed in classical and non-classical targets including keratinocytes. Using knockout mice, we previously demonstrated that GR and MR exert essential nonoverlapping functions in skin homeostasis. These closely related receptors may homo- or heterodimerize to regulate transcription, and theoretically bind identical GC-response elements (GRE). We assessed the contribution of MR to GR genomic binding and the transcriptional response to the synthetic GC dexamethasone (Dex) using control (CO) and MR knockout (MREKO ) keratinocytes. GR chromatin immunoprecipitation (ChIP)-seq identified peaks common and unique to both genotypes upon Dex treatment (1 h). GREs, AP-1, TEAD, and p53 motifs were enriched in CO and MREKO peaks. However, GR genomic binding was 35% reduced in MREKO , with significantly decreased GRE enrichment, and reduced nuclear GR. Surface plasmon resonance determined steady state affinity constants, suggesting preferred dimer formation as MR-MR > GR-MR ~ GR-GR; however, kinetic studies demonstrated that GR-containing dimers had the longest lifetimes. Despite GR-binding differences, RNA-seq identified largely similar subsets of differentially expressed genes in both genotypes upon Dex treatment (3 h). However, time-course experiments showed gene-dependent differences in the magnitude of expression, which correlated with earlier and more pronounced GR binding to GRE sites unique to CO including near Nr3c1. Our data show that endogenous MR has an impact on the kinetics and differential genomic binding of GR, affecting the time-course, specificity, and magnitude of GC transcriptional responses in keratinocytes.
Collapse
Affiliation(s)
- Elena Carceller-Zazo
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Lisa M Sevilla
- Department of Pathology and Molecular and Cell Therapy, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Omar Pons-Alonso
- Department of Pathology and Molecular and Cell Therapy, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Álvaro Chiner-Oms
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Larbi Amazit
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Unité Mixte de Service UMS-44, Le Kremlin Bicêtre, France
| | - Thi An Vu
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Géraldine Vitellius
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Say Viengchareun
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Iñaki Comas
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Yan Jaszczyszyn
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Montserrat Abella
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marc Lombès
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Paloma Pérez
- Department of Pathology and Molecular and Cell Therapy, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| |
Collapse
|
6
|
Portuguez AS, Grbesa I, Tal M, Deitch R, Raz D, Kliker L, Weismann R, Schwartz M, Loza O, Cohen L, Marchenkov-Flam L, Sung MH, Kaplan T, Hakim O. Ep300 sequestration to functionally distinct glucocorticoid receptor binding loci underlie rapid gene activation and repression. Nucleic Acids Res 2022; 50:6702-6714. [PMID: 35713523 PMCID: PMC9262608 DOI: 10.1093/nar/gkac488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid transcriptional response to the transcription factor, glucocorticoid receptor (GR), including gene activation or repression, is mediated by the spatial association of genes with multiple GR binding sites (GBSs) over large genomic distances. However, only a minority of the GBSs have independent GR-mediated activating capacity, and GBSs with independent repressive activity were rarely reported. To understand the positive and negative effects of GR we mapped the regulatory environment of its gene targets. We show that the chromatin interaction networks of GR-activated and repressed genes are spatially separated and vary in the features and configuration of their GBS and other non-GBS regulatory elements. The convergence of the KLF4 pathway in GR-activated domains and the STAT6 pathway in GR-repressed domains, impose opposite transcriptional effects to GR, independent of hormone application. Moreover, the ROR and Rev-erb transcription factors serve as positive and negative regulators, respectively, of GR-mediated gene activation. We found that the spatial crosstalk between GBSs and non-GBSs provides a physical platform for sequestering the Ep300 co-activator from non-GR regulatory loci in both GR-activated and -repressed gene compartments. While this allows rapid gene repression, Ep300 recruitment to GBSs is productive specifically in the activated compartments, thus providing the basis for gene induction.
Collapse
Affiliation(s)
| | | | - Moran Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Rachel Deitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Dana Raz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Limor Kliker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Ran Weismann
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Michal Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Leslie Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Libi Marchenkov-Flam
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofir Hakim
- To whom correspondence should be addressed. Tel: +972 3 738 4295; Fax: +972 3 738 4296;
| |
Collapse
|
7
|
Anto Michel N, Ljubojevic-Holzer S, Bugger H, Zirlik A. Cellular Heterogeneity of the Heart. Front Cardiovasc Med 2022; 9:868466. [PMID: 35548426 PMCID: PMC9081371 DOI: 10.3389/fcvm.2022.868466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in technology such as the introduction of high throughput multidimensional tools like single cell sequencing help to characterize the cellular composition of the human heart. The diversity of cell types that has been uncovered by such approaches is by far greater than ever expected before. Accurate identification of the cellular variety and dynamics will not only facilitate a much deeper understanding of cardiac physiology but also provide important insights into mechanisms underlying its pathological transformation. Distinct cellular patterns of cardiac cell clusters may allow differentiation between a healthy heart and a sick heart while potentially predicting future disease at much earlier stages than currently possible. These advances have already extensively improved and will ultimately revolutionize our knowledge of the mechanisms underlying cardiovascular disease as such. In this review, we will provide an overview of the cells present in the human and rodent heart as well as genes that may be used for their identification.
Collapse
|
8
|
Oliva AD, Gupta R, Issa K, Abi Hachem R, Jang DW, Wellford SA, Moseman EA, Matsunami H, Goldstein BJ. Aging-related olfactory loss is associated with olfactory stem cell transcriptional alterations in humans. J Clin Invest 2022; 132:155506. [PMID: 34990409 PMCID: PMC8843745 DOI: 10.1172/jci155506] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUNDPresbyosmia, or aging-related olfactory loss, occurs in a majority of humans over age 65 years, yet remains poorly understood, with no specific treatment options. The olfactory epithelium (OE) is the peripheral organ for olfaction and is subject to acquired damage, suggesting a likely site of pathology in aging. Adult stem cells reconstitute the neuroepithelium in response to cell loss under normal conditions. In aged OE, patches of respiratory-like metaplasia have been observed histologically, consistent with a failure in normal neuroepithelial homeostasis.MethodsAccordingly, we have focused on identifying cellular and molecular changes in presbyosmic OE. The study combined psychophysical testing with olfactory mucosa biopsy analysis, single-cell RNA-Sequencing (scRNA-Seq), and culture studies.ResultsWe identified evidence for inflammation-associated changes in the OE stem cells of presbyosmic patients. The presbyosmic basal stem cells exhibited increased expression of genes involved in response to cytokines or stress or the regulation of proliferation and differentiation. Using a culture model, we found that cytokine exposure drove increased TP63, a transcription factor acting to prevent OE stem cell differentiation.ConclusionsOur data suggest aging-related inflammatory changes in OE stem cells may contribute to presbyosmia via the disruption of normal epithelial homeostasis. OE stem cells may represent a therapeutic target for restoration of olfaction.FundingNIH grants DC018371, NS121067, DC016224; Office of Physician-Scientist Development, Burroughs-Wellcome Fund Research Fellowship for Medical Students Award, Duke University School of Medicine.
Collapse
Affiliation(s)
- Allison D. Oliva
- Department of Head and Neck Surgery & Communication Sciences and
| | - Rupali Gupta
- Department of Head and Neck Surgery & Communication Sciences and
| | - Khalil Issa
- Department of Head and Neck Surgery & Communication Sciences and
| | - Ralph Abi Hachem
- Department of Head and Neck Surgery & Communication Sciences and
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences and
| | | | | | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology,,Duke Institute for Brain Sciences,,Department of Neurobiology, and
| | - Bradley J. Goldstein
- Department of Head and Neck Surgery & Communication Sciences and,Department of Neurobiology, and,Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Mestrallet G, Carosella ED, Martin MT, Rouas-Freiss N, Fortunel NO, LeMaoult J. Immunosuppressive Properties of Epidermal Keratinocytes Differ According to Their Immaturity Status. Front Immunol 2022; 13:786859. [PMID: 35222373 PMCID: PMC8878806 DOI: 10.3389/fimmu.2022.786859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Preservation of a functional keratinocyte stem cell pool is essential to ensure the long-term maintenance of epidermis integrity, through continuous physiological renewal and regeneration in case of injury. Protecting stem cells from inflammation and immune reactions is thus a critical issue that needs to be explored. Here, we show that the immature CD49fhigh precursor cell fraction from interfollicular epidermis keratinocytes, comprising stem cells and progenitors, is able to inhibit CD4+ T-cell proliferation. Of note, both the stem cell-enriched CD49fhigh/EGFRlow subpopulation and the less immature CD49fhigh/EGFRhigh progenitors ensure this effect. Moreover, we show that HLA-G and PD-L1 immune checkpoints are overexpressed in CD49fhigh precursors, as compared to CD49flow differentiated keratinocytes. This potency may limit immune reactions against immature precursors including stem cells, and protect them from exacerbated inflammation. Further exploring this correlation between immuno-modulation and immaturity may open perspectives in allogenic cell therapies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Edgardo D. Carosella
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Michele T. Martin
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Nicolas O. Fortunel
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
- *Correspondence: Joel LeMaoult, ; Nicolas O. Fortunel,
| | - Joel LeMaoult
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
- *Correspondence: Joel LeMaoult, ; Nicolas O. Fortunel,
| |
Collapse
|
10
|
Sawant L, Ostler JB, Jones C. A Pioneer Transcription Factor and Type I Nuclear Hormone Receptors Synergistically Activate the Bovine Herpesvirus 1 Infected Cell Protein 0 (ICP0) Early Promoter. J Virol 2021; 95:e0076821. [PMID: 34319779 PMCID: PMC8475507 DOI: 10.1128/jvi.00768-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Following bovine herpesvirus 1 (BoHV-1) acute infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia are an important site for latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Expression of two key viral transcriptional regulatory proteins, BoHV-1 infected cell protein 0 (bICP0) and bICP4, are regulated by sequences within the immediate early promoter (IEtu1). A separate early promoter also drives bICP0 expression, presumably to ensure sufficient levels of this important transcriptional regulatory protein. Productive infection and bICP0 early promoter activity are cooperatively transactivated by Krüppel-like factor 4 (KLF4) and a type I nuclear hormone receptor (NHR), androgen receptor, glucocorticoid receptor, or progesterone receptor. The bICP0 early promoter contains three separate transcriptional enhancers that mediate cooperative transactivation. In contrast to the IEtu1 promoter, the bICP0 early promoter lacks consensus type I NHR binding sites. Consequently, we hypothesized that KLF4 and Sp1 binding sites are essential for type I NHR and KLF4 to transactivate the bICP0 promoter. Mutating KLF4 and Sp1 binding sites in each enhancer domain significantly reduced transactivation by KLF4 and a type I NHR. Chromatin immunoprecipitation (ChIP) studies demonstrated that occupancy of bICP0 early promoter sequences by KLF4 and type I NHR is significantly reduced when KLF4 and/or Sp1 binding sites are mutated. These studies suggest that cooperative transactivation of the bICP0 E promoter by type I NHRs and a stress-induced pioneer transcription factor (KLF4) promote viral replication and spread in neurons or nonneural cells in reproductive tissue. IMPORTANCE Understanding how stressful stimuli and changes in the cellular milieu mediate viral replication and gene expression in the natural host is important for developing therapeutic strategies that impair virus transmission and disease. For example, bovine herpesvirus 1 (BoHV-1) reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone, which mimics the effects of stress. Furthermore, BoHV-1 infection increases the incidence of abortion in pregnant cows, suggesting that sex hormones stimulate viral growth in certain tissues. Previous studies revealed that type I nuclear hormone receptors (NHRs) (androgen, glucocorticoid, or progesterone) and a pioneer transcription factor, Krüppel-like factor 4 (KLF4), cooperatively transactivate the BoHV-1 infected cell protein 0 (bICP0) early promoter. Transactivation was mediated by Sp1 and/or KLF4 consensus binding sites within the three transcriptional enhancers. These studies underscore the complexity by which BoHV-1 exploits type I NHR fluctuations to enhance viral gene expression, replication, and transmission in the natural host.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Jeffery B. Ostler
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
11
|
Mifsud KR, Kennedy CLM, Salatino S, Sharma E, Price EM, Haque SN, Gialeli A, Goss HM, Panchenko PE, Broxholme J, Engledow S, Lockstone H, Cordero Llana O, Reul JMHM. Distinct regulation of hippocampal neuroplasticity and ciliary genes by corticosteroid receptors. Nat Commun 2021; 12:4737. [PMID: 34362910 PMCID: PMC8346558 DOI: 10.1038/s41467-021-24967-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid hormones (GCs) - acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) - are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.
Collapse
Affiliation(s)
- Karen R Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Clare L M Kennedy
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily M Price
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha N Haque
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Andriana Gialeli
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Hannah M Goss
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Polina E Panchenko
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Simon Engledow
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Oscar Cordero Llana
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
12
|
Sevilla LM, Bigas J, Chiner-Oms Á, Comas I, Sentandreu V, Pérez P. Glucocorticoid-dependent transcription in skin requires epidermal expression of the glucocorticoid receptor and is modulated by the mineralocorticoid receptor. Sci Rep 2020; 10:18954. [PMID: 33144612 PMCID: PMC7609727 DOI: 10.1038/s41598-020-75853-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid (GC) actions are mediated through two closely related ligand-dependent transcription factors, the GC receptor (GR) and the mineralocorticoid receptor (MR). Given the wide and effective use of GCs to combat skin inflammatory diseases, it is important to understand the relative contribution of these receptors to the transcriptional response to topical GCs. We evaluated the gene expression profiles in the skin of mice with epidermal-specific loss of GR (GREKO), MR (MREKO), or both (double KO; DKO) in response to dexamethasone (Dex). The overall transcriptional response was abolished in GREKO and DKO skin suggesting dependence of the underlying dermis on the presence of epidermal GR. Indeed, the observed dermal GC resistance correlated with a constitutive decrease in GR activity and up-regulation of p38 activity in this skin compartment. Upon Dex treatment, more than 90% of differentially expressed genes (DEGs) in CO overlapped with MREKO. However, the number of DEGs was fourfold increased and the magnitude of response was higher in MREKO vs CO, affecting both gene induction and repression. Taken together our data reveal that, in the cutaneous transcriptional response to GCs mediated through endogenous receptors, epidermal GR is mandatory while epidermal MR acts as a chief modulator of gene expression.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig 11, 46010, Valencia, Spain
| | - Judit Bigas
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig 11, 46010, Valencia, Spain
| | - Álvaro Chiner-Oms
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig 11, 46010, Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig 11, 46010, Valencia, Spain
| | | | - Paloma Pérez
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig 11, 46010, Valencia, Spain.
| |
Collapse
|
13
|
Two Pioneer Transcription Factors, Krüppel-Like Transcription Factor 4 and Glucocorticoid Receptor, Cooperatively Transactivate the Bovine Herpesvirus 1 ICP0 Early Promoter and Stimulate Productive Infection. J Virol 2020; 94:JVI.01670-19. [PMID: 31776270 DOI: 10.1128/jvi.01670-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
An important site for bovine herpesvirus 1 (BoHV-1) latency is sensory neurons within trigeminal ganglia (TG). The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. Expression of four Krüppel-like transcription factors (KLF), i.e., KLF4, KLF6, PLZF (promyelocytic leukemia zinc finger), and KLF15, are induced in TG neurons early during dexamethasone-induced reactivation. The glucocorticoid receptor (GR) and KLF15 form a feed-forward transcription loop that cooperatively transactivates the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter that drives bovine infected cell protein 0 (bICP0) and bICP4 expression. Since the bICP0 gene also contains a separate early (E) promoter, we tested the hypothesis that GR and KLF family members transactivate the bICP0 E promoter. GR and KLF4, both pioneer transcription factors, cooperated to stimulate bICP0 E promoter activity in a ligand-independent manner in mouse neuroblastoma cells (Neuro-2A). Furthermore, GR and KLF4 stimulated productive infection. Mutating both half GR binding sites did not significantly reduce GR- and KLF4-mediated transactivation of the bICP0 E promoter, suggesting that a novel mechanism exists for transactivation. GR and KLF15 cooperatively stimulated bICP0 activity less efficiently than GR and KL4: however, KLF6, PLZF, and GR had little effect on the bICP0 E promoter. GR, KLF4, and KLF15 occupied bICP0 E promoter sequences in transfected Neuro-2A cells. GR and KLF15, but not KLF4, occupied the bICP0 E promoter at late times during productive infection of bovine cells. Collectively, these studies suggest that cooperative transactivation of the bICP0 E promoter by two pioneer transcription factors (GR and KLF4) correlates with stimulating lytic cycle viral gene expression following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone. We predict that increased corticosteroid levels activate the glucocorticoid receptor (GR). Consequently, viral gene expression is stimulated by the activated GR. The immediate early transcription unit 1 promoter (IEtu1) drives expression of two viral transcriptional regulatory proteins, bovine infected cell protein 0 (bICP0) and bICP4. Interestingly, a separate early promoter also drives bICP0 expression. Two pioneer transcription factors, GR and Krüppel-like transcription factor 4 (KLF4), cooperatively transactivate the bICP0 early (E) promoter. GR and KLF15 cooperate to stimulate bICP0 E promoter activity but significantly less than GR and KLF4. The bICP0 E promoter contains enhancer-like domains necessary for GR- and KLF4-mediated transactivation that are distinct from those for GR and KLF15. Stress-induced pioneer transcription factors are proposed to activate key viral promoters, including the bICP0 E promoter, during early stages of reactivation from latency.
Collapse
|
14
|
Sevilla LM, Pérez P. Glucocorticoids and Glucocorticoid-Induced-Leucine-Zipper (GILZ) in Psoriasis. Front Immunol 2019; 10:2220. [PMID: 31572404 PMCID: PMC6753639 DOI: 10.3389/fimmu.2019.02220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
Psoriasis is a prevalent chronic inflammatory human disease initiated by impaired function of immune cells and epidermal keratinocytes, resulting in increased cytokine production and hyperproliferation, leading to skin lesions. Overproduction of Th1- and Th17-cytokines including interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-23, IL-17, and IL-22, is a major driver of the disease. Glucocorticoids (GCs) represent the mainstay protocol for treating psoriasis as they modulate epidermal differentiation and are potent anti-inflammatory compounds. The development of safer GC-based therapies is a high priority due to potentially severe adverse effects associated with prolonged GC use. Specific efforts have focused on downstream anti-inflammatory effectors of GC-signaling such as GC-Induced-Leucine-Zipper (GILZ), which suppresses Th17 responses and antagonizes multiple pro-inflammatory signaling pathways involved in psoriasis, including AP-1, NF-κB, STAT3, and ROR-γt. Here we review evidence regarding defective GC signaling, GC receptor (GR) function, and GILZ in psoriasis. We discuss seemingly contradicting data on the loss- and gain-of-function of GILZ in the imiquimod-induced mouse model of psoriasis. We also present potential therapeutic strategies aimed to restore GC-related pathways.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Animal Models of Skin Pathologies Unit, Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain
| | - Paloma Pérez
- Animal Models of Skin Pathologies Unit, Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain
| |
Collapse
|
15
|
Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal NA, Pinto AR. Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart. Cell Rep 2019; 22:600-610. [PMID: 29346760 DOI: 10.1016/j.celrep.2017.12.072] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Characterization of the cardiac cellulome, the network of cells that form the heart, is essential for understanding cardiac development and normal organ function and for formulating precise therapeutic strategies to combat heart disease. Recent studies have reshaped our understanding of cardiac cellular composition and highlighted important functional roles for non-myocyte cell types. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of techniques to isolate understudied cardiac cell populations, such as mural cells and glia. Our analyses also revealed extensive networks of intercellular communication and suggested prevalent sexual dimorphism in gene expression in the heart. This study offers insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate studies in cardiac cell biology.
Collapse
Affiliation(s)
| | | | - Micheal A McLellan
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | - Paul Robson
- The Jackson Laboratory, Bar Harbor, ME, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Alexander R Pinto
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Kemmotsu T, Yokoyama U, Saito J, Ito S, Uozumi A, Nishimaki S, Iwasaki S, Seki K, Ito S, Ishikawa Y. Antenatal Administration of Betamethasone Contributes to Intimal Thickening of the Rat Ductus Arteriosus. Circ J 2019; 83:654-661. [PMID: 30726804 DOI: 10.1253/circj.cj-18-1033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Antenatal betamethasone (BMZ) is a standard therapy for reducing respiratory distress syndrome in preterm infants. Recently, some reports have indicated that BMZ promotes ductus arteriosus (DA) closure. DA closure requires morphological remodeling; that is, intimal thickening (IT) formation; however, the role of BMZ in IT formation has not yet been reported. METHODS AND RESULTS First, DNA microarray analysis using smooth muscle cells (SMCs) of rat preterm DA on gestational day 20 (pDASMCs) stimulated with BMZ was performed. Among 58,717 probe sets, ADP-ribosyltransferase 3 (Art3) was markedly increased by BMZ stimulation. Quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed the BMZ-induced increase of Art3 in pDASMCs, but not in aortic SMCs. Immunocytochemistry showed that BMZ stimulation increased lamellipodia formation. BMZ significantly increased total paxillin protein expression and the ratio of phosphorylated to total paxillin. A scratch assay demonstrated that BMZ stimulation promoted pDASMC migration, which was attenuated byArt3-targeted siRNAs transfection. pDASMC proliferation was not promoted by BMZ, which was analyzed by a 5'-bromo-2'-deoxyuridine (BrdU) assay. Whether BMZ increased IT formation in vivo was examined. BMZ or saline was administered intravenously to maternal rats on gestational days 18 and 19, and DA tissues were obtained on gestational day 20. The ratio of IT to tunica media was significantly higher in the BMZ-treated group. CONCLUSIONS These data suggest that antenatal BMZ administration promotes DA IT through Art3-mediated DASMC migration.
Collapse
Affiliation(s)
- Takahiro Kemmotsu
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
- Cardiovascular Research Institute, Yokohama City University
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University
| | - Junichi Saito
- Cardiovascular Research Institute, Yokohama City University
| | - Satoko Ito
- Cardiovascular Research Institute, Yokohama City University
| | - Azusa Uozumi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shigeru Nishimaki
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | - Shiho Iwasaki
- Perinatal Center, Yokohama City University Medical Center
| | - Kazuo Seki
- Perinatal Center, Yokohama City University Medical Center
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University
| | | |
Collapse
|
17
|
Mackeh R, Marr AK, Fadda A, Kino T. C2H2-Type Zinc Finger Proteins: Evolutionarily Old and New Partners of the Nuclear Hormone Receptors. NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801071. [PMID: 30718982 PMCID: PMC6348741 DOI: 10.1177/1550762918801071] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
Nuclear hormone receptors (NRs) are evolutionarily conserved ligand-dependent
transcription factors. They are essential for human life, mediating the actions
of lipophilic molecules, such as steroid hormones and metabolites of fatty acid,
cholesterol, and external toxic compounds. The C2H2-type zinc finger proteins
(ZNFs) form the largest family of the transcription factors in humans and are
characterized by multiple, tandemly arranged zinc fingers. Many of the C2H2-type
ZNFs are conserved throughout evolution, suggesting their involvement in
preserved biological activities, such as general transcriptional regulation and
development/differentiation of organs/tissues observed in the early embryonic
phase. However, some C2H2-type ZNFs, such as those with the Krüppel-associated
box (KRAB) domain, appeared relatively late in evolution and have significantly
increased family members in mammals including humans, possibly modulating their
complicated transcriptional network and/or supporting the morphological
development/functions specific to them. Such evolutional characteristics of the
C2H2-type ZNFs indicate that these molecules influence the NR functions
conserved through evolution, whereas some also adjust them to meet with specific
needs of higher organisms. We review the interaction between NRs and C2H2-type
ZNFs by focusing on some of the latter molecules.
Collapse
|
18
|
Cheng Z, Zou X, Jin Y, Gao S, Lv J, Li B, Cui R. The Role of KLF 4 in Alzheimer's Disease. Front Cell Neurosci 2018; 12:325. [PMID: 30297986 PMCID: PMC6160590 DOI: 10.3389/fncel.2018.00325] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/07/2018] [Indexed: 01/30/2023] Open
Abstract
Krüppel-like factor 4 (KLF4), a member of the family of zinc-finger transcription factors, is widely expressed in range of tissues that play multiple functions. Emerging evidence suggest KLF4’s critical regulatory effect on the neurophysiological and neuropathological processes of Alzheimer’s disease (AD), indicating that KLF4 might be a potential therapeutic target of neurodegenerative diseases. In this review, we will summarize relevant studies and illuminate the regulatory role of KLF4 in the neuroinflammation, neuronal apoptosis, axon regeneration and iron accumulation to clarify KLF4’s status in the pathogenesis of AD.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiayin Lv
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci 2018; 19:ijms19071906. [PMID: 29966221 PMCID: PMC6073661 DOI: 10.3390/ijms19071906] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The nuclear hormone receptor (NR) superfamily comprises approximately 50 evolutionarily conserved proteins that play major roles in gene regulation by prototypically acting as ligand-dependent transcription factors. Besides their central role in physiology, NRs have been largely used as therapeutic drug targets in many chronic inflammatory conditions and derivatives of their specific ligands, alone or in combination, are frequently prescribed for the treatment of skin diseases. In particular, glucocorticoids (GCs) are the most commonly used compounds for treating prevalent skin diseases such as psoriasis due to their anti-proliferative and anti-inflammatory actions. However, and despite their therapeutic efficacy, the long-term use of GCs is limited because of the cutaneous adverse effects including atrophy, delayed wound healing, and increased susceptibility to stress and infections. The GC receptor (GR/NR3C1) and the mineralocorticoid receptor (MR/NR3C2) are members of the NR subclass NR3C that are highly related, both structurally and functionally. While the GR is ubiquitously expressed and is almost exclusively activated by GCs; an MR has a more restricted tissue expression pattern and can bind GCs and the mineralocorticoid aldosterone with similar high affinity. As these receptors share 95% identity in their DNA binding domains; both can recognize the same hormone response elements; theoretically resulting in transcriptional regulation of the same target genes. However, a major mechanism for specific activation of GRs and/or MRs is at the pre-receptor level by modulating the local availability of active GCs. Furthermore, the selective interactions of each receptor with spatio-temporally regulated transcription factors and co-regulators are crucial for the final transcriptional outcome. While there are abundant genome wide studies identifying GR transcriptional targets in a variety of tissue and cell types; including keratinocytes; the data for MR is more limited thus far. Our group and others have studied the role of GRs and MRs in skin development and disease by generating and characterizing mouse and cellular models with gain- and loss-of-function for each receptor. Both NRs are required for skin barrier competence during mouse development and also play a role in adult skin homeostasis. Moreover, the combined loss of epidermal GRs and MRs caused a more severe skin phenotype relative to single knock-outs (KOs) in developing skin and in acute inflammation and psoriasis, indicating that these corticosteroid receptors play cooperative roles. Understanding GR- and MR-mediated signaling in skin should contribute to deciphering their tissue-specific relative roles and ultimately help to improve GC-based therapies.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
20
|
Argmann CA, Violante S, Dodatko T, Amaro MP, Hagen J, Gillespie VL, Buettner C, Schadt EE, Houten SM. Germline deletion of Krüppel-like factor 14 does not increase risk of diet induced metabolic syndrome in male C57BL/6 mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3277-3285. [DOI: 10.1016/j.bbadis.2017.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/03/2023]
|
21
|
Primary aldosteronism patients show skin alterations and abnormal activation of glucocorticoid receptor in keratinocytes. Sci Rep 2017; 7:15806. [PMID: 29150654 PMCID: PMC5693903 DOI: 10.1038/s41598-017-16216-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
Primary aldosteronism (PA) is a disease characterized by high aldosterone levels caused by benign adrenal tumors being the most frequent cause of secondary hypertension. Aldosterone plays vital physiological roles through the mineralocorticoid receptor (MR) but in certain cell types, it can also activate the glucocorticoid (GC) receptor (GR). Both MR and GR are structurally and functionally related and belong to the same family of ligand-dependent transcription factors that recognize identical GC regulatory elements (GREs) on their target genes. GCs play key roles in skin pathophysiology acting through both GR and MR; however, the effects of aldosterone and the potential association of PA and skin disease were not previously addressed. Skin samples from PA revealed histopathological alterations relative to control subjects, featuring epidermal hyperplasia, impaired differentiation, and increased dermal infiltrates, correlating with increased NF-κB signaling and up-regulation of TNF-A and IL-6 cytokines. PA skin samples also showed significantly higher expression of MR, GR, and HSD11B2. In cultured keratinocytes, aldosterone treatment increased GRE transcriptional activity which was significantly inhibited by co-treatment with GR- and MR-antagonists. This study demonstrates that high levels of aldosterone in PA patients correlate with skin anomalies and inflammatory features associated with abnormal GR/MR activation in epidermal keratinocytes.
Collapse
|
22
|
Chen YS, Wang R, Dashwood WM, Löhr CV, Williams DE, Ho E, Mertens-Talcott S, Dashwood RH. A miRNA signature for an environmental heterocyclic amine defined by a multi-organ carcinogenicity bioassay in the rat. Arch Toxicol 2017; 91:3415-3425. [PMID: 28289824 PMCID: PMC5836314 DOI: 10.1007/s00204-017-1945-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022]
Abstract
Heterocyclic amines (HCAs) produced during high-temperature cooking have been studied extensively in terms of their genotoxic/genetic effects, but recent work has implicated epigenetic mechanisms involving non-coding RNAs. Colon tumors induced in the rat by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) have altered microRNA (miRNA) signatures linked to dysregulated pluripotency factors, such as c-Myc and Krüppel-like factor 4 (KLF4). We tested the hypothesis that dysregulated miRNAs from PhIP-induced colon tumors would provide a "PhIP signature" for use in other target organs obtained from a 1-year carcinogenicity bioassay in the rat. Downstream targets that were corroborated in the rat were then investigated in human cancer datasets. The results confirmed that multiple let-7 family members were downregulated in PhIP-induced skin, colon, lung, small intestine, and Zymbal's gland tumors, and were associated with c-myc and Hmga2 upregulation. PhIP signature miRNAs with the profile mir-21high/mir-126low/mir-29clow/mir-215low/mir-145low were linked to reduced Klf4 levels in rat tumors, and in human pan-cancer and colorectal cancer. It remains to be determined whether this PhIP signature has predictive value, given that more than 20 different genotoxic HCAs are present in the human diet, plus other agents that likely induce or repress many of the same miRNAs. Future studies should define more precisely the miRNA signatures of other HCAs, and their possible value for human risk assessment.
Collapse
Affiliation(s)
- Ying-Shiuan Chen
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA
| | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Wan-Mohaiza Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Susanne Mertens-Talcott
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University College of Medicine, 2121 W Holcombe Blvd., Houston, TX, 77030, USA.
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA.
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
23
|
Role of carbonic anhydrases in skin wound healing. Exp Mol Med 2017; 49:e334. [PMID: 28524177 PMCID: PMC5454449 DOI: 10.1038/emm.2017.60] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 02/08/2023] Open
Abstract
Skin wound closure occurs when keratinocytes migrate from the edge of the wound and re-epithelialize the epidermis. Their migration takes place primarily before any vascularization is established, that is, under hypoxia, but relatively little is known regarding the factors that stimulate this migration. Hypoxia and an acidic environment are well-established stimuli for cancer cell migration. The carbonic anhydrases (CAs) contribute to tumor cell migration by generating an acidic environment through the conversion of carbon dioxide to bicarbonate and a proton. On this basis, we explored the possible role of CAs in tissue regeneration using mouse skin wound models. We show that the expression of mRNAs encoding CA isoforms IV and IX are increased (~25 × and 4 ×, respectively) during the wound hypoxic period (days 2-5) and that cells expressing CAs form a band-like structure beneath the migrating epidermis. RNA-Seq analysis suggested that the CA IV-specific signal in the wound is mainly derived from neutrophils. Due to the high level of induction of CA IV in the wound, we treated skin wounds locally with recombinant human CA IV enzyme. Recombinant CA IV significantly accelerated wound re-epithelialization. Thus, CA IV could contribute to wound healing by providing an acidic environment in which the migrating epidermis and neutrophils can survive and may offer novel opportunities to accelerate wound healing under compromised conditions.
Collapse
|
24
|
Knoedler JR, Subramani A, Denver RJ. The Krüppel-like factor 9 cistrome in mouse hippocampal neurons reveals predominant transcriptional repression via proximal promoter binding. BMC Genomics 2017; 18:299. [PMID: 28407733 PMCID: PMC5390390 DOI: 10.1186/s12864-017-3640-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Background Krüppel-like factor 9 (Klf9) is a zinc finger transcription factor that functions in neural cell differentiation, but little is known about its genomic targets or mechanism of action in neurons. Results We used the mouse hippocampus-derived neuronal cell line HT22 to identify genes regulated by Klf9, and we validated our findings in mouse hippocampus. We engineered HT22 cells to express a Klf9 transgene under control of the tetracycline repressor, and used RNA sequencing to identify genes modulated by Klf9. We found 217 genes repressed and 21 induced by Klf9. We also engineered HT22 cells to co-express biotin ligase and a Klf9 fusion protein containing an N-terminal biotin ligase recognition peptide. Using chromatin-streptavidin precipitation (ChSP) sequencing we identified 3,514 genomic regions where Klf9 associated. Seventy-five percent of these were within 1 kb of transcription start sites, and Klf9 associated in chromatin with 60% of the repressed genes. We analyzed the promoters of several repressed genes containing Klf9 ChSP peaks using transient transfection reporter assays and found that Klf9 repressed promoter activity, which was abolished after mutation of Sp/Klf-like motifs. Knockdown or knockout of Klf9 in HT22 cells caused dysregulation of Klf9 target genes. Chromatin immunoprecipitation assays showed that Klf9 associated in chromatin from mouse hippocampus with genes identified by ChSP sequencing on HT22 cells, and expression of Klf9 target genes was dysregulated in the hippocampus of neonatal Klf9-null mice. Gene ontology analysis revealed that Klf9 genomic targets include genes involved in cystokeletal remodeling, Wnt signaling and inflammation. Conclusions We have identified genomic targets of Klf9 in hippocampal neurons and created a foundation for future studies on how it functions in chromatin, and regulates neuronal morphology and survival across the lifespan. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3640-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA.,Current address: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA
| | - Robert J Denver
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Overexpression of Glucocorticoid-induced Leucine Zipper (GILZ) increases susceptibility to Imiquimod-induced psoriasis and involves cutaneous activation of TGF-β1. Sci Rep 2016; 6:38825. [PMID: 27934944 PMCID: PMC5146970 DOI: 10.1038/srep38825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
Abstract
Psoriasis vulgaris is a chronic inflammatory skin disease affecting millions of people. Its pathophysiology is complex and involves a skin compartment with epidermal and immune cells which produce cytokines, e.g. belonging to the IL-23–Th17-cell axis. Glucocorticoids (GCs) are the most common therapeutics used in cutaneous inflammatory disorders and GC-induced leucine zipper (GILZ) has emerged as a mediator of GCs due to its anti-inflammatory actions, theoretically lacking GC side-effects. We evaluated whether GILZ may provide a better therapeutic index in comparison to GCs during the onset and progression of psoriasis by generating and characterizing a mouse model with generalized overexpression of this protein (GILZ-Tg mice) and the imiquimod (IMQ) psoriasis model. Unexpectedly, in GILZ-Tg mice, the severity of IMQ-induced psoriasis-like skin lesions as well as induction of cytokines commonly up-regulated in human psoriasis (Il-17, Il-22, Il-23, Il-6, S100a8/a9, and Stat3) was significantly more pronounced relative to GILZ-Wt mice. The increased susceptibility to IMQ-induced psoriasis of GILZ-Tg mice was significantly associated with skin-specific over-activation of TGF-β1-mediated signaling via SMAD2/3. Our findings demonstrate that GILZ may behave as pro-inflammatory protein in certain tissues and that, similar to prolonged GC therapy, GILZ as an alternative treatment for psoriasis may also have adverse effects.
Collapse
|
26
|
Epidermal Mineralocorticoid Receptor Plays Beneficial and Adverse Effects in Skin and Mediates Glucocorticoid Responses. J Invest Dermatol 2016; 136:2417-2426. [PMID: 27464843 DOI: 10.1016/j.jid.2016.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) regulate skin homeostasis and combat cutaneous inflammatory diseases; however, adverse effects of chronic GC treatments limit their therapeutic use. GCs bind and activate the GC receptor and the mineralocorticoid receptor (MR), transcription factors that recognize identical hormone responsive elements. Whether epidermal MR mediates beneficial or deleterious GC effects is of great interest for improving GC-based skin therapies. MR epidermal knockout mice exhibited increased keratinocyte proliferation and differentiation and showed resistance to GC-induced epidermal thinning. However, crucially, loss of epidermal MR rendered mice more sensitive to inflammatory stimuli and skin damage. MR epidermal knockout mice showed increased susceptibility to phorbol 12-myristate 13-acetate-induced inflammation with higher cytokine induction. Likewise, cultured MR epidermal knockout keratinocytes had increased phorbol 12-myristate 13-acetate-induced NF-κB activation, highlighting an anti-inflammatory function for MR. GC-induced transcription was reduced in MR epidermal knockout keratinocytes, at least partially due to decreased recruitment of GC receptor to hormone responsive element-containing sequences. Our results support a role for epidermal MR in adult skin homeostasis and demonstrate nonredundant roles for MR and GC receptor in mediating GC actions.
Collapse
|
27
|
Prenzler F, Fragasso A, Schmitt A, Munz B. Functional analysis of ZFP36 proteins in keratinocytes. Eur J Cell Biol 2016; 95:277-84. [PMID: 27182009 DOI: 10.1016/j.ejcb.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022] Open
Abstract
The ZFP36 family of zinc finger proteins, including ZFP36, ZFP36L1, and ZFP36L2, regulates the production of growth factors and cytokines via destabilization of the respective mRNAs. We could recently demonstrate that in cultured keratinocytes, expression of the ZFP36, ZFP36L1, and ZFP36L2 genes is induced by growth factors and cytokines and that ZFP36L1 is a potent regulator of keratinocyte VEGF production. We now further analyzed the localization and function of ZFP36 proteins in the skin, specifically in epidermal keratinocytes. We found that in human epidermis, the ZFP36 protein could be detected in basal and suprabasal keratinocytes, whereas ZFP36L1 and ZFP36L2 were expressed mainly in the basal layer, indicating different and non-redundant functions of the three proteins in the epidermis. Consistently, upon inhibition of ZFP36 or ZFP36L1 expression using specific siRNAs, there was no major effect on expression of the respective other gene. In addition, we demonstrate that both ZFP36 and ZFP36L1 influence keratinocyte cell cycle, differentiation, and apoptosis in a distinct manner. Finally, we show that similarly as ZFP36L1, ZFP36 is a potent regulator of keratinocyte VEGF production. Thus, it is likely that both proteins regulate angiogenesis via paracrine mechanisms. Taken together, our results suggest that ZFP36 proteins might control reepithelialization and angiogenesis in the skin in a multimodal manner.
Collapse
Affiliation(s)
- Frauke Prenzler
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Annunziata Fragasso
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Angelika Schmitt
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Barbara Munz
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany.
| |
Collapse
|