1
|
Dowdy T, Vilamu HM, Lita A, Li A, Yamasaki T, Zhang L, Chari R, Song H, Zhang M, Zhang W, Briceno N, Davis D, Gilbert MR, Larion M. Targeting the sphingolipid rheostat in IDH1 mut glioma alters cholesterol homeostasis and triggers apoptosis via membrane degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591321. [PMID: 38903071 PMCID: PMC11188108 DOI: 10.1101/2024.04.26.591321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The cross-regulation of metabolism and trafficking is not well understood for the vital sphingolipids and cholesterol constituents of cellular compartments. While reports are starting to surface on how sphingolipids like sphingomyelin (SM) dysregulate cholesterol levels in different cellular compartments (Jiang et al., 2022), limited research is available on the mechanisms driving the relationship between sphingolipids and cholesterol homeostasis, or its biological implications. Previously, we have identified sphingolipid metabolism as a unique vulnerability for IDH1 mut gliomas via a rational drug design. Herein, we show how modulating sphingolipid levels affects cholesterol homeostasis in brain tumors. However, we unexpectedly discovered for the first time that C17 sphingosine and NDMS addition to cancer cells alters cholesterol homeostasis by impacting its cellular synthesis, uptake, and efflux leading to a net decrease in cholesterol levels and inducing apoptosis. Our results reflect a reverse correlation between the levels of sphingosines, NDMS, and unesterified, free cholesterol in the cells. We show that increasing sphingosine and NDMS (a sphingosine analog) levels alter not only the trafficking of cholesterol between membranes but also the efflux and synthesis of cholesterol. We also demonstrate that despite the effort to remove free cholesterol by ABCA1-mediated efflux or by suppressing machinery for the influx (LDLR) and biosynthetic pathway (HMGCR), apoptosis is inevitable for IDH1 mut glioma cells. This is the first study that shows how altering sphingosine levels directly affects cholesterol homeostasis in cancer cells and can be used to manipulate this relationship to induce apoptosis in IDH1 mut gliomas.
Collapse
|
2
|
Pu Y, Ticiani E, Pearl S, Martin D, Veiga-Lopez A. The organotin triphenyltin disrupts cholesterol signaling in mammalian ovarian steroidogenic cells through a combination of LXR and RXR modulation. Toxicol Appl Pharmacol 2022; 453:116209. [PMID: 35998708 PMCID: PMC9993406 DOI: 10.1016/j.taap.2022.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Organotins, a chemical family with over 30 congeners to which humans are directly exposed to through food consumption, are a chemical class widely used as stabilizers in polyvinyl chloride, and biocides in antifouling products. Aside from tributyltin (TBT), toxicological information on other organotin congeners, such as triphenyltin (TPT), remains scarce. Our previous work has demonstrated that TBT can interfere with cholesterol trafficking in steroidogenic cells. Given their structural similarities, we hypothesized that TPT, similar to TBT, disrupts intracellular cholesterol transport and impairs steroidogenesis in ovarian theca cells. To test this, human and ovine primary ovarian theca cells were isolated, purified and exposed to TPT at environmentally relevant doses (1 or 10 ng/ml) in pre-luteinized (48 h exposure) or luteinizing cells (72 h exposure). Intracellular cholesterol levels, progesterone, and testosterone secretion and gene expression of nuclear receptors, cholesterol transporters, and steroidogenic enzymes were evaluated. In ovine cells, TPT upregulated StAR, ABCA1, and SREBF1 mRNA and ABCA1 protein in both pre-luteinized and luteinized stages. TPT did not alter intracellular cholesterol or testosterone synthesis, but upregulated progesterone production. Inhibitor and shRNA knockdown approaches were then used to evaluate the role of retinoid X receptor (RXR) and liver X receptor (LXR) on TPT's effects. TPT upregulated ABCA1 and StAR expression was blocked by both LXR and RXR antagonists. TPT's effect on ABCA1 expression was reduced in LXRβ and RXRβ knockdown theca cells. Similar findings were obtained with primary human theca cells. No synergistic effect of TBT and TPT was observed. In conclusion, at an environmentally relevant dose, TPT upregulates theca cell cholesterol transporter ABCA1 expression via RXR and LXR pathways. Similar effects of TPT on human and sheep theca cells supports its conserved mechanism across mammalian theca cells.
Collapse
Affiliation(s)
- Yong Pu
- Department of Pathology, University of Illinois at Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, IL, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Zeyneloglu HB, Tohma YA, Gunakan E, Abasıyanık MA, Sozen C, Onalan G. Diet and pravastatin administration prior to in vitro fertilization treatment may improve pregnancy outcome in women with dyslipidemia. J OBSTET GYNAECOL 2022; 42:2235-2240. [PMID: 35257641 DOI: 10.1080/01443615.2022.2036968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we aimed to identify whether using statins may increase the chance of pregnancy in In Vitro Fertilisation / Intra-Cytoplasmic Sperm Injection (IVF/ICSI) patients with hyperlipidaemia. Therefore, in this retrospective cohort study, 70 patients constituted the study population and all patients were managed by lipid lowering diet. Ten mg pravastatin (pravachol DEVA, Istanbul, Turkey) was added to therapy in case of resistant hypercholesterolaemia after 15 days of the diet. Fifty-one patients were treated with diet only and the remaining nineteen patients were offered both diet and pravastatin. Clinical pregnancy rate was significantly better with the patients who used pravastatin (68.4% vs. 39.2%, p = .029). Ongoing pregnancy rates were 63.2% and 33.3% with pravastatin and diet only, respectively, which were statistically significant (p:.024). According to multivariate analysis, pravastatin use was found independently and statistically significant for clinical pregnancy and ongoing pregnancy rate after IVF/ICSI in patients with dyslipidemia (HR 3.79; 95% CI 1.31-10.97; p:.014 and HR 3.18; 95% CI 1.22-8.27; p:.018). When we analysed stratified data according to the AMH levels, we noticed that as AMH levels increased, the pregnancy rates increased; the most benefit from pravastatin was in the group with AMH levels >2 ng/mL.IMPACT STATEMENTWhat is already known on this subject? Dyslipidemia in In IVF/ICSI patients with polycystic ovary syndrome had negative impact on pregnancy ratesWhat the results of this study add? The findings of the study support that pravastatin may help to improve pregnancy outcome, especially in normal and high responders, regardless of whether decreased serum LDL or total cholesterol level.What the implications are of these findings for clinical practice and/or further research? As a result of our data, we speculated that it should be routine to investigate the lipid profile in every IVF/ICSI patient and should be treated accordingly, if necessary.
Collapse
Affiliation(s)
- Hulusi Bulent Zeyneloglu
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baskent University School of Medicine, Ankara, Turkey
| | - Yusuf Aytac Tohma
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baskent University School of Medicine, Ankara, Turkey
| | - Emre Gunakan
- Department of Obstetrics and Gynecology, Baskent University School of Medicine, Ankara, Turkey
| | - Mehmet Ali Abasıyanık
- Department of Obstetrics and Gynecology, Baskent University School of Medicine, Ankara, Turkey
| | - Ceren Sozen
- Department of Obstetrics and Gynecology, Baskent University School of Medicine, Ankara, Turkey
| | - Gogsen Onalan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baskent University School of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Hu S, Gao S, Zhu J, Gan X, Chen X, He H, Liang L, Hu B, Hu J, Liu H, Han C, Kang B, Xia L, Wang J. Differential actions of diacylglycerol acyltransferase (DGAT) 1 and 2 in regulating lipid metabolism and progesterone secretion of goose granulosa cells. J Steroid Biochem Mol Biol 2020; 202:105721. [PMID: 32565248 DOI: 10.1016/j.jsbmb.2020.105721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 12/28/2022]
Abstract
Accumulating evidence shows that granulosa cells within both mammalian and avian ovaries have the ability to synthesize fatty acids through de novo lipogenesis and to accumulate triglycerides essential for oocyte and ovarian development. However, very little is known about the exact roles of key genes involved in the lipid metabolic pathway in granulosa cells. The goal of this study was to investigate the differential actions of diacylglycerol acyltransferase (DGAT) 1 and 2, which are recognized as the rate-limiting enzymes catalyzing the last step of triglyceride biosynthesis, in regulating lipid metabolism and steroidogenesis in granulosa cells of goose follicles at different developmental stages. It was observed that the mRNAs encoding DGAT1 and DGAT2 were ubiquitous in all examined granulosa cell layers but exhibited distinct expression profiles during follicle development. Notably, the mRNA levels of DGAT1, DGAT2, FSHR, LHR, STAR, CYP11A1, and 3βHSD remained almost constant in all except for 1-2 follicles within the 8-10 mm cohort, followed by an acute increase/decrease in the F5 follicles. At the cellular level, siRNA-mediated downregulation of DGAT1 or DGAT2 did not change the amount of lipids accumulated in both undifferentiated- and differentiated granulosa cells, while overexpression of DGAT2 promoted lipid accumulation and expression of lipogenic-related genes in these cells. Meanwhile, we found that interfering DGAT2 had no effect but interfering DGAT1 or overexpressing DGAT2 stimulated progesterone secretion in undifferentiated granulosa cells; in contrast, interference or overexpression of DGAT1/2 failed to change progesterone levels in differentiated granulosa cells but differently modulated expression of steroidogenic-related genes. Therefore, it could be concluded that DGAT1 is less efficient than DGAT2 in promoting lipid accumulation in both undifferentiated- and differentiated granulosa cells and that DGAT1 negatively while DGAT2 positively regulates progesterone production in undifferentiated granulosa cells.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanyan Gao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaran Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Liang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Huang Q, Liu Y, Yang Z, Xie Y, Mo Z. The Effects of Cholesterol Metabolism on Follicular Development and Ovarian Function. Curr Mol Med 2019; 19:719-730. [PMID: 31526349 DOI: 10.2174/1566524019666190916155004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
Cholesterol is an important substrate for the synthesis of ovarian sex hormones and has an important influence on follicular development. The cholesterol in follicular fluid is mainly derived from plasma. High-density lipoprotein (HDL) and lowdensity lipoprotein (LDL) play important roles in ovarian cholesterol transport. The knockout of related receptors in the mammalian HDL and LDL pathways results in the reduction or absence of fertility, leading us to support the importance of cholesterol homeostasis in the ovary. However, little is known about ovarian cholesterol metabolism and the complex regulation of its homeostasis. Here, we reviewed the cholesterol metabolism in the ovary and speculated that regardless of the functioning of cholesterol metabolism in the system or the ovarian microenvironment, an imbalance in cholesterol homeostasis is likely to have an adverse effect on ovarian structure and function.
Collapse
Affiliation(s)
- Qin Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Yannan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, China
| | - Zhen Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Yuanjie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Dallel S, Tauveron I, Brugnon F, Baron S, Lobaccaro JMA, Maqdasy S. Liver X Receptors: A Possible Link between Lipid Disorders and Female Infertility. Int J Mol Sci 2018; 19:ijms19082177. [PMID: 30044452 PMCID: PMC6121373 DOI: 10.3390/ijms19082177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
A close relationship exists between cholesterol and female reproductive physiology. Indeed, cholesterol is crucial for steroid synthesis by ovary and placenta, and primordial for cell structure during folliculogenesis. Furthermore, oxysterols, cholesterol-derived ligands, play a potential role in oocyte maturation. Anomalies of cholesterol metabolism are frequently linked to infertility. However, little is known about the molecular mechanisms. In parallel, increasing evidence describing the biological roles of liver X receptors (LXRs) in the regulation of steroid synthesis and inflammation, two processes necessary for follicle maturation and ovulation. Both of the isoforms of LXRs and their bona fide ligands are present in the ovary. LXR-deficient mice develop late sterility due to abnormal oocyte maturation and increased oocyte atresia. These mice also have an ovarian hyper stimulation syndrome in response to gonadotropin stimulation. Hence, further studies are necessary to explore their specific roles in oocyte, granulosa, and theca cells. LXRs also modulate estrogen signaling and this could explain the putative protective role of the LXRs in breast cancer growth. Altogether, clinical studies would be important for determining the physiological relevance of LXRs in reproductive disorders in women.
Collapse
Affiliation(s)
- Sarah Dallel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France.
| | - Igor Tauveron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France.
| | - Florence Brugnon
- Université Clermont Auvergne, ImoST, INSERM U1240, 58, rue Montalembert, BP184, F63005 Clermont-Ferrand, France.
- CHU Clermont Ferrand, Assistance Médicale à la Procréation-CECOS, Hôpital Estaing, Place Lucie et Raymond Aubrac, F-63003 Clermont-Ferrand CEDEX 1, France.
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Jean Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Salwan Maqdasy
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France.
| |
Collapse
|