1
|
Alfandari A, Moskovich D, Weisz A, Katzav A, Kidron D, Beiner M, Josephy D, Asali A, Hants Y, Yagur Y, Weitzner O, Ellis M, Itchaki G, Ashur‐Fabian O. The selenoenzyme type I iodothyronine deiodinase: a new tumor suppressor in ovarian cancer. Mol Oncol 2024; 18:2298-2313. [PMID: 38429887 PMCID: PMC11467794 DOI: 10.1002/1878-0261.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
The selenoenzyme type I iodothyronine deiodinase (DIO1) catalyzes removal of iodine atoms from thyroid hormones. Although DIO1 action is reported to be disturbed in several malignancies, no work has been conducted in high-grade serous ovarian carcinoma (HGSOC), the most lethal gynecologic cancer. We studied DIO1 expression in HGSOC patients [The Cancer Genome Atlas (TCGA) data and tumor tissues], human cell lines (ES-2 and Kuramochi), normal Chinese hamster ovarian cells (CHO-K1), and normal human fallopian tube cells (FT282 and FT109). To study its functional role, DIO1 was overexpressed, inhibited [by propylthiouracil (PTU)], or knocked down (KD), and cell count, proliferation, apoptosis, cell viability, and proteomics analysis were performed. Lower DIO1 levels were observed in HGSOC compared to normal cells and tissues. TCGA analyses confirmed that low DIO1 mRNA expression correlated with worse survival and therapy resistance in patients. Silencing or inhibiting the enzyme led to enhanced ovarian cancer proliferation, while an opposite effect was shown following DIO1 ectopic expression. Proteomics analysis in DIO1-KD cells revealed global changes in proteins that facilitate tumor metabolism and progression. In conclusion, DIO1 expression and ovarian cancer progression are inversely correlated, highlighting a tumor suppressive role for this enzyme and its potential use as a biomarker in this disease.
Collapse
Affiliation(s)
- Adi Alfandari
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Dotan Moskovich
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Avivit Weisz
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Aviva Katzav
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Debora Kidron
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Mario Beiner
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Dana Josephy
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Aula Asali
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Yael Hants
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Yael Yagur
- Department of Obstetrics and GynecologyMeir Medical CenterKfar SabaIsrael
| | - Omer Weitzner
- Department of Obstetrics and GynecologyMeir Medical CenterKfar SabaIsrael
| | - Martin Ellis
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Gilad Itchaki
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Osnat Ashur‐Fabian
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| |
Collapse
|
2
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Sun J, Wang X, Ding Y, Xiao B, Wang X, Ali MM, Ma L, Xie Z, Gu Z, Chen G, Tao WA. Proteomic and phosphoproteomic landscape of salivary extracellular vesicles to assess OSCC therapeutical outcomes. Proteomics 2023; 23:e2200319. [PMID: 36573687 DOI: 10.1002/pmic.202200319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Circulating extracellular vesicles (EVs) have emerged as an appealing source for surrogates to evaluate the disease status. Herein, we present a novel proteomic strategy to identify proteins and phosphoproteins from salivary EVs to distinguish oral squamous cell carcinoma (OSCC) patients from healthy individuals and explore the feasibility to evaluate therapeutical outcomes. Bi-functionalized magnetic beads (BiMBs) with Ti (IV) ions and a lipid analog, 1,2-Distearoyl-3-sn-glycerophosphoethanolamine (DSPE) are developed to efficiently isolate EVs from small volume of saliva. In the discovery stage, label-free proteomics and phosphoproteomics quantification showed 315 upregulated proteins and 132 upregulated phosphoproteins in OSCC patients among more than 2500 EV proteins and 1000 EV phosphoproteins, respectively. We further applied targeted proteomics by coupling parallel reaction monitoring with parallel accumulation-serial fragmentation (prm-PASEF) to measure panels of proteins and phosphoproteins from salivary EVs collected before and after surgical resection. A panel of three total proteins and three phosphoproteins, most of which have previously been associated with OSCC and other cancer types, show sensitive response to the therapy in individual patients. Our study presents a novel strategy to the discovery of effective biomarkers for non-invasive assessment of OSCC surgical outcomes with small amount of saliva.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Xiaole Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinxin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Manoochehri H, Jalali A, Tanzadehpanah H, Taherkhani A, Najafi R. Aptamer-conjugated nanoliposomes containing COL1A1 siRNA sensitize CRC cells to conventional chemotherapeutic drugs. Colloids Surf B Biointerfaces 2022; 218:112714. [PMID: 35905589 DOI: 10.1016/j.colsurfb.2022.112714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
COL1A1 is an important extracellular matrix component that is associated with poor prognosis in cancers. In this study, As1411 aptamer-conjugated liposomes were used for targeted siRNA delivery against the COL1A1 gene in colorectal cancer (CRC) cells. Cationic liposomes were synthesized and siRNA loading and conjugation of aptamer were confirmed by gel shift assay and spectrophotometry method. Release of siRNA from liposomes was assessed using dialysis method. Binding and uptake of aptamer-conjugated liposomes to and into cancer cells was assessed by fluorescence microscopy and flowcytometry. Gene expression was evaluated using qRT-PCR. Cell viability, chemosensitivity and apoptosis were determined by MTT assay and Annexin/PI kit. Cellular studies showed that liposomal transfer of COL1A1 siRNA into HCT116 and HEK293 cells significantly reduced the expression level of corresponding gen and cell viability, and significantly increased the sensitivity to chemotherapy drugs while free siRNA had no such effects. Aptamer conjugation was associated with increased cellular effects in HCT116 cells, but not in HEK293 cells. Our study revealed that delivery of COL1A1 siRNA via AS1411-targeted liposomes is a promising therapeutic approach to overcome treatment resistance in CRC.
Collapse
Affiliation(s)
- Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Zhao Y, Chen P, Lv HJ, Wu Y, Liu S, Deng X, Shi B, Fu J. Comprehensive Analysis of Expression and Prognostic Value of Selenoprotein Genes in Thyroid Cancer. Genet Test Mol Biomarkers 2022; 26:159-173. [PMID: 35481968 DOI: 10.1089/gtmb.2021.0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Low selenium levels are associated with an increased incidence and advanced stage of thyroid cancers (THCAs). In response to changes in selenium levels, a hierarchy of selenoprotein biosynthesis allows tissue-specific fine-tuning of the 25 selenoproteins. To determine the role of individual selenoproteins on thyroid carcinogenesis, we carried out a multiomic data mining study. Methods: The expression levels of individual selenoproteins and their correlations with prognosis in THCAs were analyzed using Oncomine, GEPIA, and Kaplan-Meier plotter platforms. Co-expression analyses using the cBioportal database were carried out to identify genes that are correlated with selenoproteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments were performed for genes correlated with selenoproteins that were identified as clinically significant. Results and Discussion: DIO1, GPX3, SELENOO, SELENOP, SELENOS, and SELENOV were significantly downregulated in THCAs and were associated with poor prognoses. Biological processes including negative regulation of growth and angiogenesis were enriched in DIO1-positively and DIO1-negatively correlated genes, respectively. Many biological processes including negative regulation of growth and MAPK cascade were enriched in GPX3-positively and GPX3-negatively correlated genes, respectively. The antitumor effects of SELENOS might be attributed to their protection against endoplasmic reticulum (ER) stress. SELENOO was revealed to be correlated with ER stress, mitochondrial translation, and telomere maintenance. Biological processes of SELENOV-correlated genes were enriched in redox processes and ER calcium ion homeostasis. Moreover, cell adhesion and angiogenesis were also shown to be negatively regulated by SELENOV, providing an antimetastatic effect similar as DIO1. Conclusion: This study explored the distinct roles of the 25 selenoproteins in THCA pathogenesis, providing potential oncosuppressing effects of 6 selenoproteins.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong-Jun Lv
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shu Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueyang Deng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Fu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Wang SS, Zhai GQ, Chen G, Huang ZG, He RQ, Huang SN, Liu JL, Cheng JW, Yan HB, Dang YW, Li SH. Decreased expression of transcription factor Homeobox A11 and its potential target genes in bladder cancer. Pathol Res Pract 2022; 233:153847. [DOI: 10.1016/j.prp.2022.153847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
7
|
The impact of genetic factors on thyroid hormones metabolism in patients with diabetic kidney disease. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.05.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Bhuyan R, Bagchi A. Prediction of the differentially expressed circRNAs to decipher their roles in the onset of human colorectal cancers. Gene 2020; 762:145035. [PMID: 32777531 DOI: 10.1016/j.gene.2020.145035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Circular RNAs belong to the class of endogenous long non-coding RNAs that play important roles in many physiological processes including tumorigenesis. One such process is the onset of colorectal cancers (CRC) which is one of the most prevalent cancers in the world. However, the involvement of the circRNAs in CRC progression is still obscure. In this study, we screened the differentially expressed circRNAs in CRC by taking 10 pairs of tumor and non-tumor transcriptomic data. Datasets were downloaded from EBI ENA database and differential expression analysis was performed. For functional characterization and pathway enrichment of differentially expressed circRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed. Interactions with miRNAs and RNA binding proteins (RBPs) were predicted using miRanda, miRTarBase and starBase tools respectively. Our results identified total of 122 differentially expressed circRNAs in CRC onset, including 85 upregulated and 37 downregulated. GO and KEGG analyses revealed these circRNAs to be involved in many tumorigenic pathways. In addition, we predicted many miRNA and RBP targets of significantly expressed circRNAs that could exhibit the functional role in CRC progression. Combined analyses of miRanda, miRTarBase and KEGG pathway suggested that the possibly affected genes by circRNA-miRNA sponge to be associated with many cancer related pathways. From our findings we concluded 16 novel differentially expressed circRNAs that could play important roles in carcinogenesis of CRC. Our findings provide new insights in circRNA research and could therefore be useful in the development of potential biomarker and therapeutic approaches for CRC.
Collapse
Affiliation(s)
- Rajabrata Bhuyan
- Department of BioScience and Biotechnology, Banasthali Vidyapith, Banasthali, 304022 Tonk, Rajasthan, India.
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, India.
| |
Collapse
|
9
|
LRRC19-A Bridge between Selenium Adjuvant Therapy and Renal Clear Cell Carcinoma: A Study Based on Datamining. Genes (Basel) 2020; 11:genes11040440. [PMID: 32316597 PMCID: PMC7230350 DOI: 10.3390/genes11040440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common and fatal subtype of renal cancer. Antagonistic associations between selenium and cancer have been reported in previous studies. Selenium compounds, as anti-cancer agents, have been reported and approved for clinical trials. The main active form of selenium in selenoproteins is selenocysteine (Sec). The process of Sec biosynthesis and incorporation into selenoproteins plays a significant role in biological processes, including anti-carcinogenesis. However, a comprehensive selenoprotein mRNA analysis in KIRC remains absent. In the present study, we examined all 25 selenoproteins and identified key selenoproteins, glutathione peroxidase 3 (GPX3) and type 1 iodothyronine deiodinase (DIO1), with the associated prognostic biomarker leucine-rich repeat containing 19 (LRRC19) in clear cell renal cell carcinoma cases from The Cancer Genome Atlas (TCGA) database. We performed validations for the key gene expression levels by two individual clear cell renal cell carcinoma cohorts, GSE781 and GSE6344, datasets from the Gene Expression Omnibus (GEO) database. Multivariate survival analysis demonstrated that low expression of LRRC19 was an independent risk factor for OS. Gene set enrichment analysis (GSEA) identified tyrosine metabolism, metabolic pathways, peroxisome, and fatty acid degradation as differentially enriched with the high LRRC19 expression in KIRC cases, which are involved in selenium therapy of clear cell renal cell carcinoma. In conclusion, low expression of LRRC19 was identified as an independent risk factor, which will advance our understanding concerning the selenium adjuvant therapy of clear cell renal cell carcinoma.
Collapse
|
10
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Goemann IM, Marczyk VR, Romitti M, Wajner SM, Maia AL. Current concepts and challenges to unravel the role of iodothyronine deiodinases in human neoplasias. Endocr Relat Cancer 2018; 25:R625-R645. [PMID: 30400023 DOI: 10.1530/erc-18-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of several metabolic processes and the energy consumption of the organism. Their action is exerted primarily through interaction with nuclear receptors controlling the transcription of thyroid hormone-responsive genes. Proper regulation of TH levels in different tissues is extremely important for the equilibrium between normal cellular proliferation and differentiation. The iodothyronine deiodinases types 1, 2 and 3 are key enzymes that perform activation and inactivation of THs, thus controlling TH homeostasis in a cell-specific manner. As THs seem to exert their effects in all hallmarks of the neoplastic process, dysregulation of deiodinases in the tumoral context can be critical to the neoplastic development. Here, we aim at reviewing the deiodinases expression in different neoplasias and exploit the mechanisms by which they play an essential role in human carcinogenesis. TH modulation by deiodinases and other classical pathways may represent important targets with the potential to oppose the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vicente Rodrigues Marczyk
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Simone Magagnin Wajner
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Zhang Z, Fang C, Wang Y, Zhang J, Yu J, Zhang Y, Wang X, Zhong J. COL1A1: A potential therapeutic target for colorectal cancer expressing wild-type or mutant KRAS. Int J Oncol 2018; 53:1869-1880. [PMID: 30132520 PMCID: PMC6192778 DOI: 10.3892/ijo.2018.4536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) treatment primarily relies on chemotherapy along with surgery, radiotherapy and, more recently, targeted therapy at the late stages. However, chemotherapeutic drugs have high cytotoxicity, and the similarity between the effects of these drugs on cancerous and healthy cells limits their wider use in clinical settings. Targeted monoclonal antibody treatment may compensate for this deficiency. Epidermal growth factor receptor (EGFR)-targeted drugs have a positive effect on CRC with intact KRAS proto-oncogene GTPase (KRAS or KRASWT), but may be ineffective or harmful in patients with KRAS mutations (KRASMUT). Therefore, it is important to identify drug target genes that are uniformly effective with regards to KRASWT and KRASMUT CRC. The present study performed gene expression analysis, and identified 294 genes upregulated in KRASWT and KRASMUT CRC samples. Collagen type I α 1 (COL1A1) was identified as the hub gene through STRING and Cytoscape analyses. Consistent with results obtained from Oncomine, a cancer microarray database and web-based data-mining platform, it was demonstrated that the expression of COL1A1 was significantly upregulated in CRC tissues and cell lines regardless of KRAS status. Inhibition of COL1A1 in KRASWT and KRASMUT CRC cell lines significantly decreased cell proliferation and invasion. In addition, increased COL1A1 expression in CRC was significantly associated with serosal invasion, lymph metastases and hematogenous metastases. Taken together, the findings of the present study indicated that COL1A1 may serve as a candidate diagnostic biomarker and a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Cheng Fang
- Department of Anesthesiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Yongxia Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
13
|
Zhang Z, Wang Y, Zhang J, Zhong J, Yang R. COL1A1 promotes metastasis in colorectal cancer by regulating the WNT/PCP pathway. Mol Med Rep 2018; 17:5037-5042. [PMID: 29393423 PMCID: PMC5865965 DOI: 10.3892/mmr.2018.8533] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer‑associated mortality, and is a major health problem. Collagen type I α 1 (COL1A1) is a major component of collagen type I. Recently, it was reported to be overexpressed in a variety of tumor tissues and cells. However, the function of COL1A1 in CRC remains unclear. Herein, the present study demonstrated that COL1A1 was upregulated in CRC tissues and the paired lymph node tissues. Transwell assays showed that COL1A1 promoted CRC cell migration in vitro. Moreover, it was revealed that COL1A1 levels were correlated with those of WNT/planar cell polarity (PCP) signaling pathway genes; inhibition of COL1A1 decreased the expression levels of Ras‑related C3 botulinum toxin substrate 1‑GTP, phosphorylated‑c‑Jun N‑terminal kinase, and RhoA‑GTP, all of which are key genes in the WNT/PCP signaling pathway. These results may indicate the mechanisms underlying the oncogenic role of COL1A1 in CRC. In summary, the present data indicated that COL1A1 may serve as an oncoprotein, and that it may be used as a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yongxia Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Rui Yang
- Synthetic Biology Remaking Engineering and Application Laboratory, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
14
|
TGF-β1 targets a microRNA network that regulates cellular adhesion and migration in renal cancer. Cancer Lett 2018; 412:155-169. [DOI: 10.1016/j.canlet.2017.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023]
|
15
|
Cicatiello AG, Ambrosio R, Dentice M. Thyroid hormone promotes differentiation of colon cancer stem cells. Mol Cell Endocrinol 2017; 459:84-89. [PMID: 28342853 DOI: 10.1016/j.mce.2017.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/14/2023]
Abstract
Tumor formation and maintenance depend on a small fraction of cancer stem cells (CSCs) that can self-renew and generate a wide variety of differentiated cells. CSCs are resistant to chemotherapy and radiation, and can represent a reservoir of cancer cells that often cause relapse after treatment. Evidence suggests that CSCs also give rise to metastases. Thyroid hormone (TH) controls a variety of biological processes including the development and functioning of most adult tissues. Recent years has seen the emergence of an intimate link between TH and multiple steps of tumorigenesis. Thyroid hormone controls the balance between the proliferation and differentiation of CSCs, and may thus be a druggable anti-cancer agent. Here, we review current understanding of the effects of TH on colorectal CSCs, including the cross regulatory loops between TH and regulators of CSC stemness. Targeting TH in the tumor microenvironment may improve treatment strategies.
Collapse
Affiliation(s)
| | | | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Italy; CEINGE-Biotecnologie Avanzate S.c.ar.l., Naples, Italy.
| |
Collapse
|
16
|
Popławski P, Wiśniewski JR, Rijntjes E, Richards K, Rybicka B, Köhrle J, Piekiełko-Witkowska A. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system. PLoS One 2017; 12:e0190179. [PMID: 29272308 PMCID: PMC5741248 DOI: 10.1371/journal.pone.0190179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3’,5’-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3’-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The ‘downregulated’ group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes in local availability of thyroid hormones might favor a shift from a differentiated to a more proliferation-prone state of cancer tissues and cell lines.
Collapse
Affiliation(s)
- Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Keith Richards
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
Landolt L, Eikrem Ø, Strauss P, Scherer A, Lovett DH, Beisland C, Finne K, Osman T, Ibrahim MM, Gausdal G, Ahmed L, Lorens JB, Thiery JP, Tan TZ, Sekulic M, Marti HP. Clear Cell Renal Cell Carcinoma is linked to Epithelial-to-Mesenchymal Transition and to Fibrosis. Physiol Rep 2017; 5:e13305. [PMID: 28596300 PMCID: PMC5471444 DOI: 10.14814/phy2.13305] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common type of kidney cancer with high mortality in its advanced stages. Our study aim was to explore the correlation between tumor epithelial-to-mesenchymal transition (EMT) and patient survival. Renal biopsies of tumorous and adjacent nontumorous tissue were taken with a 16 g needle from our patients (n = 26) undergoing partial or radical nephrectomy due to ccRCC RNA sequencing libraries were generated using Illumina TruSeq® Access library preparation protocol and TruSeq Small RNA library preparation kit. Next generation sequencing (NGS) was performed on Illumina HiSeq2500. Comparative analysis of matched sample pairs was done using the Bioconductor Limma/voom R-package. Liquid chromatography-tandem mass spectrometry and immunohistochemistry were applied to measure and visualize protein abundance. We detected an increased generic EMT transcript score in ccRCC Gene expression analysis showed augmented abundance of AXL and MMP14, as well as down-regulated expression of KL (klotho). Moreover, microRNA analyses demonstrated a positive expression correlation of miR-34a and its targets MMP14 and AXL Survival analysis based on a subset of genes from our list EMT-related genes in a publicly available dataset showed that the EMT genes correlated with ccRCC patient survival. Several of these genes also play a known role in fibrosis. Accordingly, recently published classifiers of solid organ fibrosis correctly identified EMT-affected tumor samples and were correlated with patient survival. EMT in ccRCC linked to fibrosis is associated with worse survival and may represent a target for novel therapeutic interventions.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Philipp Strauss
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Andreas Scherer
- Spheromics, Kontiolahti, Finland
- Institute for Molecular Medicine Finland (FIMM) University of Helsinki, Helsinki, Finland
| | - David H Lovett
- Department of Medicine, San Francisco VAMC University of California San Francisco, San Francisco, California
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | - James B Lorens
- BerGenBio AS, Bergen, Norway
- Department of Biomedicine, Center for Cancer Biomarkers University of Bergen, Bergen, Norway
| | - Jean Paul Thiery
- Department of Biomedicine, Center for Cancer Biomarkers University of Bergen, Bergen, Norway
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology Gustave Roussy EPHE Fac. de médecine-Univ. Paris-Sud Université Paris-Saclay, Villejuif, France
| | - Tuan Zea Tan
- Science Institute of Singapore National University of Singapore, Singapore, Singapore
| | - Miroslav Sekulic
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|