1
|
Luo Z, Lin ZY, Li ZF, Fu ZQ, Han FL, Li EC. Next-generation neonicotinoid: The impact of cycloxaprid on the crustacean decapod Penaeus vannamei. CHEMOSPHERE 2024; 358:142150. [PMID: 38679174 DOI: 10.1016/j.chemosphere.2024.142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.
Collapse
Affiliation(s)
- Zhi Luo
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhi-Yu Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen-Fei Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen-Qiang Fu
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China
| | - Feng-Lu Han
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Er-Chao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
2
|
Masliukov PM. Changes of Signaling Pathways in Hypothalamic Neurons with Aging. Curr Issues Mol Biol 2023; 45:8289-8308. [PMID: 37886966 PMCID: PMC10605528 DOI: 10.3390/cimb45100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|
3
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
4
|
Meng Y, Kautz A. An evidence review of the association of immune and inflammatory markers with obesity-related eating behaviors. Front Immunol 2022; 13:902114. [PMID: 35911732 PMCID: PMC9336186 DOI: 10.3389/fimmu.2022.902114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Eating behaviors contribute to disproportionate energy intake and are linked to the development of obesity. Animal studies support the role of inflammatory cytokines and chemokines in the regulation of obesity-related eating behaviors and offer a potential target to combat obesity through the modulation of inflammation. However, more complex eating behaviors are present in humans, and their relationships with immune/inflammation markers are unclear. The present study reviewed current literature to synthesize the evidence on the association of immune/inflammation markers with obesity-related eating behaviors in humans. Methods A systematic search of three electronic databases yielded 811 articles, of which 11 met the inclusion criteria. Results The majority of the included studies (91%) were either case-control or cross-sectional studies. A variety of immune/inflammation markers and obesity-related eating behaviors have been assessed in the chosen studies. Three out of four studies identified a positive relationship between C-reactive protein (CRP)/high-sensitivity CRP and loss of control eating. Other inflammatory markers that potentially have a positive relationship with obesity-related eating behaviors include fractalkine and fibrinogen. Additionally, immune molecules, including interferon gamma (INF-γ), interleukin (IL)-7, IL-10, and α-melanocyte-stimulating hormone-reactive immunoglobulin G (α-MSH/IgG) immune complex, may have negative associations with obesity-related eating behaviors. However, most findings were identified by single studies. Conclusion Limited studies have been conducted in humans. Current evidence indicates a potential bi-directional relationship between inflammatory/immune markers and obesity-related eating behaviors. Additional studies with sophisticated research design and comprehensive theoretical models are warranted to further delineate the relationship between immune/inflammation markers and obesity-related eating behaviors.
Collapse
Affiliation(s)
- Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, United States
| | - Amber Kautz
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Fernandes MF, Lau D, Sharma S, Fulton S. Anxiety-like behavior in female mice is modulated by STAT3 signaling in midbrain dopamine neurons. Brain Behav Immun 2021; 95:391-400. [PMID: 33872705 DOI: 10.1016/j.bbi.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The central signaling actions of cytokines are mediated by signal transducer and activator of transcription (STAT3). STAT3 activation plays a pivotal role in the behavioral responses to the adiposity hormone leptin, including in midbrain dopamine (DA) neurons where it mediates the influence of leptin to diminish physical activity and running reward in male mice. Leptin also has anxiolytic effects which have been tied to the mesolimbic DA system. To assess the contribution of STAT3 signaling in mesolimbic DA neurons on feeding, mesolimbic DA tone and anxiodepressive behaviors in female mice, we generated DA-specific STAT3 knockout mice by crossing mice expressing Cre under the control of the dopamine transporter with STAT3-LoxP mice. Feeding, locomotion, wheel running, conditioned place preference for palatable food and amphetamine locomotor sensitization were unaffected by DA-specific STAT3 deletion. Conversely, knockout mice exhibited heightened anxiety-like behavior (open field test and elevated plus maze) along with increased basal and stress-induced plasma corticosterone, whereas indices of behavioral despair (forced swim and tail-suspension tasks) were unchanged. In accordance with biochemical evidence of increased D1 receptor signaling (phospho-DARPP32Thr34) in the central nucleus of the amygdala (CeA) of knockout mice, local microinjections of a D1 receptor antagonist reversed the anxiogenic phenotype of knockout mice. In addition to alluding to sex differences in the signaling mechanisms mediating anxiety-like behavior, our findings suggest that activation of STAT3 in midbrain dopamine neurons projecting to the CeA dampens anxiety in a D1R-dependent manner in female mice.
Collapse
Affiliation(s)
- Maria F Fernandes
- Centre de Recherche du CHUM, Canada; Physiology and Pharmacology, Canada
| | - David Lau
- Centre de Recherche du CHUM, Canada; Neuroscience, Faculty of Medicine, University of Montreal, Québec, Canada
| | - Sandeep Sharma
- Centre de Recherche du CHUM, Canada; Department of Nutrition, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM, Canada; Department of Nutrition, Canada; Montreal Diabetes Research Center, Canada; Center for Studies in Behavioural Neurobiology (Concordia University), Canada.
| |
Collapse
|
6
|
Tao F, Zhu J, Duan L, Wu J, Zhang J, Yao K, Bo J, Zu H. Anti-inflammatory effects of doxepin hydrochloride against LPS-induced C6-glioma cell inflammatory reaction by PI3K-mediated Akt signaling. J Biochem Mol Toxicol 2019; 34:e22424. [PMID: 31743544 DOI: 10.1002/jbt.22424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that tricyclic antidepressants (TCAs) may have anti-inflammatory and anticonvulsant effects in addition to its antidepressant effects. So far, the nonantidepressant effects of TCAs and their molecular pharmacological mechanisms remain completely unclear. Chronic inflammation in the brain parenchyma may be related to the pathogenesis and progression of various neurodegenerative diseases. As a common antidepressant and anti-insomnia drug, doxepin also may be a potential anti-inflammatory and anticonvulsant drug, so the study on the anti-inflammatory protective effect of doxepin and its molecular mechanism has become a very important issue in pharmacology and clinical medicine. Further elucidating the anti-inflammatory and neuroprotective effects of doxepin and its molecular mechanism may provide the important theoretical and clinical basis for the prevention and treatment of neurodegenerative disease. This study was designed to understand the glio-protective mechanism of doxepin against the inflammatory damage induced by lipopolysaccharide (LPS) exposure in C6-glioma cells. We found the treatment of C6-glioma cells with LPS results in deleterious effects, including the augmentation of inflammatory cytokine levels (tumor necrosis factor-α, interleukin-1β), and suppresses the Akt phosphorylation. Furthermore, our outcomes demonstrated that doxepin was able to suppress these effects induced by LPS, through activation of the phosphatidylinositol-3-kinase-mediated protein kinase B (Akt) pathway. To sum up, these results highlight the potential role of doxepin against neuroinflammatory-related disease in the brain.
Collapse
Affiliation(s)
- Feng Tao
- Department of Rehabilitation, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Rehabilitation, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lijie Duan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Junfeng Wu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jianfeng Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jimei Bo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
7
|
Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A. The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 2019; 14:e0213779. [PMID: 30870482 PMCID: PMC6417728 DOI: 10.1371/journal.pone.0213779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
In diet-induced obesity, metformin (MF) has weight-lowering effect and improves glucose homeostasis and insulin sensitivity. However, there is no information on the efficiency of MF and the mechanisms of its action in melanocortin-type obesity. We studied the effect of the 10-day treatment with MF at the doses of 200, 400 and 600 mg/kg/day on the food intake and the metabolic and hormonal parameters in female C57Bl/6J (genotype Ay/a) agouti-mice with melanocortin-type obesity, and the influence of MF on the hypothalamic signaling in obese animals at the most effective metabolic dose (600 mg/kg/day). MF treatment led to a decrease in food intake, the body and fat weights, the plasma levels of glucose, insulin and leptin, all increased in agouti-mice, to an improvement of the lipid profile and glucose sensitivity, and to a reduced fatty liver degeneration. In the hypothalamus of obese agouti-mice, the leptin and insulin content was reduced and the expression of the genes encoding leptin receptor (LepR), MC3- and MC4-melanocortin receptors and pro-opiomelanocortin (POMC), the precursor of anorexigenic melanocortin peptides, was increased. The activities of AMP-activated kinase (AMPK) and the transcriptional factor STAT3 were increased, while Akt-kinase activity did not change from control C57Bl/6J (a/a) mice. In the hypothalamus of MF-treated agouti-mice (10 days, 600 mg/kg/day), the leptin and insulin content was restored, Akt-kinase activity was increased, and the activities of AMPK and STAT3 were reduced and did not differ from control mice. In the hypothalamus of MF-treated agouti-mice, the Pomc gene expression was six times higher than in control, while the gene expression for orexigenic neuropeptide Y was decreased by 39%. Thus, we first showed that MF treatment leads to an improvement of metabolic parameters and a decrease of hyperleptinemia and hyperinsulinaemia in genetically-induced melanocortin obesity, and the specific changes in the hypothalamic signaling makes a significant contribution to this effect of MF.
Collapse
Affiliation(s)
- Kira Derkach
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Zakharova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Inna Zorina
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey Bakhtyukov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Romanova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Liubov Bayunova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander Shpakov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
8
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|