1
|
Wang M, Zhang S, He J, Zhang T, Zhu H, Sun R, Yang N. Biochemical classification diagnosis of polycystic ovary syndrome based on serum steroid hormones. J Steroid Biochem Mol Biol 2024; 245:106626. [PMID: 39448042 DOI: 10.1016/j.jsbmb.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/31/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic disorder with clinical heterogeneity. PCOS women with non-hyperandrogenemia (NA) might be misdiagnosed due to a lack of diagnostic markers. This study aims to systematically analyze the differences in steroid hormones between PCOS women with hyperandrogenemia (HA) and NA, and to screen classification diagnosis models for PCOS. The serum samples from 54 HA-PCOS, 79 NA-PCOS and 60 control women (Non-PCOS) aged between 18 and 35 were measured by an integrated steroid hormone-targeted quantification assay using LC-MS/MS. The levels of serum androgens, corticosteroids, progestins and estrogens in the steroid hormone biosynthesis pathway were analyzed in PCOS and Non-PCOS women. Eight machine learning methods including Linear Discriminant Analysis (LDA), K-nearest Neighbors (KNN), Boosted Logistic Regression (LogitBoost), Naive Bayes (NB), C5.0 algorithm (C5), Random Forest (RF), Support Vector Machines (SVM), and Neural Network (NNET) were performed, evaluated and selected for classification diagnosis of PCOS. A 10-fold cross-validation on the training set was performed. The whole metabolic flux from cholesterol to downstream steroid hormones increased significantly in PCOS, especially in HA-POCS women. The RF model was chosen for the classification diagnosis of HA-PCOS, NA-PCOS, and Non-PCOS women due to the maximum average accuracy (0.938, p<0.001), AUC (0.989, p<0.001), and kappa (0.906, p<0.001), and the minimum logLoss (0.200, p<0.001). Five steroid hormones including testosterone, androstenedione, total 2-methoxyestradiol, total 4-methoxyestradiol, and free estrone were selected as the decision trees for the simplified RF model. A total of 37 women were included in the validation set. The diagnostic sensitivity for HA-PCOS, NA-PCOS, and Non-PCOS was 100 %, 93.3 % and 91.7 %, respectively. HA-PCOS, NA-PCOS, and Non-PCOS women showed obvious different steroid hormone profiles. The simplified RF model based on two androgens and three estrogens could be effectively applied to the classification diagnosis of PCOS, further reducing the missed diagnosis rate of NA-PCOS.
Collapse
Affiliation(s)
- Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Shuhan Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China; Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210000, China
| | - Jun He
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianqi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
2
|
Avenant C, Singata-Madliki M, Bick AJ, Africander D, Balakrishna Y, Storbeck KH, Moliki JM, Dlamini S, Skosana S, Smit J, Beksinska M, Beesham I, Seocharan I, Batting J, Hofmeyr GJ, Hapgood JP. The injectable contraceptives depot medroxyprogesterone acetate and norethisterone enanthate substantially and differentially decrease testosterone and sex hormone binding globulin levels: A secondary study from the WHICH randomized clinical trial. PLoS One 2024; 19:e0307736. [PMID: 39178280 PMCID: PMC11343371 DOI: 10.1371/journal.pone.0307736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/09/2024] [Indexed: 08/25/2024] Open
Abstract
HIV acquisition risk with norethisterone (NET) enanthate (NET-EN) is reportedly less than for depo-medroxyprogesterone acetate intramuscular (DMPA-IM). We investigated the effects of these progestin-only injectable contraceptives on serum testosterone and sex hormone binding globulin (SHBG) levels, since these may play a role in sexual behavior and HIV acquisition. The open-label WHICH clinical trial, conducted at two sites in South Africa from 2018-2019, randomized HIV-negative women aged 18-40 years to 150 mg DMPA-IM 12-weekly (n = 262) or 200 mg NET-EN 8-weekly (n = 259). We measured testosterone by UHPLC-MS/MS and SHBG by immunoassay in matched pairs of serum samples collected at baseline (D0) and at peak serum progestin levels at 25 weeks post initiation (25W) (n = 214-218 pairs). Both contraceptives substantially decreased, from D0 to 25W, the total testosterone [DMPA-IM D0 0.560, 25W 0.423 nmol/L, -24.3% (p < 0.0001); NET-EN D0 0.551, 25W 0.253 nmol/L, -54.1%, (p < 0.0001)], SHBG [DMPA-IM D0 45.0, 25W 32.7 nmol/L, -29.8% (p < 0.0001); NET-EN D0 50.2, 25W 17.6 nmol/L, -65.1% (p < 0.0001)], and calculated free testosterone levels [DMPA-IM D0 6.87, 25W 5.38 pmol/L, -17.2% (p = 0.0371); NET-EN D0 6.00, 25W 3.70, -40.0% (p < 0.0001)]. After adjusting for change from D0, the total testosterone, SHBG and calculated free testosterone levels were significantly higher for DMPA-IM than NET-EN (64.9%, p < 0.0001; 101.2%, p < 0.0001; and 38.0%, p = 0.0120, respectively). The substantial and differential decrease in testosterone and SHBG levels does not explain our previous finding of no detected decrease in risky sexual behavior or sexual function for DMPA-IM or NET-EN users from D0 to 25W. Medroxyprogesterone (MPA) and NET are androgenic and are both present in molar excess over testosterone and SHBG concentrations at 25W. Any within or between contraceptive group androgenic effects on behavior in the brain are likely dominated by the androgenic activities of MPA and NET and not by the decreased endogenous testosterone levels. The clinical trial was registered with the Pan African Clinical Trials Registry (PACTR 202009758229976).
Collapse
Affiliation(s)
- Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Mandisa Singata-Madliki
- Effective Care Research Unit, Eastern Cape Department of Health/Universities of the Witwatersrand and Fort Hare, East London, South Africa
| | - Alexis J. Bick
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Yusentha Balakrishna
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Johnson M. Moliki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Sigcinile Dlamini
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Salndave Skosana
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jenni Smit
- Wits MRU (MatCH Research Unit), Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of the Witwatersrand, Durban, South Africa
| | - Mags Beksinska
- Wits MRU (MatCH Research Unit), Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of the Witwatersrand, Durban, South Africa
| | - Ivana Beesham
- Wits MRU (MatCH Research Unit), Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of the Witwatersrand, Durban, South Africa
| | - Ishen Seocharan
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| | - Joanne Batting
- Effective Care Research Unit, Eastern Cape Department of Health/Universities of the Witwatersrand and Fort Hare, East London, South Africa
| | - George J. Hofmeyr
- Effective Care Research Unit, Eastern Cape Department of Health/Universities of the Witwatersrand and Fort Hare, East London, South Africa
- Walter Sisulu University, East London, South Africa
- Department of Obstetrics and Gynecology, University of Botswana, Gaborone, Botswana
| | - Janet P. Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
García-Sáenz M, Ibarra-Salce R, Pozos-Varela FJ, Mena-Ureta TS, Flores-Villagómez S, Santana-Mata M, De Los Santos-Aguilar RG, Uribe-Cortés D, Ferreira-Hermosillo A. Understanding Progestins: From Basics to Clinical Applicability. J Clin Med 2023; 12:jcm12103388. [PMID: 37240495 DOI: 10.3390/jcm12103388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Progestin is a term used to describe a synthetic progestogen. The activity and potency of synthetic progestins are mostly evaluated via parameters associated with their endometrial effects, which are related to their interactions with progesterone, estrogen, androgen, glucocorticoid, and mineralocorticoid receptors. The chemical structure of progestins is the key to understanding their interactions with these receptors and predicting the other effects associated with these drugs. Due to their endometrial effect, progestins are used for different gynecological conditions, such as endometriosis, contraception, hormonal replacement therapy, and artificial reproduction techniques. This review is focused on improving our knowledge of progestins (from their history and biochemical effects related to their chemical structures to clinical applications in gynecological conditions) in order to improve clinical practice.
Collapse
Affiliation(s)
- Manuel García-Sáenz
- Servicio de Endocrinología, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Raúl Ibarra-Salce
- Departamento de Endocrinología, Facultad de Medicina, Universidad Autónoma de Coahuila, Saltillo 25204, Mexico
| | | | | | | | - Mario Santana-Mata
- Departamento de Medicina Interna, Hospital General de Zona N. 2, Saltillo 25296, Mexico
| | - Ramón G De Los Santos-Aguilar
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | | | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Boettcher C, Flück CE. Rare forms of genetic steroidogenic defects affecting the gonads and adrenals. Best Pract Res Clin Endocrinol Metab 2022; 36:101593. [PMID: 34711511 DOI: 10.1016/j.beem.2021.101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pathogenic variants have been found in all genes involved in the classic pathways of human adrenal and gonadal steroidogenesis. Depending on their function and severity, they cause characteristic disorders of corticosteroid and/or sex hormone deficiency, may result in atypical sex development at birth and/or puberty, and mostly lead to sexual dysfunction and infertility. Genetic disorders of steroidogenesis are all inherited in an autosomal recessive fashion. Loss of function mutations lead to typical phenotypes, while variants with partial activity may manifest with milder, non-classic, late-onset disorders that share similar phenotypes. Thus, these disorders of steroidogenesis are diagnosed by comprehensive phenotyping, steroid profiling and genetic testing using next generation sequencing techniques. Treatment comprises of steroid replacement therapies, but these are insufficient in many aspects. Therefore, studies are currently ongoing towards newer approaches such as lentiviral transmitted enzyme replacement therapy and reprogrammed stem cell-based gene therapy.
Collapse
Affiliation(s)
- Claudia Boettcher
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland.
| |
Collapse
|
5
|
Wang S, Huo Z, Gu J, Xu G. Benzophenones and synthetic progestin in wastewater and sediment from farms, WWTPs and receiving surface water: distribution, sources, and ecological risks. RSC Adv 2021; 11:31766-31775. [PMID: 35496845 PMCID: PMC9041579 DOI: 10.1039/d1ra05333g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022] Open
Abstract
Farms and wastewater treatment plants (WWTPs) are important sources of endocrine disruptors, which may have potential adverse effects on the nearby receiving river and potential human health risks. Benzophenone (BPs) and synthetic progestin were determined in water and sediment samples of the discharge source and receiving river. BPs and synthetic progestin ranged from not detected (N.D.) to 400.53 ng L−1 in water samples and from N.D. to 359.92 ng g−1 dw in sediment, respectively, and benzophenone-3 (BP-3) and ethinyl estradiol (EE2) were the main detected objects. Correlation analysis showed that pollutants discharged from livestock farms were the main contributor to the receiving river. The distribution of pollutants in different regions was related to higher population density and livestock activities. Predicted no-effect concentrations (PNECs) were investigated for ecological risk assessment in the study area, and 86% of the samples exceeded the baseline value of chronic toxicity. Benzophenone-1 (BP-1), benzophenone-3 (BP-3), 4-hydroxybenzophenone (4-OH-BP) and benzophenone (BP) were identified as the main substances that caused medium risk in the aquatic ecosystem. Therefore, BPs and synthetic progesterone should be given more attention in the future. The occurrence, source and ecological risk of BPs and synthetic progestin in farms, WWTPs and their receiving river were investigated.![]()
Collapse
Affiliation(s)
- Siqi Wang
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 P. R. China
| | - Zhuhao Huo
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 P. R. China
| | - Jianzhong Gu
- Institute of Applied Radiation of Shanghai, Shanghai University Shanghai 200444 P. R. China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 P. R. China .,Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education Shanghai 200444 P. R. China
| |
Collapse
|
6
|
Hipolito Rodrigues MA, Gompel A. Micronized progesterone, progestins, and menopause hormone therapy. Women Health 2020; 61:3-14. [DOI: 10.1080/03630242.2020.1824956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Anne Gompel
- Department of Gynecology, Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
Not All Progestins are Created Equally: Considering Unique Progestins Individually in Psychobehavioral Research. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2020. [DOI: 10.1007/s40750-020-00137-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Tomasicchio M, Davids M, Pooran A, Theron G, Smith L, Semple L, Meldau R, Hapgood JP, Dheda K. The Injectable Contraceptive Medroxyprogesterone Acetate Attenuates Mycobacterium tuberculosis-Specific Host Immunity Through the Glucocorticoid Receptor. J Infect Dis 2020; 219:1329-1337. [PMID: 30452655 PMCID: PMC6452311 DOI: 10.1093/infdis/jiy657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background The effects of the widely used progestin-only injectable contraceptives, medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A), on host susceptibility to Mycobacterium tuberculosis (Mtb) are unknown. Methods We recruited human immunodeficiency virus–uninfected females, not taking any contraceptives, from Cape Town, South Africa, to evaluate the effect of MPA, NET-A, and dexamethasone on Mtb containment in monocyte-derived macrophages co-incubated with purified protein derivative (PPD)–driven peripheral blood–derived effector cells. Results MPA (P < .005) and dexamethasone (P < .01), but not NET-A, significantly attenuated Mtb containment in Mtb-infected macrophages co-cultured with PPD-driven effector cells at physiologically relevant concentrations and in a dose-dependent manner. Antagonizing the glucocorticoid receptor with mifepristone (RU486) abrogated the reduction in Mtb containment. In PPD-stimulated peripheral blood mononuclear cells, MPA and dexamethasone, but not NET-A, upregulated (median [interquartile range]) regulatory T cells (5.3% [3.1%–18.2%]; P < .05), reduced CD4+ T-cell interferon-γ (21% [0.5%–28%]; P < .05) and granzyme B production (12.6% [7%–13.5%]; P < .05), and reduced CD8+ perforin activity (2.2% [0.1%–7%]; P < .05). RU486 reversed regulatory T-cell up-regulation and the inhibitory effect on Th1 and granzyme/perforin-related pathways. Conclusions MPA, but not NET-A, subverts mycobacterial containment in vitro and downregulates pathways associated with protective CD8+- and CD4+-related host immunity via the glucocorticoid receptor. These data potentially inform the selection and use of injectable contraceptives in tuberculosis-endemic countries.
Collapse
Affiliation(s)
- Michele Tomasicchio
- Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town
| | - Malika Davids
- Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town
| | - Grant Theron
- Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town.,Department of Science and Technology, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University
| | - Liezel Smith
- Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town
| | - Lynn Semple
- Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town
| | - Richard Meldau
- Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town
| | - Janet Patricia Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Sirotkin AV, Alexa R, Alwasel S, Harrath AH. The phytoestrogen, diosgenin, directly stimulates ovarian cell functions in two farm animal species. Domest Anim Endocrinol 2019; 69:35-41. [PMID: 31280024 DOI: 10.1016/j.domaniend.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 01/30/2023]
Abstract
The present in vitro study was conducted to examine the direct action of the plant steroidal sapogenin, diosgenin, on basic farm animal ovarian cell functions. As models, we used cultured porcine ovarian granulosa cells, porcine whole follicles, and rabbit ovarian fragments. The effects of diosgenin (0, 1, 10, or 100 μg/mL medium) on the markers of proliferation, cytoplasmic apoptosis, steroid (progesterone: P4, testosterone: T, and estradiol: E2) release, and peptide hormone (insulin-like growth factor I: IGF-I) release were analyzed by quantitative immunocytochemistry and radioimmunoassay. Diosgenin promoted proliferation, apoptosis, and T and E2 release and inhibited P4 output in cultured porcine granulosa cells. Similarly, cultured porcine ovarian follicles showed diosgenin-induced inhibition of P4 and stimulation of T release. In cultured rabbit ovarian fragments, diosgenin stimulated P4 and IGF-I release. This is the first study showing that diosgenin can promote basic ovarian cell functions such as proliferation, apoptosis, and steroid and peptide hormone release. The similar effects of diosgenin on porcine granulosa cells and ovarian follicles suggest that granulosa cells are the primary ovarian target of diosgenin. The contrasting effects of diosgenin on porcine and rabbit ovarian P4 output suggest that diosgenin functions in a species-specific manner. These observations indicate that diosgenin has potential applications for improving female reproduction.
Collapse
Affiliation(s)
- A V Sirotkin
- Department of Zoology and Anthropology, Constantine The Philosopher University in Nitra, 949 74 Nitra, Slovakia; Department of Genetics and Reproduction, Research Institute of Animal Production Nitra, 951 41 Lužianky, Slovakia.
| | - R Alexa
- Department of Zoology and Anthropology, Constantine The Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - S Alwasel
- Zoology Department, College of Science, King Saud University, College of Sciences, Riyadh 11451, Saudi Arabia
| | - A H Harrath
- Zoology Department, College of Science, King Saud University, College of Sciences, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
10
|
Rosas G, Linares R, Ramírez DA, Vieyra E, Trujillo A, Domínguez R, Morales-Ledesma L. The Neural Signals of the Superior Ovarian Nerve Modulate in an Asymmetric Way the Ovarian Steroidogenic Response to the Vasoactive Intestinal Peptide. Front Physiol 2018; 9:1142. [PMID: 30177887 PMCID: PMC6110177 DOI: 10.3389/fphys.2018.01142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 01/27/2023] Open
Abstract
The superior ovarian nerve (SON) provides neuropeptide-Y, norepinephrine and vasoactive intestinal peptide (VIP) to the ovaries. Ovarian steroidogenesis is modulated by the SON. In the cyclic rat, the acute steroidogenic response to ovarian microinjection of VIP is asymmetric and varies during the estrous cycle. In the present study, we analyze whether the differential effects of VIP in each ovary are modulated by the neural signals arriving through the SON. Cyclic female rats were submitted on diestrus-1, diestrus-2, proestrus, or estrus to a unilateral section of the SON, and immediately afterward, the denervated ovary was either microinjected or not with VIP. Animals were sacrificed 1 h after treatment. The injection of VIP into the left denervated ovary performed on diestrus-1 decreased progesterone levels in comparison with the left SON sectioning group; similar effects were observed on proestrus when VIP was injected into either of the denervated ovaries. Compared to the left SON sectioning group, VIP treatment into the left denervated ovary on diestrus-2 or proestrus decreased testosterone levels, whereas on diestrus-1, proestrus or estrus, the same treatment resulted in higher estradiol levels. Compared to the right SON sectioning group, VIP injected into the right denervated ovary yielded higher testosterone levels on diestrus-1 and estrus and lower testosterone levels on proestrus. VIP injection into the right denervated ovary increased estradiol levels on diestrus-2 or estrus while decreasing them on proestrus. Our results indicate that in the adult cyclic rat, the set neural signals arriving to the ovaries through the SON asymmetrically modulate the role of VIP on steroid hormone secretion, depending on the endocrine status of the animal. The results also support the hypothesis that the left and right ovary respond differently to the VIPergic stimulus.
Collapse
Affiliation(s)
- Gabriela Rosas
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Rosa Linares
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Deyra A Ramírez
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Elizabeth Vieyra
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Angélica Trujillo
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Biológicas, Puebla, Mexico
| | - Roberto Domínguez
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Leticia Morales-Ledesma
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|