1
|
Qiao Y, Li N, Song Y, Liu X, Wang D. Short photoperiod inhibited gonadal growth and elevated hypothalamic Dio3 expression unrelated to promoter DNA methylation in young Brandt's voles. Integr Zool 2024. [PMID: 39180280 DOI: 10.1111/1749-4877.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Photoperiod, the length of daylight, has a significant impact on the physiological characteristics of seasonal breeding animals, including their somatic and gonadal development. In rodents, expression of deiodinase type II (Dio2) and III (Dio3) in the hypothalamus is crucial for responding to photoperiodic signals. However, research on the photoperiodism of hypothalamic gene expression and the corresponding regulatory mechanism in Brandt's voles living in the Mongolian steppes is limited. In this study, we gradually changed day length patterns to simulate spring (increasing long photoperiod, ILP) and autumn (decreasing short photoperiod, DSP). We compared the somatic and gonadal development of voles born under ILP and DSP and the expression patterns of five reproduction-related genes in the hypothalamus of young voles. The results showed that DSP significantly inhibited somatic and gonadal development in both female and male offspring. Compared with ILP, Dio3 expression was significantly upregulated in the hypothalamus under DSP conditions and remained elevated until postnatal week 8 in both males and females. However, there was no significant difference in the methylation levels of the proximal promoter region of Dio3 between ILP and DSP, suggesting that methylation in the proximal promoter region may not be involved in regulating the expression of Dio3. These findings suggest that hypothalamic expression of Dio3 plays a key role in the photoperiodic regulation of gonadal activity in Brandt's voles. However, it appears that CpGs methylation in the promoter region is not the main mechanism regulating Dio3 expression.
Collapse
Affiliation(s)
- Yanting Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Science, Changji, China
- Key Laboratory of Biohazard Monitoring and Green Prevention and Control in Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Bhandari G, Sharma M, Negi S, Gangola S, Bhatt P, Chen S. System biology analysis of endosulfan biodegradation in bacteria and its effect in other living systems: modeling and simulation studies. J Biomol Struct Dyn 2022; 40:13171-13183. [PMID: 34622744 DOI: 10.1080/07391102.2021.1982773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endosulfan is a broadly applied cyclodiene insecticide which has been in use across 80 countries since last 5 decades. Owing to its recalcitrant nature, endosulfan residues have been reported from air, water and soil causing toxicity to various non-target organisms. Microbial decontamination of endosulfan has been reported previously by several authors. In the current study, we have evaluated the pathways of endosulfan degradation and its hazardous impact on other living beings including insects, humans, plants, aquatic life and environment by in-silico methods. For establishment of the endosulfan metabolism in different ecosystems, cell designer was employed. The established model was thereafter assessed and simulated to understand the biochemical and physiological metabolism of the endosulfan in various systems of the network. Topological investigation analysis of the endosulfan metabolism validated the presence of 207 nodes and 274 edges in the network. We have concluded that biomagnification of the endosulfan generally occurs in the various elements of the ecosystem. Dynamics study of endosulfan degrading enzymes suggested the important role of monooxygenase I, II and hydrolase in endosulfan bioremediation. Endosulfan shows toxicity in human beings, fishes and plants, however it is biodegraded by the microbes. To date, there are no reports of in- silico analysis of bioremediation of endosulfan and its hazardous effects on the environment. Thus, this report can be important in terms of modelling and simulation of biodegradation network of endosulfan and similar compounds and their impact on several other systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Mukund Sharma
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Shalini Negi
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Bolognesi G, Bacalini MG, Pirazzini C, Garagnani P, Giuliani C. Evolutionary Implications of Environmental Toxicant Exposure. Biomedicines 2022; 10:3090. [PMID: 36551846 PMCID: PMC9775150 DOI: 10.3390/biomedicines10123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Homo sapiens have been exposed to various toxins and harmful compounds that change according to various phases of human evolution. Population genetics studies showed that such exposures lead to adaptive genetic changes; while observing present exposures to different toxicants, the first molecular mechanism that confers plasticity is epigenetic remodeling and, in particular, DNA methylation variation, a molecular mechanism proposed for medium-term adaptation. A large amount of scientific literature from clinical and medical studies revealed the high impact of such exposure on human biology; thus, in this review, we examine and infer the impact that different environmental toxicants may have in shaping human evolution. We first describe how environmental toxicants shape natural human variation in terms of genetic and epigenetic diversity, and then we describe how DNA methylation may influence mutation rate and, thus, genetic variability. We describe the impact of these substances on biological fitness in terms of reproduction and survival, and in conclusion, we focus on their effect on brain evolution and physiology.
Collapse
Affiliation(s)
- Giorgia Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
4
|
Milesi MM, Lorenz V, Varayoud J. Aberrant Hoxa10 gene methylation as a mechanism for endosulfan-induced implantation failures in rats. Mol Cell Endocrinol 2022; 547:111576. [PMID: 35114330 DOI: 10.1016/j.mce.2022.111576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
DNA methylation is a well-established epigenetic mechanism controlling gene expression. Environmental chemicals, such as pesticides have been shown to alter DNA methylation. We have previously shown that the insecticide endosulfan impairs female fertility in rats by increasing the rate of preimplantation embryo losses. In this study, we evaluated whether early postnatal exposure to endosulfan affects long-term transcriptional regulation of Homeobox A10 (Hoxa10) gene, which is a key marker of endometrial receptivity. Female rats were neonatally exposed to 6 or 600 μg/kg/day (ENDO6 and ENDO600, respectively) of endosulfan and uterine samples collected on gestational day (GD) 5. Hoxa10 protein and mRNA levels were assessed by immunohistochemistry and quantitative real-time PCR (qRT-PCR), respectively. In silico analysis of enzyme-specific restriction sites and predicted transcription factors were performed to investigate the methylation status of the regulatory regions of Hoxa10 gene by methylation-sensitive restriction enzymes-PCR technique. The expression of the DNA methyltransferases (Dnmts) was also evaluated. ENDO600 showed a decreased uterine Hoxa10 expression at protein and transcript level, while ENDO6 decreased only the level of transcripts, during the receptive stage. In addition, endosulfan increased levels of Dnmt3a and Dnmt3b. Dysregulation of DNA methylation patterns of Hoxa10 regulatory regions was detected in ENDO6- and ENDO600-treated rats. All these results suggest that aberrant DNA methylation in Hoxa10 gene could be an underlining mechanism contributing to explain endosulfan-induced preimplantation losses.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
5
|
Effects of Endocrine-Disrupting Chemicals on Endometrial Receptivity and Embryo Implantation: A Systematic Review of 34 Mouse Model Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136840. [PMID: 34202247 PMCID: PMC8297133 DOI: 10.3390/ijerph18136840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023]
Abstract
Several available studies have already analyzed the systemic effects of endocrine-disrupting chemicals (EDCs) on fertile woman and neonatal outcomes, but little is still known in humans about the precise mechanisms of interference of these compounds with the endometrial receptivity. There is consistent evidence that continuous and prolonged exposure to EDCs is a risk factor for reduced fertility and fecundity in women. Preliminary studies on mammalian models provide robust evidence about this issue and could help gynecologists worldwide to prevent long term injury caused by EDCs on human fertility. In this systematic review, we aimed to systematically summarize all available data about EDC effects on blastocyst endometrial implantation. We performed a systematic review using PubMed®/MEDLINE® to summarize all in vivo studies, carried out on mice models, analyzing the molecular consequences of the prolonged exposure of EDC on the implantation process. 34 studies carried out on mouse models were included. Primary effects of EDC were a reduction of the number of implantation sites and pregnancy rates, particularly after BPA and phthalate exposure. Furthermore, the endometrial expression of estrogen (ER) and progesterone receptors (PR), as well as their activation pathways, is compromised after EDC exposure. Finally, the expression of the primary endometrial markers of receptivity (such as MUC1, HOXA10, Inn and E-cadherin) after EDC contact was analyzed. In conclusion EDC deeply affect blastocyst implantation in mouse model. Several players of the implantation mechanism are strongly influenced by the exposure to different categories of EDC.
Collapse
|
6
|
Mikhaleva LM, Radzinsky VE, Orazov MR, Khovanskaya TN, Sorokina AV, Mikhalev SA, Volkova SV, Shustova VB, Sinelnikov MY. Current Knowledge on Endometriosis Etiology: A Systematic Review of Literature. Int J Womens Health 2021; 13:525-537. [PMID: 34104002 PMCID: PMC8179825 DOI: 10.2147/ijwh.s306135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To review the mechanisms of endometriosis development, including those related to epigenetic mutations, cellular dysregulation, inflammatory processes, and oxidative stress. Methods A systematic literature review regarding current aspects of endometriosis etiology, genesis and development was performed using the PubMed, Google Scholar, and eLibrary databases. Keywords included endometriosis, etiology, development, genesis, associations and mechanisms. A multilingual search was performed. Results Several mechanisms underline the pathophysiological pathways for endometriosis development. Epigenetic mutations, external and internal influences, and chronic conditions have a significant impact on endometriosis development, survival and regulation. Several historically valid theories on endometriosis development were discussed, as well as updated findings. Conclusion Despite recent advances, fundamental problems in understanding endometriosis remain unresolved. The identification of unknown circulating epithelial progenitors or stem cells that are responsible for epithelial growth in both the endometrium and endometriotic foci seems to be the next step in solving these questions.
Collapse
Affiliation(s)
- Lyudmila M Mikhaleva
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | | | | | - Tatyana N Khovanskaya
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | - Anastasia V Sorokina
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | | | | | - Victoria B Shustova
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | - Mikhail Y Sinelnikov
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
7
|
Vasseghian Y, Berkani M, Almomani F, Dragoi EN. Data mining for pesticide decontamination using heterogeneous photocatalytic processes. CHEMOSPHERE 2021; 270:129449. [PMID: 33418218 DOI: 10.1016/j.chemosphere.2020.129449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Pesticides are chemical compounds used to kill pests and weeds. Due to their nature, pesticides are potentially toxic to many organisms, including humans. Among the various methods used to decontaminate pesticides from the environment, the heterogeneous photocatalytic process is one of the most effective approaches. This study focuses on artificial intelligence (AI) techniques used to generate optimum predictive models for pesticide decontamination processes using heterogeneous photocatalytic processes. In the present study, 537 valid cases from 45 articles from January 2000 to April 2020 were filtered based on their content collected and analyzed. Based on cross-industry standard process (CRISP) methodology, a set of four classifiers were applied: Decision Trees (DT), Bayesian Network (BN), Support Vector Machines (SVM), and Feed Forward Multilayer Perceptron Neural Networks (MLP). To compare the accuracy of the selected algorithms, accuracy, and sensitivity criteria were applied. After the final analysis, the DT classification algorithm with seven factors of prediction, the accuracy of 91.06%, and sensitivity of 80.32% was selected as the optimal predictor model.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam.
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania
| |
Collapse
|
8
|
Evaluation of Development of the Rat Uterus as a Toxicity Biomarker. Methods Mol Biol 2021. [PMID: 33423230 DOI: 10.1007/978-1-0716-1091-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The developing uterus is highly sensitive to a brief exposure to different substances, in particular those with endocrine-disrupting activity. Thus, exposure to environmental, nutritional, chemical, and other xenobiotic factors affecting signaling events during critical organizational periods can alter the normal course of uterine development with lasting consequences. In this chapter, we provide an experimental protocol to evaluate the development of the rat uterus as a toxicity biomarker at two different developmental time points: (1) the neonatal period, on postnatal day (PND) 8, and (2) the prepubertal period, on PND21. In this experimental approach, we propose to assess: (1) uterine morphology and cytodifferentiation, (2) uterine cell proliferation, and (3) the expression of proteins involved in uterine organogenetic differentiation. All these morphological and molecular markers are useful tools to determine the consequences of exposure to toxicants with the potential to disrupt the uterine development.
Collapse
|
9
|
Tavalieri YE, Galoppo GH, Canesini G, Luque EH, Muñoz-de-Toro MM. Effects of agricultural pesticides on the reproductive system of aquatic wildlife species, with crocodilians as sentinel species. Mol Cell Endocrinol 2020; 518:110918. [PMID: 32619582 DOI: 10.1016/j.mce.2020.110918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/15/2022]
Abstract
Agricultural pesticides represent a significant class of endocrine-disrupting chemicals (EDCs) to which non-target organisms around the world are constantly exposed. Laboratory studies have found strong evidence showing the endocrine-disruptive potential of these pesticides at environmentally relevant exposure levels. Since the field of endocrine disruption continues to grow in richness and complexity, this review aims to provide an update on the effects of two agricultural pesticides that act as EDCs: atrazine and endosulfan. We will focus mainly on the effects on crocodilians due to their worldwide occurrence in tropical and sub-tropical wetland ecosystems and their ecological and physiological features, which render them vulnerable to exposure to pesticides with endocrine-disrupting action at all life stages. The results here reviewed provide important insights into the effects of hormonally active agricultural pesticides at cellular, tissue, and organ levels in the reproductive system of crocodiles. A better understanding of the effects of exposure to environmentally relevant doses of EDCs on the reproductive system of crocodilians will contribute to protect and improve the health of both wildlife species and humans.
Collapse
Affiliation(s)
- Y E Tavalieri
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G H Galoppo
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G Canesini
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - E H Luque
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M M Muñoz-de-Toro
- Laboratorio de EcoFisioPatología, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
10
|
Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: Lessons Learned? Mol Cell Endocrinol 2020; 518:110860. [PMID: 32407980 PMCID: PMC9448509 DOI: 10.1016/j.mce.2020.110860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Many agrochemicals have endocrine disrupting properties. A subset of these chemicals is characterized as "estrogenic". In this review, we describe several distinct ways that chemicals used in crop production can affect estrogen signaling. Using three agrochemicals as examples (DDT, endosulfan, and atrazine), we illustrate how screening tests such as the US EPA's EDSP Tier 1 assays can be used as a first-pass approach to evaluate agrochemicals for endocrine activity. We then apply the "Key Characteristics" approach to illustrate how chemicals like DDT can be evaluated, together with the World Health Organization's definition of an endocrine disruptor, to identify data gaps. We conclude by describing important issues that must be addressed in the evaluation and regulation of hormonally active agrochemicals including mixture effects, efforts to reduce vertebrate animal use, chemical prioritization, and improvements in hazard, exposure, and risk assessments.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| | - Aimal Najmi
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
11
|
Development of an MS Workflow Based on Combining Database Search Engines for Accurate Protein Identification and Its Validation to Identify the Serum Proteomic Profile in Female Stress Urinary Incontinence. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/8740468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A critical stage of shotgun proteomics is database search, a process which attempts to match the experimental spectra to the theoretical one. Given the considerable time and effort spent in analysis, it is self-evident for a researcher to aspire for rigorous computational analysis and a more confident and accurate peptide/protein identification. Mass spectrometry (MS) has been applied across several clinical disciplines. The pathophysiology of Stress Urinary Incontinence (SUI), caused by a damaged pelvic floor, has become a boundless disease altering the quality of life worldwide. Although some studies pointed markers that can be bioindicators for SUI, these findings raise the issue of sensitivity and specificity. Therefore, it is critical to have a sensitive and specific analytical approach to identify markers that have been associated with protective and deleterious associations in disease. Here, we describe our designed and developed workflow for protein identification from tandem mass spectrometry that uses multiple search engines. We apply our workflow to an existing study addressing the pathophysiology of SUI. We demonstrate how using the combined approach together with high-performance computing techniques can surmount the challenges of complex analyses and extended computing time. We also compare the relative performance of each combination. Our results suggest that a combination of MS-GF+ and COMET represents the best sensitivity-specificity trade-off, outperforming all other tested combinations. The approach was also sensitive and accurately identified a set of protein that was shown to be markers for categories of diseases associated with the pathophysiology of SUI. This workflow was developed to encourage proteomic researchers to adopt MS-based techniques for accurate analysis and to promote MS as a routine tool to the clinical cohorts.
Collapse
|
12
|
Milesi MM, Durando M, Lorenz V, Gastiazoro MP, Varayoud J. Postnatal exposure to endosulfan affects uterine development and fertility. Mol Cell Endocrinol 2020; 511:110855. [PMID: 32437785 DOI: 10.1016/j.mce.2020.110855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Endosulfan is an organochlorine pesticide (OCP) used in large-scale agriculture for controlling a variety of insects and mites that attack food and non-food crops. Although endosulfan has been listed in the Stockholm Convention as a persistent organic pollutant to be worldwide banned, it is still in use in some countries. Like other OCPs, endosulfan is bioaccumulative, toxic and persistent in the environment. Human unintentional exposure may occur through air inhalation, dietary, skin contact, as well as, via transplacental route and breast feeding. Due to its lipophilic nature, endosulfan is rapidly absorbed into the gastrointestinal tract and bioaccumulates in the fatty tissues. Similar to other OCPs, endosulfan has been classified as an endocrine disrupting chemical (EDC). Endocrine action of endosulfan on development and reproductive function of males has been extensively discussed; however, endosulfan effects on the female reproductive tract have received less attention. This review provides an overview of: i) the fate and levels of endosulfan in the environment and human population, ii) the potential estrogenic properties of endosulfan in vitro and in vivo, iii) its effects on uterine development, and iv) the long-term effects on female fertility and uterine functional differentiation during early gestation.
Collapse
Affiliation(s)
- M M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| | - M Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - V Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| | - M P Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - J Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
13
|
Xiong Y, Wen X, Liu H, Zhang M, Zhang Y. Bisphenol a affects endometrial stromal cells decidualization, involvement of epigenetic regulation. J Steroid Biochem Mol Biol 2020; 200:105640. [PMID: 32087250 DOI: 10.1016/j.jsbmb.2020.105640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
Bisphenol A(BPA) is one of the most widespread endocrine disruptors in the environment and is associated with reproductive diseases. In this study, we focused on the correlation between environmentally relevant levels of BPA exposure and histone modification during endometrial stromal cells decidualization. BPA exposure changed the morphology of decidualized endometrial stromal cells, with inhibition of mixed-lineage leukemia 1(MLL1) and induction of enhancer of zeste homolog2 (EZH2) during in vitro decidualization. The expression of HOXA10, PRL and IGFBP-1 was down-regulated upon BPA treatment. Furthermore, chromatin immunoprecipitation quantitative PCR(ChIP-qPCR) was performed to evaluate the recruitment of histone-3, lysine-4 trimethylation (H3K4me3) and histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. The decreased H3K4me3 and the increased H3K27me3 at HOXA10, PRL and IGFBP-1 promoter regions were consistent with the expression of MLL1 and EZH2 respectively. The effect of BPA on MLL1 and EZH2 could be abrogated by ICI 182,780. Our study provides the first indication that environmentally relevant levels of BPA exposure can regulate the expression of decidualization-related genes by affecting histone modification, impairing endometrial decidualization.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Xue Wen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Huimin Liu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Ming Zhang
- Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China; Reroductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China.
| |
Collapse
|
14
|
Kass L, Gomez AL, Altamirano GA. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol Cell Endocrinol 2020; 508:110789. [PMID: 32165172 DOI: 10.1016/j.mce.2020.110789] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
The exposure to agrochemical pesticides has been associated with several chronic diseases, including different types of cancer and reproductive disorders. In addition, because agrochemical pesticides may act as endocrine disrupting chemicals (EDCs) during different windows of susceptibility, they can increase the risk of impairing the normal development of the mammary gland and/or of developing mammary lesions. Therefore, the aim of this review is to summarize how exposure to different agrochemical pesticides suspected of being EDCs can interfere with the normal development of the mammary gland and the possible association with breast cancer. It has been shown that the mammary glands of male and female rats and mice are susceptible to exposure to non-organochlorine (vinclozolin, atrazine, glyphosate, chlorpyrifos) and organochlorine (endosulfan, methoxychlor, hexachlorobenzene) pesticides. Some of the effects of these compounds in experimental models include increased or decreased mammary development, impaired cell proliferation and steroid receptor expression and signaling, increased malignant cellular transformation and tumor development and angiogenesis. Contradictory findings have been found as to whether there is a causal link between the exposure or the pesticide body burden and breast cancer in humans. However, an association has been observed between pesticides (especially organochlorine compounds) and specific subtypes of breast cancer. Further studies are needed in both humans and experimental models to understand how agrochemical pesticides can induce or promote changes in the development, differentiation and/or malignant transformation of the mammary gland.
Collapse
Affiliation(s)
- Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
15
|
Zanardi MV, Schimpf MG, Gastiazoro MP, Milesi MM, Muñoz-de-Toro M, Varayoud J, Durando M. Glyphosate-based herbicide induces hyperplastic ducts in the mammary gland of aging Wistar rats. Mol Cell Endocrinol 2020; 501:110658. [PMID: 31756423 DOI: 10.1016/j.mce.2019.110658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Glyphosate-based herbicide (GBH) exposure is known to have adverse effects on endocrine-related tissues. Here, we aimed to determine whether early postnatal exposure to a GBH induces long-term effects on the rat mammary gland. Thus, female Wistar pups were injected with saline solution (Control) or GBH (2 mg glyphosate/kg/day) on postnatal days (PND) 1, 3, 5 and 7. At 20 months of age, mammary gland samples were collected to determine histomorphological features, proliferation index and the expression of steroid hormone receptors expression, by immunohistochemistry, and serum samples were collected to assess 17β-estradiol (E2) and progesterone (P4) levels. GBH exposure induced morphological changes evidenced by a higher percentage of hyperplastic ducts and a fibroblastic-like stroma in the mammary gland. GBH-treated rats also showed a high expression of steroid hormone receptors in hyperplastic ducts. The results indicate that early postnatal exposure to GBH induces long-term alterations in the mammary gland morphology of aging female rats.
Collapse
Affiliation(s)
- María V Zanardi
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María P Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
16
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
17
|
Potential Health Risks Linked to Emerging Contaminants in Major Rivers and Treated Waters. WATER 2019. [DOI: 10.3390/w11122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The presence of endocrine-disrupting chemicals (EDCs) in our local waterways is becoming an increasing threat to the surrounding population. These compounds and their degradation products (found in pesticides, herbicides, and plastic waste) are known to interfere with a range of biological functions from reproduction to differentiation. To better understand these effects, we used an in silico ontological pathway analysis to identify the genes affected by the most commonly detected EDCs in large river water supplies, which we grouped together based on four common functions: Organismal injuries, cell death, cancer, and behavior. In addition to EDCs, we included the opioid buprenorphine in our study, as this similar ecological threat has become increasingly detected in river water supplies. Through the identification of the pleiotropic biological effects associated with both the acute and chronic exposure to EDCs and opioids in local water supplies, our results highlight a serious health threat worthy of additional investigations with a potential emphasis on the effects linked to increased DNA damage.
Collapse
|
18
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
19
|
Ingaramo PI, Guerrero Schimpf M, Milesi MM, Luque EH, Varayoud J. Acute uterine effects and long-term reproductive alterations in postnatally exposed female rats to a mixture of commercial formulations of endosulfan and glyphosate. Food Chem Toxicol 2019; 134:110832. [PMID: 31550491 DOI: 10.1016/j.fct.2019.110832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023]
Abstract
Endosulfan and glyphosate are widely used pesticides and have been associated to reproductive disorders. We examine the acute and long-term effects of postnatal exposure to commercial formulations of endosulfan (EF), glyphosate (glyphosate-based herbicide, GBH) and a mixture of both pesticides (MIX). After birth, female pups of Wistar rats received saline solution (CONTROL), EF (600 μg/kg of b.w/day), GBH (2 mg/kg of b.w/day) or a mixture (at the same doses) from postnatal day (PND) 1 to PND7. The uterine histology and expression of Hoxa10, estrogen (ERα) and progesterone (PR) receptors were evaluated on PND8. Reproductive performance was evaluated on gestational day 19. GBH and MIX rats showed an increment of 1) the incidence of luminal epithelial hyperplasia, 2) PR and Hoxa10 expression. EF modified ERα and Hoxa10 expression. During adulthood, MIX and GBH rats showed higher post-implantation losses while EF alone produced an increase of pre-implantation losses. We showed that the co-administration of both pesticides produced acute uterine effects and long-term deleterious reproductive effects that were similar to those induced by GBH alone. We consider important to highlight the necessity to evaluate the commercial pesticide mixture as a more representative model of human exposure to a high number of pesticides.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|
20
|
Alarcón R, Varayoud J, Luque EH, Milesi MM. Effect of neonatal exposure to endosulfan on myometrial adaptation during early pregnancy and labor in rats. Mol Cell Endocrinol 2019; 491:110435. [PMID: 31029737 DOI: 10.1016/j.mce.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022]
Abstract
Proper myometrial adaptation during gestation is crucial for embryo implantation, pregnancy maintenance and parturition. Previously, we reported that neonatal exposure to endosulfan alters uterine development and induces implantation failures. The present work investigates the effects of endosulfan exposure on myometrial differentiation at the pre-implantation period, and myometrial activation during labor. Newborn female rats were s.c. injected with corn oil (vehicle) or 600 μg/kg/day of endosulfan (Endo600) on postnatal days (PND) 1, 3, 5 and 7. On PND90, the rats were mated to evaluate: i) the myometrial differentiation on gestational day 5 (GD5, pre-implantation period), by assessment myometrial histomorphology, smooth muscle cells (SMCs) proliferation, and expression of proteins involved in myometrial adaptation for embryo implantation (steroid receptors, Wnt7a and Hoxa10); ii) the timing of parturition and myometrial activation during labor by determining the uterine expression of contraction-associated genes (oxytocin receptor, OTXR; prostaglandin F2α receptor, PTGFR and connexin-43, Cx-43). Endosulfan decreased the thickness of both myometrial layers, with a concomitant decrease in the collagen remodeling. Blood vessels relative area in the interstitial connective tissue between muscle layers was also decreased. Endo600 group showed lower myometrial proliferation in association with a downregulation of Wnt7a and Hoxa10. Although in all females labor occurred on GD23, the exposure to endosulfan altered the timing of parturition, by inducing advancement in the initiation of labor. This alteration was associated with an increased uterine expression of OTXR, PTGFR and Cx-43. In conclusion, neonatal exposure to endosulfan produced long-term effects affecting myometrial adaptation during early pregnancy and labor. These alterations could be associated with the aberrant effects of endosulfan on the implantation process and the timing of parturition.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
21
|
Tavalieri YE, Galoppo GH, Canesini G, Truter JC, Ramos JG, Luque EH, Muñoz-de-Toro M. The external genitalia in juvenile Caiman latirostris differ in hormone sex determinate-female from temperature sex determinate-female. Gen Comp Endocrinol 2019; 273:236-248. [PMID: 30292702 DOI: 10.1016/j.ygcen.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
The broad-snouted caiman (Caiman latirostris) is a crocodilian species that inhabits South American wetlands. As in all other crocodilians, the egg incubation temperature during a critical thermo-sensitive window (TSW) determines the sex of the hatchlings, a phenomenon known as temperature-dependent sex determination (TSD). In C. latirostris, we have shown that administration of 17-β-estradiol (E2) during the TSW overrides the effect of the male-producing temperature, producing phenotypic females (E2SD-females). Moreover, the administration of E2 during TSW has been proposed as an alternative way to improve the recovery of endangered reptile species, by skewing the population sex ratio to one that favors females. However, the ovaries of E2SD-female caimans differ from those of TSD-females. In crocodilians, the external genitalia (i.e. clitero-penis structure or phallus) are sexually dimorphic and hormone-sensitive. Despite some morphological descriptions aimed to facilitate sexing, we found no available data on the C. latirostris phallus histoarchitecture or hormone dependence. Thus, the aims of this study were: (1) to establish the temporal growth pattern of the phallus in male and female caimans; (2) to evaluate histo-morphological features and the expression of estrogen receptor alpha (ERα) and androgen receptor (AR) in the phallus of male and female pre-pubertal juvenile caimans; and (3) to determine whether the phallus of TSD-females differs from the phallus of E2SD-females. Our results demonstrated sexually dimorphic differences in the size and growth dynamics of the caiman external genitalia, similarities in the shape and spatial distribution of general histo-morphological compartments, and sexually dimorphic differences in innervation, smooth muscle fiber distribution, collagen organization, and ERα and AR expressions. The external genitalia of E2SD-females differed from that of TSD-females in many histological features and in the expression of ERα and AR, resembling patterns described in males. Our results alert on the effects of estrogen agonist exposure during TSW and suggest that caution must be taken regarding the use of E2SD as a procedure for wildlife population management.
Collapse
Affiliation(s)
- Y E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - J C Truter
- Department of Genetics, Stellenbosch University, South Africa
| | - J G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - E H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
22
|
Gomez AL, Altamirano GA, Leturia J, Bosquiazzo VL, Muñoz-de-Toro M, Kass L. Male mammary gland development and methylation status of estrogen receptor alpha in Wistar rats are modified by the developmental exposure to a glyphosate-based herbicide. Mol Cell Endocrinol 2019; 481:14-25. [PMID: 30447247 DOI: 10.1016/j.mce.2018.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023]
Abstract
Postnatal treatment with glyphosate-based herbicides (GBHs) induces endocrine-disrupting effects on the male rat mammary gland. In this study, the effects of developmental exposure to GBH on mammary gland growth and development, and the possible molecular mechanisms involved, were evaluated in pre- and post-pubertal male rats. To this end, pregnant rats were orally exposed through the food to 0, 3.5 or 350 mg GBH/kg bw/day from gestational day 9 until weaning. Mammary gland development and estradiol (E2) and testosterone (T) serum levels of male offspring were evaluated on postnatal day (PND)21 and PND60. Besides, prolactin (PRL) serum levels, proliferation index, androgen (AR) and estrogen receptor alpha (ESR1) expression, ESR1 alternative transcript mRNA levels, and DNA methylation status of ESR1 promoters were assessed on PND60. No differences between groups were observed in mammary gland development at PND21 or in E2 and T levels on both PNDs studied. On PND60, GBH3.5-exposed animals presented similar mammary gland histology but higher AR protein expression than controls, whereas GBH350-exposed males presented a less developed mammary gland, accompanied by a lower proliferation index, similar AR levels, and slightly increased PRL serum levels than controls. In both exposed groups, ESR1 expression was lower than in control rats, being lower in GBH350-exposed rats. GBH also altered the abundance of ESR1 transcript variants by hypermethylation of ESR1 promoters. GHB3.5 decreased only ESR1-OS expression, whereas GBH350 affected ESR1-O, OT and E1 expression. Our results show that developmental exposure to GBH induces epigenetic changes in ESR1, which could be responsible for the altered male mammary gland development observed in GBH350-exposed animals.
Collapse
Affiliation(s)
- Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Leturia
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
23
|
Lorenz V, Milesi MM, Schimpf MG, Luque EH, Varayoud J. Epigenetic disruption of estrogen receptor alpha is induced by a glyphosate-based herbicide in the preimplantation uterus of rats. Mol Cell Endocrinol 2019; 480:133-141. [PMID: 30391669 DOI: 10.1016/j.mce.2018.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
Previously, we have shown that perinatal exposure to a glyphosate-based herbicide (GBH) induces implantation failures in rats. Estrogen receptor alpha (ERα) is critical for successful implantation. ERα transcription is under the control of five promoters (E1, OT, O, ON, and OS), which yield different transcripts. Here, we studied whether perinatal exposure to a GBH alters uterine ERα gene expression and prompts epigenetic modifications in its regulatory regions during the preimplantation period. Pregnant rats (F0) were orally treated with 350 mg glyphosate/kg bw/day through food from gestational day (GD) 9 until weaning. F1 females were bred, and uterine samples were collected on GD5 (preimplantation period). ERα mRNA levels and its transcript variants were evaluated by RT-qPCR. Enzyme-specific restriction sites and predicted transcription factors were searched in silico in the ERα promoter regions to assess the methylation status using the methylation-sensitive restriction enzymes-PCR technique. Post-translational modifications of histones were studied by the chromatin immunoprecipitation assay. GBH upregulated the expression of total ERα mRNA by increasing the abundance of the ERα-O transcript variant. In addition, different epigenetic changes were detected in the O promoter. A decrease in DNA methylation was observed in one of the three sites evaluated in the O promoter. Moreover, histone H4 acetylation and histone H3 lysine 9 trimethylation (H3K9me3) were enriched in the O promoter in GBH-exposed rats, whereas H3K27me3 was decreased. All these alterations could account for the increase in ERα gene expression. Our findings show that perinatal exposure to a GBH causes long-term epigenetic disruption of the uterine ERα gene, which could be associated with the GBH-induced implantation failures.
Collapse
Affiliation(s)
- Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
24
|
Altamirano GA, Delconte MB, Gomez AL, Ingaramo PI, Bosquiazzo VL, Luque EH, Muñoz-de-Toro M, Kass L. Postnatal exposure to a glyphosate-based herbicide modifies mammary gland growth and development in Wistar male rats. Food Chem Toxicol 2018; 118:111-118. [PMID: 29746933 DOI: 10.1016/j.fct.2018.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/08/2023]
Abstract
Our aim was to evaluate whether postnatal exposure to a glyphosate-based herbicide (GBH) modifies mammary gland development in pre- and post-pubertal male rats. From postnatal day 1 (PND1) to PND7, male rats were injected subcutaneously every 48 h with either saline solution (vehicle) or 2 mg GBH/kg·bw. On PND21 and PND60, mammary gland and blood samples were collected. Estradiol (E2) and testosterone (T) serum levels, mammary gland histology, collagen fiber organization, mast cell infiltration, proliferation index, and estrogen (ESR1) and androgen receptor (AR) expression levels were evaluated. At PND21, GBH-exposed male rats exhibited greater development of the mammary gland with increased stromal collagen organization and terminal end buds (TEBs) compared to control rats. At PND60, the number of TEBs remained high and was accompanied by an increase in mast cell infiltration, proliferation and ESR1 expression in GBH-exposed male rats. In contrast, no effects were observed in E2 and T serum levels and AR expression in both days studied. Our results showed that a postnatal subacute treatment with GBH induces endocrine-disrupting effects in the male mammary gland in vivo, altering its normal development.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Melisa B Delconte
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
25
|
Ghosh K, Chatterjee B, Jayaprasad AG, Kanade SR. The persistent organochlorine pesticide endosulfan modulates multiple epigenetic regulators with oncogenic potential in MCF-7 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1612-1622. [PMID: 29054638 DOI: 10.1016/j.scitotenv.2017.10.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Environmental cues and chemicals can potentially modulate the phenotypic expression of genome through alterations in the epigenetic mechanisms. Endosulfan is one of the extensively used organochlorine pesticides around the world which is known for its endocrine, neuro- and reproductive toxicity. This study was aimed to investigate the potential of α-endosulfan in modulation of multiple epigenetic enzymes in MCF-7 cells. The cells were treated with DMSO (control) or α-endosulfan (1 and 10μM) and the expression of various epigenetic enzymes was assayed by real-time PCR and immunoblotting, in addition to their activity assays. The results shows α-endosulfan, at 1 and 10μM concentration, significantly promoted viability of MCF-7 cells compared to untreated cells after 24h. The expression of DNA methyltransferases (DNMTs) was upregulated while the global DNA methylation status was initially affected, but later recovered. Total intracellular histone deacetylase (HDAC) activity was found to be significantly increased which was correlated with upregulation of class I HDACs (HDAC 1 and 3) while no significant alteration in the other HDAC classes was observed. The expression and activity of arginine and lysine methylation enzymes, protein arginine methyltransferase 5 (PRMT5) and Enhancer of Zeste homolog 2 (EZH2), respectively, were also found to be modulated by α-endosulfan. We found increased expression of histones H3 and H4, trimethylated H3K27 (product of EZH2), symmetric dimethylation of H4R3 (product of PRMT5) and five different (unidentified) proteins whose arginine residues are symmetrically dimethylated (by increased level of PRMT5) were enhanced in response to 10μM α-endosulfan after 24h exposure window. Moreover, overexpression of basal level of estrogen receptor alpha (ERα), suggests estrogenicity of α-endosulfan. In summary, our results shows modulatory impact of α-endosulfan on multiple cellular epigenetic regulators, known to possess oncogenic potential which might contribute to mechanistic insight of its action in future.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Aparna Geetha Jayaprasad
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India.
| |
Collapse
|