1
|
Dai M, Hong W, Ouyang Y. Identification and Validation of Hub Genes and Construction of miRNA-Gene and Transcription Factor-Gene Networks in Adipogenesis of Mesenchymal Stem Cells. Stem Cells Int 2024; 2024:5789593. [PMID: 39238829 PMCID: PMC11377116 DOI: 10.1155/2024/5789593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
Background Adipogenic differentiation stands as a crucial pathway in the range of differentiation options for mesenchymal stem cells (MSCs), carrying significant importance in the fields of regenerative medicine and the treatment of conditions such as obesity and osteoporosis. However, the exact mechanisms that control the adipogenic differentiation of MSCs are not yet fully understood. Materials and Methods We procured datasets, namely GSE36923, GSE80614, GSE107789, and GSE113253, from the Gene Expression Omnibus database. These datasets enabled us to perform a systematic analysis, including the identification of differentially expressed genes (DEGs) pre- and postadipogenic differentiation in MSCs. Subsequently, we conducted an exhaustive analysis of DEGs common to all four datasets. To gain further insights, we subjected these overlapped DEGs to comprehensive gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Following the construction of protein-protein interaction (PPI) networks, we meticulously identified a cohort of hub genes pivotal to the adipogenic differentiation process and validated them using real-time quantitative polymerase chain reaction. Subsequently, we ventured into the construction of miRNA-gene and TF-gene interaction networks. Results Our rigorous analysis revealed a total of 18 upregulated DEGs and 12 downregulated DEGs that consistently appeared across all four datasets. Notably, the peroxisome proliferator-activated receptor signaling pathway, regulation of lipolysis in adipocytes, and the adipocytokine signaling pathway emerged as the top-ranking pathways significantly implicated in the regulation of these DEGs. Subsequent to the construction of the PPI network, we identified and validated 10 key node genes, namely IL6, FABP4, ADIPOQ, LPL, PLIN1, RBP4, ACACB, NT5E, KRT19, and G0S2. Our endeavor to construct miRNA-gene interaction networks led to the discovery of the top 10 pivotal miRNAs, including hsa-mir-27a-3p, hsa-let-7b-5p, hsa-mir-1-3p, hsa-mir-124-3p, hsa-mir-155-5p, hsa-mir-16-5p, hsa-mir-101-3p, hsa-mir-21-3p, hsa-mir-146a-5p, and hsa-mir-148b-3p. Furthermore, the construction of TF-gene interaction networks revealed the top 10 critical TFs: ZNF501, ZNF512, YY1, EZH2, ZFP37, ZNF2, SOX13, MXD3, ELF3, and TFDP1. Conclusions In summary, our comprehensive study has successfully unraveled the pivotal hub genes that govern the adipogenesis of MSCs. Moreover, the meticulously constructed miRNA-gene and TF-gene interaction networks are poised to significantly augment our comprehension of the intricacies underlying MSC adipogenic differentiation, thus providing a robust foundation for future advances in regenerative biology.
Collapse
Affiliation(s)
- Miaomiao Dai
- Department of Ophthalmology Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| | - Weisheng Hong
- Department of Joint Surgery Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| | - Yi Ouyang
- Department of Joint Surgery Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| |
Collapse
|
2
|
Li A, Zhang Y, Wang H, Mei C, Li Y, Zan L. Yin Yang 1 Is Essential for Transcriptional Activation of the Bovine Sirt2 Gene in Preadipocytes. DNA Cell Biol 2020; 39:1119-1126. [PMID: 32379499 DOI: 10.1089/dna.2020.5517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sirtuin 2 (Sirt2) belongs to the NAD+-dependent deacetylase family, is more highly expressed than other family members in adipocytes, and plays crucial roles in a wide range of biological processes. However, the mechanisms underlying Sirt2 expression during adipogenesis are poorly studied. In this study, the transcriptional start site (TSS) of Sirt2 was identified and two alternative transcript variants were spliced from Sirt2. The 5'-regulatory region of Sirt2 was also characterized; no TATA-box or CCAAT-box was presented in the 5'-flanking region. Two cytosine-phosphate diester-guanine (CpG) islands were also identified between nucleotides -563 and +4. A dual-luciferase reporter assay revealed that a 178 base pair sequence upstream from the TSS (+1) was the core promoter of Sirt2. Results from a site-directed mutagenesis experiment, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay indicated Yin Yang 1 (YY1) to be a positive regulator of bovine Sirt2 in preadipocytes. YY1 is likely to suppress adipogenesis in two different ways by regulating peroxisome proliferator-activated receptor gamma expression. Our results expand the information on the regulatory network of adipogenesis, which is an important basis for improving beef quality, treating obesity, and other related diseases.
Collapse
Affiliation(s)
- Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Yaran Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China.,Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
| | - Hongcheng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, P.R. China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
3
|
Matsumoto H, Kawaguchi F, Itoh S, Yotsu S, Fukuda K, Oyama K, Mannen H, Sasazaki S. The SNPs in bovine MMP14 promoter influence on fat-related traits. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
4
|
Morozzi G, Beccafico S, Bianchi R, Riuzzi F, Bellezza I, Giambanco I, Arcuri C, Minelli A, Donato R. Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-κB/YY1/miR-133 axis and NF-κB/YY1/BMP-7 axis. Cell Death Differ 2017; 24:2077-2088. [PMID: 28885620 DOI: 10.1038/cdd.2017.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
Muscles of sarcopenic people show hypotrophic myofibers and infiltration with adipose and, at later stages, fibrotic tissue. The origin of infiltrating adipocytes resides in fibro-adipogenic precursors and nonmyogenic mesenchymal progenitor cells, and in satellite cells, the adult stem cells of skeletal muscles. Myoblasts and brown adipocytes share a common Myf5+ progenitor cell: the cell fate depends on levels of bone morphogenetic protein 7 (BMP-7), a TGF-β family member. S100B, a Ca2+-binding protein of the EF-hand type, is expressed at relatively high levels in myoblasts from sarcopenic humans and exerts anti-myogenic effects via NF-κB-dependent inhibition of MyoD, a myogenic transcription factor acting upstream of the essential myogenic factor, myogenin. Adipogenesis requires high levels of ROS, and myoblasts of sarcopenic subjects show elevated ROS levels. Here we show that: (1) ROS overproduction in myoblasts results in upregulation of S100B levels via NF-κB activation; and (2) ROS/NF-κB-induced accumulation of S100B causes myoblast transition into brown adipocytes. S100B activates an NF-κB/Ying Yang 1 axis that negatively regulates the promyogenic and anti-adipogenic miR-133 with resultant accumulation of the brown adipogenic transcription regulator, PRDM-16. S100B also upregulates BMP-7 via NF-κB/Ying Yang 1 with resultant BMP-7 autocrine activity. Interestingly, myoblasts from sarcopenic humans show features of brown adipocytes. We also show that S100B levels and NF-κB activity are elevated in brown adipocytes obtained by culturing myoblasts in adipocyte differentiation medium and that S100B knockdown or NF-κB inhibition in myoblast-derived brown adipocytes reconverts them into fusion-competent myoblasts. At last, interstitial cells and, unexpectedly, a subpopulation of myofibers in muscles of geriatric but not young mice co-express S100B and the brown adipocyte marker, uncoupling protein-1. These results suggest that S100B is an important intracellular molecular signal regulating Myf5+ progenitor cell differentiation into fusion-competent myoblasts or brown adipocytes depending on its levels.
Collapse
Affiliation(s)
- Giulio Morozzi
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Sara Beccafico
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia, Italy
| | - Ilaria Bellezza
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Alba Minelli
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia, Italy.,Centro Universitario per la Ricerca sulla Genomica Funzionale, Piazza Lucio Severi 1, Perugia 06132, Italy
| |
Collapse
|
5
|
Lee H, Qian K, von Toerne C, Hoerburger L, Claussnitzer M, Hoffmann C, Glunk V, Wahl S, Breier M, Eck F, Jafari L, Molnos S, Grallert H, Dahlman I, Arner P, Brunner C, Hauner H, Hauck SM, Laumen H. Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation. Nucleic Acids Res 2017; 45:3266-3279. [PMID: 28334807 PMCID: PMC5389726 DOI: 10.1093/nar/gkx105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies identified numerous disease risk loci. Delineating molecular mechanisms influenced by cis-regulatory variants is essential to understand gene regulation and ultimately disease pathophysiology. Combining bioinformatics and public domain chromatin information with quantitative proteomics supports prediction of cis-regulatory variants and enabled identification of allele-dependent binding of both, transcription factors and coregulators at the type 2 diabetes associated PPARG locus. We found rs7647481A nonrisk allele binding of Yin Yang 1 (YY1), confirmed by allele-specific chromatin immunoprecipitation in primary adipocytes. Quantitative proteomics also found the coregulator RING1 and YY1 binding protein (RYBP) whose mRNA levels correlate with improved insulin sensitivity in primary adipose cells carrying the rs7647481A nonrisk allele. Our findings support a concept with diverse cis-regulatory variants contributing to disease pathophysiology at one locus. Proteome-wide identification of both, transcription factors and coregulators, can profoundly improve understanding of mechanisms underlying genetic associations.
Collapse
Affiliation(s)
- Heekyoung Lee
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Kun Qian
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christine von Toerne
- German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Lena Hoerburger
- ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Paediatric Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Melina Claussnitzer
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Hebrew SeniorLife Institute for Aging Research, Harvard Medical School, Boston, MA 02131, USA
| | - Christoph Hoffmann
- ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Molecular Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Viktoria Glunk
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Simone Wahl
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michaela Breier
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franziska Eck
- Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Leili Jafari
- Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sophie Molnos
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Harald Grallert
- Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ingrid Dahlman
- Department of Medicine, Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Cornelia Brunner
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinik Ulm, 89075 Ulm, Germany
| | - Hans Hauner
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Helmut Laumen
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Paediatric Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
6
|
Han Y, Cho DH, Chung DJ, Lee KY. Osterix plays a critical role in BMP4-induced promoter activity of connexin43. Biochem Biophys Res Commun 2016; 478:683-8. [PMID: 27498006 DOI: 10.1016/j.bbrc.2016.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
Osterix is an essential transcription factor for osteogenesis and is expressed in osteoblasts. Although Osterix has been shown to be induced by bone morphogenetic protein 4, the molecular mechanism underlying Osterix function during osteoblast differentiation remains unclear. Connexin43 (Cx43) is the most abundant gap junction protein in bone cells and plays a critical role in osteoblast differentiation. However, little is known about the functional interactions between Osterix and the Cx43 promoter. In the present study, we investigated the relationship between Osterix and Cx43 in HEK293 and C2C12 cells. Cx43 expression was significantly repressed by the addition of shRNA against Osterix, whereas overexpression of Osterix resulted in enhanced Cx43 expression. Furthermore, Osterix directly occupied the promoter region of Cx43 and subsequently increased Cx43 promoter activity in a dose-dependent manner. In addition, phosphorylation of the Ser76 and Ser80 residues in Osterix were found to be critical for its activity on the Cx43 promoter. Our results suggest that Osterix plays an important role in increasing bone morphogenetic protein 4-induced Cx43 activity.
Collapse
Affiliation(s)
- Younho Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Dong Hyeok Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Dong Jin Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
7
|
Liu L, Wang JF, Fan J, Rao YS, Liu F, Yan YE, Wang H. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism. Int J Mol Sci 2016; 17:ijms17091477. [PMID: 27598153 PMCID: PMC5037755 DOI: 10.3390/ijms17091477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/10/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000, China.
| | - Jian-Fei Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Jie Fan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Yi-Song Rao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Fang Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - You-E Yan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
8
|
Abstract
Ying Yang 1 (YY1) is a ubiquitously expressed transcription factor shown to be essential for pro-B-cell development. However, the role of YY1 in other B-cell populations has never been investigated. Recent bioinformatics analysis data have implicated YY1 in the germinal center (GC) B-cell transcriptional program. In accord with this prediction, we demonstrated that deletion of YY1 by Cγ1-Cre completely prevented differentiation of GC B cells and plasma cells. To determine if YY1 was also required for the differentiation of other B-cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B-cell subsets, including B1 B cells, require YY1 for their differentiation. Transitional 1 (T1) B cells were the most dependent upon YY1, being sensitive to even a half-dosage of YY1 and also to short-term YY1 deletion by tamoxifen-induced Cre. We show that YY1 exerts its effects, in part, by promoting B-cell survival and proliferation. ChIP-sequencing shows that YY1 predominantly binds to promoters, and pathway analysis of the genes that bind YY1 show enrichment in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription such as mRNA splicing. By RNA-sequencing analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, whereas it normally down-regulates genes involved in transcription, mRNA splicing, NF-κB signaling pathways, the AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, and cell proliferation. Our results show the crucial role that YY1 plays in regulating broad general processes throughout all stages of B-cell differentiation.
Collapse
|
9
|
Park SS, Choi H, Kim SJ, Chang C, Kim E. CREB/GSK-3β signaling pathway regulates the expression of TR4 orphan nuclear receptor gene. Mol Cell Endocrinol 2016; 423:22-9. [PMID: 26762765 DOI: 10.1016/j.mce.2015.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 12/24/2022]
Abstract
In this study, we show that reduction of glucose concentration increases TR4 expression in 3T3-L1 cells via stimulation of the GSK-3β-CREB pathway. While GSK-3β and CREB increased TR4 expression in 3T3-L1 cells, inhibition of CREB expression or activity resulted in loss of GSK-3β-mediated enhancement of TR4 expression. In addition, CREB enhanced murine TR4 promoter activity via direct binding to a cAMP response element located in the promoter, and this CREB effect was further strengthened by GSK-3β. Moreover, silencing of TR4 expression by a gene-specific microRNA inhibited CREB-induced lipid accumulation in 3T3-L1 adipocytes, suggesting that TR4 could be a key mediator of CREB-induced lipogenesis.
Collapse
Affiliation(s)
- Sung-Soo Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, South Korea
| | - Hojung Choi
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, South Korea
| | - Seung-Jin Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, South Korea
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and Caner Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Eungseok Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, South Korea.
| |
Collapse
|