1
|
Caballero-Huertas M, Salazar-Moscoso M, Ribas L. Sex is a Crucial Factor in the Immune Response: An Ichthyological Perspective. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2024:1-21. [DOI: 10.1080/23308249.2024.2390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Marta Caballero-Huertas
- CIRAD, UMR ISEM, Montpellier, France
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marcela Salazar-Moscoso
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Laia Ribas
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Huang H, Liu Y, Wang Q, Dong C, Dong L, Zhang J, Yang Y, Hao X, Li W, Rosa IF, Doretto LB, Cao X, Shao C. Molecular and Physiological Effects of 17α-methyltestosterone on Sex Differentiation of Black Rockfish, Sebastes schlegelii. Genes (Basel) 2024; 15:605. [PMID: 38790234 PMCID: PMC11120931 DOI: 10.3390/genes15050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
It is widely known that all-female fish production holds economic value for aquaculture. Sebastes schlegelii, a preeminent economic species, exhibits a sex dimorphism, with females surpassing males in growth. In this regard, achieving all-female black rockfish production could significantly enhance breeding profitability. In this study, we utilized the widely used male sex-regulating hormone, 17α-methyltestosterone (MT) at three different concentrations (20, 40, and 60 ppm), to produce pseudomales of S. schlegelii for subsequent all-female offspring breeding. Long-term MT administration severely inhibits the growth of S. schlegelii, while short term had no significant impact. Histological analysis confirmed sex reversal at all MT concentrations; however, both medium and higher MT concentrations impaired testis development. MT also influenced sex steroid hormone levels in pseudomales, suppressing E2 while increasing T and 11-KT levels. In addition, a transcriptome analysis revealed that MT down-regulated ovarian-related genes (cyp19a1a and foxl2) while up-regulating male-related genes (amh) in pseudomales. Furthermore, MT modulated the TGF-β signaling and steroid hormone biosynthesis pathways, indicating its crucial role in S. schlegelii sex differentiation. Therefore, the current study provides a method for achieving sexual reversal using MT in S. schlegelii and offers an initial insight into the underlying mechanism of sexual reversal in this species.
Collapse
Affiliation(s)
- Haijun Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Caichao Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Le Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Jingjing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xiancai Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Weijing Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Ivana F. Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil;
| | - Lucas B. Doretto
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xuebin Cao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
van Gelderen TA, Ribas L. miR-210 promotes immune- and suppresses oocyte meiosis-related genes in the zebrafish ovarian cells. Genomics 2024; 116:110820. [PMID: 38437972 DOI: 10.1016/j.ygeno.2024.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
microRNA-210 (miRNA), a well-documented miRNA, has been implicated in a myriad of biological processes, including responses to hypoxia, angiogenesis, cell proliferation, and male infertility in humans. However, a comprehensive understanding of its functions in fish requires further investigation. This study pursued to elucidate the downstream effect of dre-miR-210-5p on primary ovarian cell culture in zebrafish (Danio rerio), an animal model. A protocol was settled down by incubations with either an miR-210 mimic or a scrambled miRNA in the isolated ovaries. RNA-sequencing analysis identified ∼6000 differentially expressed target genes revealing that downregulated genes were associated with reproduction-related pathways while immune-related pathways displayed an upregulated pattern. To identify molecular markers, predicted target genes were classified into reproduction and immune cell types. These findings underscore the existence of a profound interplay between the reproductive and immune systems, with miR-210 emerging as a pivotal player in orchestrating transcriptomic alterations within fish ovaries.
Collapse
Affiliation(s)
- Tosca A van Gelderen
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain; PhD program in Genetics, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain.
| |
Collapse
|
4
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
5
|
Cai Z, Liu S, Wang W, Wang R, Miao X, Song P, Shan B, Wang L, Li Y, Lin L. Comparative transcriptome sequencing analysis of female and male Decapterus macrosoma. PeerJ 2022; 10:e14342. [PMID: 36389430 PMCID: PMC9651050 DOI: 10.7717/peerj.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Sexual growth dimorphism is a common phenomenon in teleost fish and has led to many reproductive strategies. Growth- and sex-related gene research in teleost fish would broaden our understanding of the process. In this study, transcriptome sequencing of shortfin scad Decapterus macrosoma was performed for the first time, and a high-quality reference transcriptome was constructed. After identification and assembly, a total of 58,475 nonredundant unigenes were obtained with an N50 length of 2,266 bp, and 28,174 unigenes were successfully annotated with multiple public databases. BUSCO analysis determined a level of 92.9% completeness for the assembled transcriptome. Gene expression analysis revealed 2,345 differentially expressed genes (DEGs) in the female and male D. macrosoma, 1,150 of which were female-biased DEGs, and 1,195 unigenes were male-biased DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were mainly involved in biological processes including protein synthesis, growth, rhythmic processes, immune defense, and vitellogenesis. Then, we identified many growth- and sex-related genes, including Igf, Fabps, EF-hand family genes, Zp3, Zp4 and Vg. In addition, a total of 19,573 simple sequence repeats (SSRs) were screened and identified from the transcriptome sequences. The results of this study can provide valuable information on growth- and sex-related genes and facilitate further exploration of the molecular mechanism of sexual growth dimorphism.
Collapse
Affiliation(s)
- Zizi Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shigang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rui Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xing Miao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Puqing Song
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Longshan Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
6
|
van Gelderen TA, Montfort J, Álvarez-Dios JA, Thermes V, Piferrer F, Bobe J, Ribas L. Deciphering sex-specific miRNAs as heat-recorders in zebrafish. Sci Rep 2022; 12:18722. [PMID: 36333360 PMCID: PMC9636255 DOI: 10.1038/s41598-022-21864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
In the last decade, a plethora of microRNAs (miRNAs) has been reported in a wide variety of physiological processes, including reproduction, in many aquatic organisms. However, miRNAome alterations occurred by environmental cues due to water temperature increment have not yet been elucidated. With the aim to identify epigenetic regulations mediated by miRNAs in the gonads in a climate change scenario, the animal model zebrafish (Danio rerio) were subjected to high temperatures during sex differentiation, a treatment that results in male-skewed sex ratios in the adulthood. Once the fish reached adulthood, gonads were sequenced by high-throughput technologies and a total of 23 and 1 differentially expressed miRNAs in ovaries and testes, respectively, were identified two months after the heat treatment. Most of these heat-recorder miRNAs were involved in human sex-related cancer and about 400 predicted-target genes were obtained, some with reproduction-related functions. Their synteny in the zebrafish genome was, for more than half of the predicted target genes, in the chromosomes 7, 2, 4, 3 and 11 in the ovaries, chromosome 4 being the place where the sex-associated-region (sar) is localized in wild zebrafish. Further, spatial localization in the gonads of two selected heat-recorder miRNAs (miR-122-5p and miR-146-5p) showed exclusive expression in the ovarian germ cells. The present study expands the catalog of sex-specific miRNAs and deciphers, for the first time, thermosensitive miRNAs in the zebrafish gonads that might be used as potential epimarkers to predict environmental past events.
Collapse
Affiliation(s)
- Tosca A van Gelderen
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003, Barcelona, Spain
- PhD Program in Genetics, Autonomous University of Barcelona, 08193, Bellaterra, Spain
| | - Jérôme Montfort
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15781, Santiago de Compostela, Spain
| | - Violette Thermes
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003, Barcelona, Spain
| | - Julien Bobe
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003, Barcelona, Spain.
| |
Collapse
|
7
|
Sánchez-Baizán N, Ribas L, Piferrer F. Improved biomarker discovery through a plot twist in transcriptomic data analysis. BMC Biol 2022; 20:208. [PMID: 36153614 PMCID: PMC9509653 DOI: 10.1186/s12915-022-01398-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptomic analysis is crucial for understanding the functional elements of the genome, with the classic method consisting of screening transcriptomics datasets for differentially expressed genes (DEGs). Additionally, since 2005, weighted gene co-expression network analysis (WGCNA) has emerged as a powerful method to explore relationships between genes. However, an approach combining both methods, i.e., filtering the transcriptome dataset by DEGs or other criteria, followed by WGCNA (DEGs + WGCNA), has become common. This is of concern because such approach can affect the resulting underlying architecture of the network under analysis and lead to wrong conclusions. Here, we explore a plot twist to transcriptome data analysis: applying WGCNA to exploit entire datasets without affecting the topology of the network, followed with the strength and relative simplicity of DEG analysis (WGCNA + DEGs). We tested WGCNA + DEGs against DEGs + WGCNA to publicly available transcriptomics data in one of the most transcriptomically complex tissues and delicate processes: vertebrate gonads undergoing sex differentiation. We further validate the general applicability of our approach through analysis of datasets from three distinct model systems: European sea bass, mouse, and human. Results In all cases, WGCNA + DEGs clearly outperformed DEGs + WGCNA. First, the network model fit and node connectivity measures and other network statistics improved. The gene lists filtered by each method were different, the number of modules associated with the trait of interest and key genes retained increased, and GO terms of biological processes provided a more nuanced representation of the biological question under consideration. Lastly, WGCNA + DEGs facilitated biomarker discovery. Conclusions We propose that building a co-expression network from an entire dataset, and only thereafter filtering by DEGs, should be the method to use in transcriptomic studies, regardless of biological system, species, or question being considered. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01398-w.
Collapse
|
8
|
Brown MS, Evans BS, Afonso LOB. Developmental changes in gene expression and gonad morphology during sex differentiation in Atlantic salmon (Salmo salar). Gene 2022; 823:146393. [PMID: 35248662 DOI: 10.1016/j.gene.2022.146393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
The Atlantic salmon (Salmo salar) is a globally important species for its value in fisheries and aquaculture, and as a research model. In order to characterise aspects of sex differentiation at the morphological and mRNA level in this species, the present study examined developmental changes in gonad morphology and gene expression in males and females between 0 and 79 days post hatch (dph). Morphological differentiation of the ovary (indicated by the formation of germ cell cysts) became apparent from 52 dph. By 79 dph, ovarian phenotype was evident in 100% of genotypic females. Testes remained in an undifferentiated-like state throughout the experiment, containing germ cells dispersed singularly within the gonadal region distal to the mesentery. There were no significant sex-related differences in gonad cross-section size, germ cell number or germ cell diameter during the experiment. The expression of genes involved in teleost sex differentiation (anti-müllerian hormone (amh), cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a), forkhead box L2a (foxl2a), gonadal soma-derived factor (gsdf), r-spondin 1 (rspo1), sexually dimorphic on the Y chromosome (sdY)), retinoic acid-signalling (aldehyde dehydrogenase 1a2 (aldh1a2), cytochrome P450 family 26 a1 (cyp26a1), cytochrome P450 family 26 b1 (cyp26b1), t-box transcription factor 1 (tbx1a)) and neuroestrogen production (cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b)) was investigated. Significant sex-related differences were observed only for the expression of amh, cyp19a1a, gsdf and sdY. In males, amh, gsdf and sdY were upregulated from 34, 59 and 44 dph respectively. In females, cyp19a1a was upregulated from 66 dph. Independent of sex, foxl2a expression was highest at 0 dph and had reduced ∼ 47-fold by the time of morphological sex differentiation at 52 dph. This study provides new insights into the timing and sequence of some physiological changes associated with sex differentiation in Atlantic salmon. These findings also reveal that some aspects of the mRNA sex differentiation pathways in Atlantic salmon are unique compared to other teleost fishes, including other salmonids.
Collapse
Affiliation(s)
- Morgan S Brown
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Warrnambool Campus, Warrnambool, Victoria 3280, Australia.
| | - Brad S Evans
- Tassal Operations, Hobart, Tasmania 7000, Australia.
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| |
Collapse
|
9
|
Zhou L, Yang R, Tian H, Qin X, Ye C, Shi X, Xia C, Cai T, Xie Y, Jia Y, Hu G. Sexual dimorphism in Odontobutis sinensis brain-pituitary-gonad axis and liver highlighted by histological and transcriptomic approach. Gene 2022; 819:146264. [PMID: 35114283 DOI: 10.1016/j.gene.2022.146264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
Abstract
In this study, sexual dimorphism in Chinese dark sleeper (Odontobutis sinensis) brain-pituitary-gonad axis and liver was highlighted by histological and transcriptomic approach. The results showed that there were two significant differences between males and females. Firstly, males grew larger and faster than females. Transcriptomic analysis and qPCR validation indicated that two key growth genes, insulin-like growth factor (igf) and 25-hydroxyvitamin D-1 alpha hydroxylase (cyp27b), were more highly detected in male liver than that in female liver. Secondly, histological analysis displayed that the liver in males showed an obvious ivory fatty phenomenon with more fat vacuoles and lipid droplet aggregation compared to that in females. Transcriptomic analysis indicated that the transcript level of vitellogenin (vtg) in male liver were significantly lower than that in female liver. After 17β-estradiol (E2) treatment of primary cultured hepatocytes, the vtg mRNA expression was induced significantly, while dihydrotestosterone (DHT) treatment had little effect on it. Generally, this study will provide some ideas for further exploring the mechanism of sexual dimorphism in Odontobutis sinensis.
Collapse
Affiliation(s)
- Lingling Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruibin Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Tian
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Hubei Engineering Research Center of Hydroecology Protection and Restoration, Wuhan 430079, China
| | - Xiangfeng Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Ye
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuetao Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanhui Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyi Cai
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunyi Xie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Mustapha UF, Assan D, Huang YQ, Li GL, Jiang DN. High Polymorphism in the Dmrt2a Gene Is Incompletely Sex-Linked in Spotted Scat, Scatophagus argus. Animals (Basel) 2022; 12:ani12050613. [PMID: 35268179 PMCID: PMC8909180 DOI: 10.3390/ani12050613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Unlike mammals and birds, many fishes have young sex chromosomes, providing excellent models to study sex chromosome differentiation at early stages. Previous studies showed that spotted scat possesses an XX-XY sex determination system. The X has a complete Dmrt3 copy (termed normal) and a truncated copy of Dmrt1 (called Dmrt1b), while the Y has the opposite (normal Dmrt1, which is male-specific, and a truncated Dmrt3 called Dmrt3△-Y). Dmrt1 is the candidate sex determination gene, while the differentiation of other sex-linked genes remains unknown. The spotted scat has proven to be a good model to study the evolution of sex chromosomes in vertebrates. Herein, we sequenced a neighbor gene of this family, Dmrt2, positioned farther from Dmrt1 and closer to Dmrt3 in the spotted scat, and analyzed its sequence variation and expression profiles. The physical locations of the three genes span across an estimated size of >40 kb. The open reading frames of Dmrt2a and its paralog Dmrt2b are 1578 bp and 1311 bp, encoding peptides of 525 and 436 amino acid residues, respectively. Dmrt2a is positioned close to Dmrt3 but farther from Dmrt1 on the same chromosome, while Dmrt2b is not. Sequence analysis revealed several mutations; insertions, and deletions (indels) on Dmrt2a non-coding regions and single-nucleotide polymorphisms (SNPs) on the Dmrt2a transcript. These indels and SNPs are sex-linked and showed high male heterogeneity but do not affect gene translation. The markers designed to span the mutation sites tested on four different populations showed varied concordance with the genetic sexes. Dmrt2a is transcribed solely in the gonads and gills, while Dmrt2b exists in the gonads, hypothalamus, gills, heart, and spleen. The Dmrt2a and Dmrt2b transcripts are profoundly expressed in the male gonads. Analyses of the transcriptome data from five other fish species (Hainan medaka (Oryzias curvinotus), silver sillago (Sillago sihama), Nile tilapia (Oreochromis niloticus), Hong Kong catfish (Clarias fuscus), and spot-fin porcupine fish (Diodon hystrix)) revealed testes-biased expression of Dmrt1 in all, similar to spotted scat. Additionally, the expression of Dmrt2a is higher in the testes than the ovaries in spotted scat and Hainan medaka. The Dmrt2a transcript was not altered in the coding regions as found in Dmrt1 and Dmrt3 in spotted scat. This could be due to the functional importance of Dmrt2a in development. Another possibility is that because Dmrt2a is positioned farther from Dmrt1 and the chromosome is still young, meaning it is only a matter of time before it differentiates. This study undeniably will aid in understanding the functional divergence of the sex-linked genes in fish.
Collapse
|
11
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
12
|
Li B, Tian Y, Wen H, Qi X, Wang L, Zhang J, Li J, Dong X, Zhang K, Li Y. Systematic identification and expression analysis of the Sox gene family in spotted sea bass (Lateolabrax maculatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100817. [PMID: 33677158 DOI: 10.1016/j.cbd.2021.100817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
The Sox gene family encodes a set of transcription factors characterized by a conserved Sry-related high mobility group (HMG)-box domain, which performs a series of essential biological functions in diverse tissues and developmental processes. In this study, the Sox gene family was systematically characterized in spotted sea bass (Lateolabrax maculatus). A total of 26 Sox genes were identified and classified into eight subfamilies, namely, SoxB1, SoxB2, SoxC, SoxD, SoxE, SoxF, SoxH and SoxK. The phylogenetic relationship, exon-intron and domain structure analyses supported their annotation and classification. Comparison of gene copy numbers and chromosome locations among different species indicated that except tandem duplicated paralogs of Sox17/Sox32, duplicated Sox genes in spotted sea bass were generated from teleost-specific whole genome duplication during evolution. In addition, qRT-PCR was performed to detect the expression profiles of Sox genes during development and adulthood. The results showed that the expression of 16 out of 26 Sox genes was induced dramatically at different starting points after the multicellular stage, which is consistent with embryogenesis. At the early stage of sex differentiation, 9 Sox genes exhibited sexually dimorphic expression patterns, among which Sox3, Sox19 and Sox6b showed the most significant ovary-biased expression. Moreover, the distinct expression pattern of Sox genes was observed in different adult tissues. Our results provide a fundamental resource for further investigating the functions of Sox genes in embryonic processes, sex determination and differentiation as well as controlling the homeostasis of adult tissues in spotted sea bass.
Collapse
Affiliation(s)
- Bingyu Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Lingyu Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jingru Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jinku Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Ximeng Dong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| |
Collapse
|
13
|
Shan B, Liu Y, Yang C, Zhao Y, Sun D. Comparative transcriptomic analysis for identification of candidate sex-related genes and pathways in Crimson seabream (Parargyrops edita). Sci Rep 2021; 11:1077. [PMID: 33441831 PMCID: PMC7806868 DOI: 10.1038/s41598-020-80282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Teleost fishes display the largest array of sex-determining systems among animals, resulting in various reproductive strategies. Research on sex-related genes in teleosts will broaden our understanding of the process, and provide important insight into the plasticity of the sex determination process in vertebrates in general. Crimson seabream (Parargyrops edita Tanaka, 1916) is one of the most valuable and abundant fish resources throughout Asia. However, little genomic information on P. edita is available. In the present study, the transcriptomes of male and female P. edita were sequenced with RNA-seq technology. A total of 388,683,472 reads were generated from the libraries. After filtering and assembling, a total of 79,775 non redundant unigenes were obtained with an N50 of 2,921 bp. The unigenes were annotated with multiple public databases, including NT (53,556, 67.13%), NR (54,092, 67.81%), Swiss-Prot (45,265, 56.74%), KOG (41,274, 51.74%), KEGG (46,302, 58.04%), and GO (11,056, 13.86%) databases. Comparison of the unigenes of different sexes of P. edita revealed that 11,676 unigenes (9,335 in females, 2,341 in males) were differentially expressed between males and females. Of these, 5,463 were specifically expressed in females, and 1,134 were specifically expressed in males. In addition, the expression levels of ten unigenes were confirmed to validate the transcriptomic data by qRT-PCR. Moreover, 34,473 simple sequence repeats (SSRs) were identified in SSR-containing sequences, and 50 loci were randomly selected for primer development. Of these, 36 loci were successfully amplified, and 19 loci were polymorphic. Finally, our comparative analysis identified many sex-related genes (zps, amh, gsdf, sox4, cyp19a, etc.) and pathways (MAPK signaling pathway, p53 signaling pathway, etc.) of P. edita. This informative transcriptomic analysis provides valuable data to increase genomic resources of P. edita. The results will be useful for clarifying the molecular mechanism of sex determination and for future functional analyses of sex-associated genes.
Collapse
Affiliation(s)
- Binbin Shan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Yan Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Changping Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Yu Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Dianrong Sun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China.
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China.
| |
Collapse
|
14
|
Moraleda-Prados J, Caballero-Huertas M, Valdivieso A, Joly S, Ji J, Roher N, Ribas L. Epigenetic differences in the innate response after immune stimulation during zebrafish sex differentiation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103848. [PMID: 32888969 DOI: 10.1016/j.dci.2020.103848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Infections are able to trigger epigenetic modifications; however, epigenetic-mediating infections in the immune system in fish is currently unavailable. Within this purpose, zebrafish were immune-stimulated with three lipopolysaccharides (LPS) during sex differentiation. Methylation patterns of three immune genes were studied by a candidate gene approach together with gene expression analysis, and in adulthood, sex ratios were determined. It was shown that the entrance of LPS was through the gills and accumulated in the pronephros. Significant hypomethylation levels of CASP9 and a significant CpG site for IL1β after Pseudomonas aeruginosa LPS exposure were found. No methylation difference was observed for TNFα. Gene expression and correlation data differed among studied genes. Sex ratios showed a feminization in dose and LPS strain-dependent manner. Here, it is provided epigenetic regulatory mechanisms derived by innate response and the first evidence of possible epigenetic interactions between the immune and reproductive systems.
Collapse
Affiliation(s)
- J Moraleda-Prados
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - M Caballero-Huertas
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain; Institute of Aquatic Ecology (IEA), Department of Environmental Sciences. Faculty of Sciences, University of Girona (UdG), Campus Montilivi, 17003 Girona, Spain
| | - A Valdivieso
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - S Joly
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - J Ji
- Institut de Biotecnologia i Biomedicina (IBB) and Dep. de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain; Department of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - N Roher
- Institut de Biotecnologia i Biomedicina (IBB) and Dep. de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - L Ribas
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
15
|
Hayman ES, Fairgrieve WT, Luckenbach JA. Molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with XX/XY sex determination. Gene 2020; 764:145093. [PMID: 32866588 DOI: 10.1016/j.gene.2020.145093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Phenotypic sex of an organism is determined by molecular changes in the gonads, so-called molecular sex differentiation, which should precede the rise of cellular or anatomical sex-distinguishing features. This study characterized molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with established XX/XY genotypic sex determination. Next generation sequencing was conducted on sablefish ovarian and testicular mRNAs to obtain sequences for transcripts associated with vertebrate sex determination and differentiation and early reproductive development. Gene-specific PCRs were developed to determine the distribution and ontogenetic gonadal expression of transcription, growth, steroidogenic and germline factors, as well as gonadotropin and steroid receptors. Molecular changes associated with sex differentiation were first apparent in both XY- and XX-genotype sablefish at ~ 60 mm in body length and prior to histological signs of sex differentiation. The earliest and most robust markers of testicular differentiation were gsdf, amh, dmrt1, cyp11b, star, sox9a, and fshr. Markedly elevated mRNA levels of several steroidogenesis-related genes and ar2 in differentiating testes suggested that androgens play a role in sablefish testicular differentiation. The earliest markers of ovarian differentiation were cyp19a1a, lhcgr, foxl2, nr0b1, and igf3. Other transcripts such as figla, zp3, and pou5f3 were expressed predominantly in XX-genotype fish and significantly increased with the first appearance and subsequent development of primary oocytes. This study provides valuable insight to the developmental sequence of events associated with gonadal sex differentiation in marine teleosts with XX/XY sex determination. It also implicates particular genes in processes of male and female development and establishes robust molecular markers for phenotypic sex in sablefish, useful for ongoing work related to sex control and reproductive sterilization.
Collapse
Affiliation(s)
- Edward S Hayman
- Ocean Associates Inc., Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - William T Fairgrieve
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
16
|
Yang Y, Wu L, Wu X, Li B, Huang W, Weng Z, Lin Z, Song L, Guo Y, Meng Z, Liu X, Xia J. Identification of Candidate Growth-Related SNPs and Genes Using GWAS in Brown-Marbled Grouper (Epinephelus fuscoguttatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:153-166. [PMID: 31927644 DOI: 10.1007/s10126-019-09940-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Brown-marbled grouper, Epinephelus fuscoguttatus, is not only an important commercial fish species, but also an important crossbreeding parent in grouper industry. Improvement of growth traits of this species contributes to the development of grouper breeding. Currently, the development of molecular marker associated with growth of brown-marbled grouper is rare. Thus, we performed the first genome-wide association study (GWAS) for five growth traits in 172 brown-marbled groupers with 43,688 SNPs detected by ddRAD-seq. We identified a total of 5 significant and 18 suggestive QTLs located in multiple chromosomes associated with growth traits. In the 20 kb window of the significant SNPs and suggestive SNPs, 5 and 14 potential candidate genes affecting growth were detected, respectively. Five potential candidate genes near the significantly associated SNPs were selected for expression analysis. Among of which, bmp2k, wasf1, and acyp2 involved in bone development, maintenance of mitochondrion structure, and metabolism were differentially expressed. Interestingly, the SNP 23:29601315 located in the intron of bmp2k was significantly associated with body weight, body length, body height, and body thickness and suggestively associated with total length. We verified the locus using another new group including 123 individuals. The results showed that individuals with CC genotype have better growth traits comparing other individuals. Our findings not only contribute to understanding the molecular mechanism of growth regulation, but also promote the advance of marker-assisted selection in brown-marbled grouper.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Lina Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Bijun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Wenhua Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zhuoying Weng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zixuan Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Leling Song
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China.
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, People's Republic of China.
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China.
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, People's Republic of China.
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| |
Collapse
|
17
|
Caballero-Huertas M, Moraleda-Prados J, Joly S, Ribas L. Immune genes, IL1β and Casp9, show sexual dimorphic methylation patterns in zebrafish gonads. FISH & SHELLFISH IMMUNOLOGY 2020; 97:648-655. [PMID: 31830572 DOI: 10.1016/j.fsi.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
There is crosstalk between the immune and reproductive systems in which sexual dimorphism is a common pattern in vertebrates. In recent years, epigenetics has emerged as a way to study the molecular mechanisms involved in gonadal development, those responsible for integrating environmental information that contribute to assigning a specific sexual phenotype (either an ovary or a testis). The knowledge of epigenetic mechanisms in certain molecular processes allows the development of epigenetic markers. In fish gonads, the existence of reproduction-immune system interactions is known, although the epigenetic mechanisms involved are far from clear. Here, we used the zebrafish (Danio rerio) as a model to study the DNA methylation patterns in gonads of two well-known innate immune genes: IL1β and Casp9. DNA methylation levels were studied by a candidate gene approach at single nucleotide resolution and gene expression analyses were also carried out. Results showed that there was clear sexual dimorphism in the DNA methylation levels of the two immune genes studied, being significantly higher in the testes when compared to the ovaries. In summary, and although further research is needed, this paper presents sexual dimorphic methylation patterns of two immune-related genes, thus sex-biased differences in methylation profiles should considered when analyzing immune responses in fish. Data showed here can help to develop epimarkers with forthcoming applications in livestock and fish farming production, for example, in immune fish diseases or sexual control programs as epigenetic molecular tools to predict environmental pressure in the gonads.
Collapse
Affiliation(s)
- M Caballero-Huertas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - J Moraleda-Prados
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - S Joly
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - L Ribas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Yan YL, Batzel P, Titus T, Sydes J, Desvignes T, BreMiller R, Draper B, Postlethwait JH. A Hormone That Lost Its Receptor: Anti-Müllerian Hormone (AMH) in Zebrafish Gonad Development and Sex Determination. Genetics 2019; 213:529-553. [PMID: 31399485 PMCID: PMC6781894 DOI: 10.1534/genetics.119.302365] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fetal mammalian testes secrete Anti-Müllerian hormone (Amh), which inhibits female reproductive tract (Müllerian duct) development. Amh also derives from mature mammalian ovarian follicles, which marks oocyte reserve and characterizes polycystic ovarian syndrome. Zebrafish (Danio rerio) lacks Müllerian ducts and the Amh receptor gene amhr2 but, curiously, retains amh To discover the roles of Amh in the absence of Müllerian ducts and the ancestral receptor gene, we made amh null alleles in zebrafish. Results showed that normal amh prevents female-biased sex ratios. Adult male amh mutants had enormous testes, half of which contained immature oocytes, demonstrating that Amh regulates male germ cell accumulation and inhibits oocyte development or survival. Mutant males formed sperm ducts and some produced a few offspring. Young female mutants laid a few fertile eggs, so they also had functional sex ducts. Older amh mutants accumulated nonvitellogenic follicles in exceedingly large but sterile ovaries, showing that Amh helps control ovarian follicle maturation and proliferation. RNA-sequencing data partitioned juveniles at 21 days postfertilization (dpf) into two groups that each contained mutant and wild-type fish. Group21-1 upregulated ovary genes compared to Group21-2, which were likely developing as males. By 35 dpf, transcriptomes distinguished males from females and, within each sex, mutants from wild types. In adult mutants, ovaries greatly underexpressed granulosa and theca genes, and testes underexpressed Leydig cell genes. These results show that ancestral Amh functions included development of the gonadal soma in ovaries and testes and regulation of gamete proliferation and maturation. A major gap in our understanding is the identity of the gene encoding a zebrafish Amh receptor; we show here that the loss of amhr2 is associated with the breakpoint of a chromosome rearrangement shared among cyprinid fishes.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Ruth BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | | |
Collapse
|
19
|
Piferrer F, Anastasiadi D, Valdivieso A, Sánchez-Baizán N, Moraleda-Prados J, Ribas L. The Model of the Conserved Epigenetic Regulation of Sex. Front Genet 2019; 10:857. [PMID: 31616469 PMCID: PMC6775248 DOI: 10.3389/fgene.2019.00857] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Epigenetics integrates genomic and environmental information to produce a given phenotype. Here, the model of Conserved Epigenetic Regulation of Sex (CERS) is discussed. This model is based on our knowledge on genes involved in sexual development and on epigenetic regulation of gene expression activation and silencing. This model was recently postulated to be applied to the sexual development of fish, and it states that epigenetic and gene expression patterns are more associated with the development of a particular gonadal phenotype, e.g., testis differentiation, rather than with the intrinsic or extrinsic causes that lead to the development of this phenotype. This requires the existence of genes with different epigenetic modifications, for example, changes in DNA methylation levels associated with the development of a particular sex. Focusing on DNA methylation, the identification of CpGs, the methylation of which is linked to sex, constitutes the basis for the identification of Essential Epigenetic Marks (EEM). EEMs are defined as the number and identity of informative epigenetic marks that are strictly necessary, albeit perhaps not sufficient, to bring about a specific, measurable, phenotype of interest. Here, we provide a summary of the genes where DNA methylation has been investigated so far, focusing on fish. We found that cyp19a1a and dmrt1, two key genes for ovary and testis development, respectively, consistently show an inverse relationship between their DNA methylation and expression levels, thus following CERS predictions. However, in foxl2a, a pro-female gene, and amh, a pro-male gene, such relationship is not clear. The available data of other genes related to sexual development such as sox9, gsdf, and amhr2 are also discussed. Next, we discuss the use of CERS to make testable predictions of how sex is epigenetically regulated and to better understand sexual development, as well as the use of EEMs as tools for the diagnosis and prognosis of sex. We argue that CERS can aid in focusing research on the epigenetic regulation of sexual development not only in fish but also in vertebrates in general, particularly in reptiles with temperature sex-determination, and can be the basis for possible practical applications including sex control in aquaculture and also in conservation biology.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Ribas L, Crespo B, Sánchez-Baizán N, Xavier D, Kuhl H, Rodríguez JM, Díaz N, Boltañá S, MacKenzie S, Morán F, Zanuy S, Gómez A, Piferrer F. Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:359-373. [PMID: 30919121 DOI: 10.1007/s10126-019-09886-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The European sea bass is one of the most important cultured fish in Europe and has a marked sexual growth dimorphism in favor of females. It is a gonochoristic species with polygenic sex determination, where a combination between still undifferentiated genetic factors and environmental temperature determines sex ratios. The molecular mechanisms responsible for gonadal sex differentiation are still unknown. Here, we sampled fish during the gonadal developmental period (110 to 350 days post fertilization, dpf), and performed a comprehensive transcriptomic study by using a species-specific microarray. This analysis uncovered sex-specific gonadal transcriptomic profiles at each stage of development, identifying larger number of differentially expressed genes in ovaries when compared to testis. The expression patterns of 54 reproduction-related genes were analyzed. We found that hsd17β10 is a reliable marker of early ovarian differentiation. Further, three genes, pdgfb, snx1, and nfy, not previously related to fish sex differentiation, were tightly associated with testis development in the sea bass. Regarding signaling pathways, lysine degradation, bladder cancer, and NOD-like receptor signaling were enriched for ovarian development while eight pathways including basal transcription factors and steroid biosynthesis were enriched for testis development. Analysis of the transcription factor abundance showed an earlier increase in females than in males. Our results show that, although many players in the sex differentiation pathways are conserved among species, there are peculiarities in gene expression worth exploring. The genes identified in this study illustrate the diversity of players involved in fish sex differentiation and can become potential biomarkers for the management of sex ratios in the European sea bass and perhaps other cultured species.
Collapse
Affiliation(s)
- L Ribas
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - B Crespo
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
- UCL GOS Institute of Child Health, University College London, London, UK
| | - N Sánchez-Baizán
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - D Xavier
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - H Kuhl
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Ecophysiology and Aquaculture, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - J M Rodríguez
- Spanish National Bioinformatics Institute, Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - N Díaz
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Boltañá
- Autonomous University of Barcelona, Barcelona, Spain
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - S MacKenzie
- Autonomous University of Barcelona, Barcelona, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - F Morán
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - S Zanuy
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
| | - A Gómez
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain.
| | - F Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
21
|
Shu Y, Zhang H, Cai Q, Tang D, Wang G, Liu T, Lv B, Wu H. Integrated mRNA and miRNA expression profile analyses reveal the potential roles of sex-biased miRNA-mRNA pairs in gonad tissues of the Chinese concave-eared torrent frog (Odorrana tormota). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:69-80. [PMID: 30964604 DOI: 10.1002/jez.b.22851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
The Chinese concave-eared torrent frog (Odorrana tormota) is typically sexually dimorphic. Females are significantly less common than males in the wild. Until now, the molecular mechanisms of reproduction and sex differentiation of frogs remain unclear. Here, we integrated mRNA and microRNA (miRNA) expression profiles to reveal the molecular mechanisms of reproduction and sex differentiation in O. tormota. We identified 234 differentially expressed miRNAs (DEMs) and 18,551 differentially expressed transcripts. Of these, 12,053 mRNAs and 64 miRNAs were upregulated in testes, and 6,498 mRNAs and 170 miRNAs were upregulated in ovaries. Integrated analysis of the miRNA and mRNA expression profiles predicted 75,602 potential miRNA-mRNA interaction sites, with 42,065 negative miRNA-mRNA interactions. We found 36 differentially expressed genes (DEGs) related to reproduction and sex differentiation, of which 15 DEGs formed 92 negative miRNA-mRNA interactions with 34 known DEMs. Thus, miRNAs may play other important roles in O. tormota. Furthermore, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed reproductive-related processes, such as the gonadotropinreleasing hormone signaling pathway and ovarian steroidogenesis. Based on functional annotation and the literature, the retinoic acid signaling pathway, the SOX9-AMH pathway, and the process of spermatogenesis may be involved in the molecular mechanisms of reproduction and sex differentiation in O. tormota, and may be regulated by miRNAs. The miRNA-mRNA pairs described may provide further understanding of the regulatory mechanisms associated with reproduction and sex differentiation, and the molecular mechanism of reproduction in O. tormota.
Collapse
Affiliation(s)
- Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Huijuan Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qijia Cai
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dong Tang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Gang Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ting Liu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Bihua Lv
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
22
|
Transcriptome Dynamics During Turbot Spermatogenesis Predicting the Potential Key Genes Regulating Male Germ Cell Proliferation and Maturation. Sci Rep 2018; 8:15825. [PMID: 30361543 PMCID: PMC6202422 DOI: 10.1038/s41598-018-34149-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/23/2018] [Indexed: 01/19/2023] Open
Abstract
Spermatogenesis is a dynamic developmental process in which spermatogonial stem cells proliferate, differentiate and mature into functional spermatozoa. These processes require an accurate gene regulation network. Here, we investigated the dynamic changes that occur during spermatogenesis through a combination of histological and transcriptome analyses of different developmental stages of the testis. We constructed 18 testis transcriptome libraries, and the average length, N50, and GC content of the unigenes were 1,795 bp; 3,240 bp and 49.25%, respectively. Differentially expressed genes (DEGs) that were related to germ cell proliferation and maturation, such as NANOS3, RARs, KIFs, steroid hormone synthesis-related genes and receptor genes, were identified between pairs of testis at different developmental stages. Gene ontology annotation and pathway analyses were conducted on DEGs with specific expression patterns involved in the regulation of spermatogenesis. Nine important pathways such as steroid hormone biosynthesis related to spermatogenesis were identified. A total of 21 modules that ranged from 49 to 7,448 genes were designed by a weighted gene co-expression network analysis. Furthermore, a total of 83 candidate miRNA were identified by computational methods. Our study provides the first transcriptomic evidence for differences in gene expression between different developmental stages of spermatogenesis in turbot (Scophthalmus maximus).
Collapse
|
23
|
Long-term affected flat oyster (Ostrea edulis) haemocytes show differential gene expression profiles from naïve oysters in response to Bonamia ostreae. Genomics 2018; 110:390-398. [PMID: 29678683 DOI: 10.1016/j.ygeno.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
European flat oyster (Ostrea edulis) production has suffered a severe decline due to bonamiosis. The responsible parasite enters in oyster haemocytes, causing an acute inflammatory response frequently leading to death. We used an immune-enriched oligo-microarray to understand the haemocyte response to Bonamia ostreae by comparing expression profiles between naïve (NS) and long-term affected (AS) populations along a time series (1 d, 30 d, 90 d). AS showed a much higher response just after challenge, which might be indicative of selection for resistance. No regulated genes were detected at 30 d in both populations while a notable reactivation was observed at 90 d, suggesting parasite latency during infection. Genes related to extracellular matrix and protease inhibitors, up-regulated in AS, and those related to histones, down-regulated in NS, might play an important role along the infection. Twenty-four candidate genes related to resistance should be further validated for selection programs aimed to control bonamiosis.
Collapse
|
24
|
Taboada X, Rey M, Bouza C, Viñas A. Cytogenomic analysis of several repetitive DNA elements in turbot (Scophthalmus maximus). Gene 2018; 644:4-12. [PMID: 29246535 DOI: 10.1016/j.gene.2017.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
Repetitive DNA plays a fundamental role in the organization, size and evolution of eukaryotic genomes. The sequencing of the turbot revealed a small and compact genome, as in all flatfish studied to date. The assembly of repetitive regions is still incomplete because it is difficult to correctly identify their position, number and array. The combination of classical cytogenetic techniques along with high quality sequencing is essential to increase the knowledge of the structure and composition of these sequences and, thus, of the structure and function of the whole genome. In this work, the in silico analysis of H1 histone, 5S rDNA, telomeric and Rex repetitive sequences, was compared to their chromosomal mapping by fluorescent in situ hybridization (FISH), providing a more comprehensive picture of these elements in the turbot genome. FISH assays confirmed the location of H1 in LG8; 5S rDNA in LG4 and LG6; telomeric sequences at the end of all chromosomes whereas Rex elements were dispersed along most chromosomes. The discrepancies found between both approaches could be related to the sequencing methodology applied in this species and also to the resolution limitations of the FISH technique. Turbot cytogenomic analyses have proven to add new chromosomal landmarks in the karyotype of this species, representing a powerful tool to investigate targeted genomic sequences or regions in the genetic and physical maps of this species.
Collapse
Affiliation(s)
- Xoana Taboada
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magalí Rey
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Ana Viñas
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
25
|
Díaz N, Piferrer F. Estrogen exposure overrides the masculinizing effect of elevated temperature by a downregulation of the key genes implicated in sexual differentiation in a fish with mixed genetic and environmental sex determination. BMC Genomics 2017; 18:973. [PMID: 29254503 PMCID: PMC5735924 DOI: 10.1186/s12864-017-4345-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, E-08003, Barcelona, Spain.,Present address: Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, E-08003, Barcelona, Spain.
| |
Collapse
|
26
|
Taboada X, Viñas A, Adrio F. Comparative expression patterns ofSox2andSox19genes in the forebrain of developing and adult turbot (Scophthalmus maximus). J Comp Neurol 2017; 526:899-919. [DOI: 10.1002/cne.24374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xoana Taboada
- Department of Zoology; Genetics and Physical Anthropology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Ana Viñas
- Department of Zoology; Genetics and Physical Anthropology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Fátima Adrio
- Department of Functional Biology, CIBUS, Faculty of Biology; Universidade de Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
27
|
Ribas L, Vanezis K, Imués MA, Piferrer F. Treatment with a DNA methyltransferase inhibitor feminizes zebrafish and induces long-term expression changes in the gonads. Epigenetics Chromatin 2017; 10:59. [PMID: 29216900 PMCID: PMC5721477 DOI: 10.1186/s13072-017-0168-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of epigenetic modifications such as DNA methylation during vertebrate sexual development is far from being clear. Using the zebrafish model, we tested the effects of one of the most common DNA methyltransferase (dnmt) inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), which is approved for the treatment of acute myeloid leukaemia and is under active investigation for the treatment of solid tumours. Several dose-response experiments were carried out during two periods, including not only the very first days of development (0-6 days post-fertilization, dpf), as done in previous studies, but also, and as a novelty, the period of gonadal development (10-30 dpf). RESULTS Early treatment with 5-aza-dC altered embryonic development, delayed hatching and increased teratology and mortality, as expected. The most striking result, however, was an increase in the number of females, suggesting that alterations induced by 5-aza-dC treatment can affect sexual development as well. Results were confirmed when treatment coincided with gonadal development. In addition, we also found that the adult gonadal transcriptome of 5-aza-dC-exposed females included significant changes in the expression of key reproduction-related genes (e.g. cyp11a1, esr2b and figla), and that several pro-female-related pathways such as the Fanconi anaemia or the Wnt signalling pathways were downregulated. Furthermore, an overall inhibition of genes implicated in epigenetic regulatory mechanisms (e.g. dnmt1, dicer, cbx4) was also observed. CONCLUSIONS Taken together, our results indicate that treatment with a DNA methylation inhibitor can also alter the sexual development in zebrafish, with permanent alterations of the adult gonadal transcriptome, at least in females. Our results show the importance of DNA methylation for proper control of sexual development, open new avenues for the potential control of sex ratios in fish (aquaculture, population control) and call attention to possibly hidden long-term effects of dnmt therapy when used, for example, in the treatment of prepuberal children affected by some types of cancer.
Collapse
Affiliation(s)
- Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-45, 08003, Barcelona, Spain
| | - Konstantinos Vanezis
- Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Marco Antonio Imués
- Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Torobajo, Pasto, Colombia
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-45, 08003, Barcelona, Spain.
| |
Collapse
|
28
|
Benestan L, Moore JS, Sutherland BJG, Le Luyer J, Maaroufi H, Rougeux C, Normandeau E, Rycroft N, Atema J, Harris LN, Tallman RF, Greenwood SJ, Clark FK, Bernatchez L. Sex matters in massive parallel sequencing: Evidence for biases in genetic parameter estimation and investigation of sex determination systems. Mol Ecol 2017; 26:6767-6783. [DOI: 10.1111/mec.14217] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Laura Benestan
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jean-Sébastien Moore
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Ben J. G. Sutherland
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jérémy Le Luyer
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Clément Rougeux
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Eric Normandeau
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | | | - Jelle Atema
- Department of Biology; Boston University; Boston MA USA
| | - Les N. Harris
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Ross F. Tallman
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Spencer J. Greenwood
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Fraser K. Clark
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Louis Bernatchez
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|
29
|
Robledo D, Hermida M, Rubiolo JA, Fernández C, Blanco A, Bouza C, Martínez P. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:41-55. [PMID: 28063346 DOI: 10.1016/j.cbd.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification.
Collapse
Affiliation(s)
- Diego Robledo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Biology (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
30
|
Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlethwait JH, Pailhoux E, Schartl M, Herpin A, Guiguen Y. Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex Dev 2016; 10:111-29. [PMID: 27441599 DOI: 10.1159/000447611] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Foxl2 is a member of the large family of Forkhead Box (Fox) domain transcription factors. It emerged during the last 15 years as a key player in ovarian differentiation and oogenesis in vertebrates and especially mammals. This review focuses on Foxl2 genes in light of recent findings on their evolution, expression, and implication in sex differentiation in animals in general. Homologs of Foxl2 and its paralog Foxl3 are found in all metazoans, but their gene evolution is complex, with multiple gains and losses following successive whole genome duplication events in vertebrates. This review aims to decipher the evolutionary forces that drove Foxl2/3 gene specialization through sub- and neo-functionalization during evolution. Expression data in metazoans suggests that Foxl2/3 progressively acquired a role in both somatic and germ cell gonad differentiation and that a certain degree of sub-functionalization occurred after its duplication in vertebrates. This generated a scenario where Foxl2 is predominantly expressed in ovarian somatic cells and Foxl3 in male germ cells. To support this hypothesis, we provide original results showing that in the pea aphid (insects) foxl2/3 is predominantly expressed in sexual females and showing that in bovine ovaries FOXL2 is specifically expressed in granulosa cells. Overall, current results suggest that Foxl2 and Foxl3 are evolutionarily conserved players involved in somatic and germinal differentiation of gonadal sex.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|