1
|
Bar-Sadeh B, Pnueli L, Keestra S, Bentley GR, Melamed P. Srd5a1 is Differentially Regulated and Methylated During Prepubertal Development in the Ovary and Hypothalamus. J Endocr Soc 2023; 7:bvad108. [PMID: 37646011 PMCID: PMC10461783 DOI: 10.1210/jendso/bvad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Indexed: 09/01/2023] Open
Abstract
5α-reductase-1 catalyzes production of various steroids, including neurosteroids. We reported previously that expression of its encoding gene, Srd5a1, drops in murine ovaries and hypothalamic preoptic area (POA) after early-life immune stress, seemingly contributing to delayed puberty and ovarian follicle depletion, and in the ovaries the first intron was more methylated at two CpGs. Here, we hypothesized that this CpG-containing locus comprises a methylation-sensitive transcriptional enhancer for Srd5a1. We found that ovarian Srd5a1 mRNA increased 8-fold and methylation of the same two CpGs decreased up to 75% between postnatal days 10 and 30. Estradiol (E2) levels rise during this prepubertal stage, and exposure of ovarian cells to E2 increased Srd5a1 expression. Chromatin immunoprecipitation in an ovarian cell line confirmed ESR1 binding to this differentially methylated genomic region and enrichment of the enhancer modification, H3K4me1. Targeting dCas9-DNMT3 to this locus increased CpG2 methylation 2.5-fold and abolished the Srd5a1 response to E2. In the POA, Srd5a1 mRNA levels decreased 70% between postnatal days 7 and 10 and then remained constant without correlation to CpG methylation levels. Srd5a1 mRNA levels did not respond to E2 in hypothalamic GT1-7 cells, even after dCas9-TET1 reduced CpG1 methylation by 50%. The neonatal drop in POA Srd5a1 expression occurs at a time of increasing glucocorticoids, and treatment of GT1-7 cells with dexamethasone reduced Srd5a1 mRNA levels; chromatin immunoprecipitation confirmed glucocorticoid receptor binding at the enhancer. Our findings on the tissue-specific regulation of Srd5a1 and its methylation-sensitive control by E2 in the ovaries illuminate epigenetic mechanisms underlying reproductive phenotypic variation that impact life-long health.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sarai Keestra
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | | | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
2
|
Abellán-Álvaro M, Stork O, Agustín-Pavón C, Santos M. MeCP2 haplodeficiency and early-life stress interaction on anxiety-like behavior in adolescent female mice. J Neurodev Disord 2021; 13:59. [PMID: 34895132 PMCID: PMC8903671 DOI: 10.1186/s11689-021-09409-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early-life stress can leave persistent epigenetic marks that may modulate vulnerability to psychiatric conditions later in life, including anxiety, depression and stress-related disorders. These are complex disorders with both environmental and genetic influences contributing to their etiology. Methyl-CpG Binding Protein 2 (MeCP2) has been attributed a key role in the control of neuronal activity-dependent gene expression and is a master regulator of experience-dependent epigenetic programming. Moreover, mutations in the MECP2 gene are the primary cause of Rett syndrome and, to a lesser extent, of a range of other major neurodevelopmental disorders. Here, we aim to study the interaction of MeCP2 with early-life stress in variables known to be affected by this environmental manipulation, namely anxiety-like behavior and activity of the underlying neural circuits. METHODS Using Mecp2 heterozygous and wild-type female mice we investigated the effects of the interaction of Mecp2 haplodeficiency with maternal separation later in life, by assessing anxiety-related behaviors and measuring concomitant c-FOS expression in stress- and anxiety-related brain regions of adolescent females. Moreover, arginine vasopressin and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus were analyzed for neuronal activation. RESULTS In wild-type mice, maternal separation caused a reduction in anxiety-like behavior and in the activation of the hypothalamic paraventricular nucleus, specifically in corticotropin-releasing hormone-positive cells, after the elevated plus maze. This effect of maternal separation was not observed in Mecp2 heterozygous females that per se show decreased anxiety-like behavior and concomitant decreased paraventricular nuclei activation. CONCLUSIONS Our data supports that MeCP2 is an essential component of HPA axis reprogramming and underlies the differential response to anxiogenic situations later in life.
Collapse
Affiliation(s)
- María Abellán-Álvaro
- Unitat Mixta d'Investigació en Neuroanatomia Funcional, Departamento de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, València, Spain
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Carmen Agustín-Pavón
- Unitat Mixta d'Investigació en Neuroanatomia Funcional, Departamento de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, València, Spain
| | - Mónica Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
3
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Galbally M, Watson SJ, van IJzendoorn M, Saffery R, Ryan J, de Kloet ER, Oberlander TF, Lappas M, Lewis AJ. The role of glucocorticoid and mineralocorticoid receptor DNA methylation in antenatal depression and infant stress regulation. Psychoneuroendocrinology 2020; 115:104611. [PMID: 32087522 DOI: 10.1016/j.psyneuen.2020.104611] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Understanding fetal programming pathways that underpin the relationship between maternal and offspring mental health necessitates an exploration of potential role of epigenetic variation in early development. Two genes involved in stress response regulation, the glucocorticoid and mineralocorticoid receptors (NR3C1 and NR3C2) have been a focus in understanding stressful exposures and mental health outcomes. Data were obtained from 236 pregnant women from the Mercy Pregnancy Emotional Wellbeing Study (MPEWS), a selected pregnancy cohort, recruited in early pregnancy. Depression was measured using the Structured Clinical Interview for DSM-IV (SCID-IV) and repeated measures of the Edinburgh Postnatal Depression Scale (EPDS). Antidepressant use, stressful events and anxiety symptoms were measured. NR3C1 and NR3C2 DNA methylation was measured in placental and infant buccal samples. Infant cortisol was measured in repeat saliva samples across a task. This study found maternal early pregnancy depressive disorder and symptoms were associated with lower DNA methylation at NR3C2 CpG_24 in placental tissue. There were no significant differences for depression or antidepressant use for DNA methylation of NR3C1. Antenatal depression was associated with lower infant cortisol reactivity at 12 months. DNA methylation in CpG_24 site in NR3C2 in placental samples suppressed the relationship between early maternal depressive symptoms and infant cortisol reactivity. These findings show a relationship between antenatal depression, NR3C2 DNA methylation and infant cortisol response providing support for a specific fetal programming pathway. Further research is required to examine the stability of this epigenetic mark across childhood and long-term mental health outcomes.
Collapse
Affiliation(s)
- Megan Galbally
- School of Psychology and Exercise Science, Murdoch University, Australia; School of Medicine, University of Notre Dame, Australia; King Edward Memorial Hospital, Australia.
| | - Stuart J Watson
- School of Psychology and Exercise Science, Murdoch University, Australia; School of Medicine, University of Notre Dame, Australia
| | - Marinus van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Netherlands
| | - Richard Saffery
- Murdoch Children's Research Institute & Department of Paediatrics, The University of Melbourne, Australia
| | - Joanne Ryan
- Murdoch Children's Research Institute & Department of Paediatrics, The University of Melbourne, Australia; Department of Epidemiology & Preventive Medicine, Monash University, Australia
| | | | - Tim F Oberlander
- Department of Pediatrics and School of Population and Public Health, Univeristy of British Columbia, Vancouver, BC, Canada
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Andrew J Lewis
- School of Psychology and Exercise Science, Murdoch University, Australia
| |
Collapse
|
5
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure engenders intergenerational downregulation and aberrant posttranslational modification of cardinal epigenetic factors in the frontal cortices, striata, and hippocampi of adolescent mice. Epigenetics Chromatin 2020; 13:13. [PMID: 32138755 PMCID: PMC7059320 DOI: 10.1186/s13072-020-00332-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maternal smoking of traditional or electronic cigarettes during pregnancy, which constitutes developmental nicotine exposure (DNE), heightens the risk of neurodevelopmental disorders including ADHD, autism, and schizophrenia in children. Modeling the intergenerationally transmissible impacts of smoking during pregnancy, we previously demonstrated that both the first- and second-generation adolescent offspring of nicotine-exposed female mice exhibit enhanced nicotine preference, hyperactivity and risk-taking behaviors, aberrant rhythmicity of home cage activity, nicotinic acetylcholine receptor and dopamine transporter dysfunction, impaired furin-mediated proBDNF proteolysis, hypocorticosteronemia-related glucocorticoid receptor hypoactivity, and global DNA hypomethylation in the frontal cortices and striata. This ensemble of multigenerational DNE-induced behavioral, neuropharmacological, neurotrophic, neuroendocrine, and DNA methylomic anomalies recapitulates the pathosymptomatology of neurodevelopmental disorders such as ADHD, autism, and schizophrenia. Further probing the epigenetic bases of DNE-induced multigenerational phenotypic aberrations, the present study examined the expression and phosphorylation of key epigenetic factors via an array of immunoblot experiments. RESULTS Data indicate that DNE confers intergenerational deficits in corticostriatal DNA methyltransferase 3A (DNMT3A) expression accompanied by downregulation of methyl-CpG-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2) in the frontal cortices and hippocampi, while the expression of ten-eleven translocase methylcytosine dioxygenase 2 (TET2) is unaltered. Moreover, DNE evokes multigenerational abnormalities in HDAC2 (Ser394) but not MeCP2 (Ser421) phosphorylation in the frontal cortices, striata, and hippocampi. CONCLUSIONS In light of the extensive gene regulatory roles of DNMT3A, MeCP2, and HDAC2, the findings of this study that DNE elicits downregulation and aberrant posttranslational modification of these factors in both first- and second-generation DNE mice suggest that epigenetic perturbations may constitute a mechanistic hub for the intergenerational transmission of DNE-induced neurodevelopmental disorder-like phenotypes.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, USA.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, USA
| |
Collapse
|
6
|
MeCP2 inhibits cell functionality through FoxO3a and autophagy in endothelial progenitor cells. Aging (Albany NY) 2019; 11:6714-6733. [PMID: 31477637 PMCID: PMC6756911 DOI: 10.18632/aging.102183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Objectives: Autophagy is an evolutionarily conserved intracellular degradation mechanism in which cell constituents are phagocytosed to maintain cellular homeostasis. Forkhead box O 3a (FoxO3a) promotes autophagy to protect cells from environmental stress. Methylated CpG binding protein 2 (MeCP2) is a nuclear protein that binds DNA and represses transcription. However, the mechanism and interplay between FoxO3a and MeCP2 underlying endothelial progenitor cell (EPC) function are not fully understood. Results: In EPCs, MeCP2 overexpression attenuated autophagy and cell functionality, which were reversed by the autophagy activator rapamycin or co-transfection with FoxO3a. FoxO3a promoted cell function, which was reversed by the autophagy inhibitor chloroquine. Following MeCP2 overexpression, MeCP2 was found enriched on the FoxO3a promoter, resulting in promoter hypermethylation and enhanced H3K9 histone modification in nucleosomes of the FoxO3a promoter. Conclusions: MeCP2 attenuated cell functionality via DNA hypermethylation and histone modification of the FoxO3a promoter to inhibit FoxO3a transcription and autophagy. Materials and Methods: EPCs were isolated from human umbilical cord blood and treated with adenoviral vectors containing interference sequences. The effects and mechanism of MeCP2 and FoxO3a were analyzed by utilizing western blotting, cell counting kit-8, transwell plates, Matrigel, matrix adhesion, transmission electron microscopy, and chromatin immunoprecipitation.
Collapse
|
7
|
Singh J, Santosh P. Key issues in Rett syndrome: emotional, behavioural and autonomic dysregulation (EBAD) - a target for clinical trials. Orphanet J Rare Dis 2018; 13:128. [PMID: 30064458 PMCID: PMC6069816 DOI: 10.1186/s13023-018-0873-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/10/2018] [Indexed: 02/02/2023] Open
Abstract
Complex neurodevelopmental disorders need multi-disciplinary treatment approaches for optimal care. The clinical effectiveness of treatments is limited in patients with rare genetic syndromes with multisystem morbidity. Emotional and behavioural dysregulation is common across many neurodevelopmental disorders. It can manifest in children across multiple diagnostic groups, including those on the autism spectrum and in rare genetic syndromes such as Rett Syndrome (RTT). There is, however a remarkable scarcity in the literature on the impact of the autonomic component on emotional and behavioural regulation in these disorders, and on the longer-term outcomes on disorder burden.RTT is a debilitating and often life-threatening disorder involving multiple overlapping physiological systems. Autonomic dysregulation otherwise known as dysautonomia is a cardinal feature of RTT characterised by an imbalance between the sympathetic and parasympathetic arms of the autonomic nervous system. Unlocking the autonomic component of emotional and behavioural dysregulation would be central in reducing the impairment seen in patients with RTT. In this vein, Emotional, Behavioural and Autonomic Dysregulation (EBAD) would be a useful construct to target for treatment which could mitigate burden and improve the quality of life of patients.RTT can be considered as a congenital dysautonomia and because EBAD can give rise to impairments occurring in multiple overlapping physiological systems, understanding these physiological responses arising out of EBAD would be a critical part to consider when planning treatment strategies and improving clinical outcomes in these patients. Biometric guided pharmacological and bio-feedback therapy for the behavioural and emotional aspects of the disorder offers an attracting perspective to manage EBAD in these patients. This can also allow for the stratification of patients into clinical trials and could ultimately help streamline the patient care pathway for optimal outcomes.The objectives of this review are to emphasise the key issues relating to the management of EBAD in patients with RTT, appraise clinical trials done in RTT from the perspective of autonomic physiology and to discuss the potential of EBAD as a target for clinical trials.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|