1
|
Vinay CM, Sanjay KU, Joshi MB, Rai PS. Variations in metabolite fingerprints of Tinospora species targeting metabolic disorders: an integrated metabolomics and network pharmacology approach. Metabolomics 2024; 21:11. [PMID: 39702870 DOI: 10.1007/s11306-024-02209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Metabolic disorders are a global health concern, necessitating the development of drugs with fewer side effects and more efficacy. Traditional Indian medicine uses Tinospora cordifolia and Tinospora sinensis, but their metabolite fingerprints and impact on geographical location remains unknown. OBJECTIVE The present study aimed to identify metabolite fingerprints from T. cordifolia and T. sinensis species from different geographic locations and also to identify potential quality markers for treating metabolic disorders. METHODS Non-targeted metabolite fingerprinting of T. cordifolia and T. sinensis was performed using HPLC-QTOF-MS/MS analysis. Network pharmacology, molecular docking and molecular dynamics simulation analysis were performed to identify potential quality markers, hub targets, and key pathways associated with metabolic disorders. RESULTS In this study, six potential marker compounds and twenty-five differential compounds were identified between T. cordifolia and T. sinensis. Based on geography, five and one metabolite marker compounds were identified in T. cordifolia and T. sinensis respectively. Network pharmacology, molecular docking, and molecular dynamics simulation analysis revealed trans piceid, crustecdysone in T. cordifolia, and gallic acid in T. sinensis as potential quality markers against metabolic disorder related hub targets. CONCLUSION Integration of non-targeted metabolomics and network pharmacology approach deciphers the pharmacological mechanism of action in terms of identifying potential quality markers from Tinospora species that can be used against metabolic disorders. However, further research is required to validate these findings in in vitro and in vivo studies for better assertion.
Collapse
Affiliation(s)
- Chigateri M Vinay
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kannath U Sanjay
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Papadimitriou K, Mousiolis AC, Mintziori G, Tarenidou C, Polyzos SA, Goulis DG. Hypogonadism and nonalcoholic fatty liver disease. Endocrine 2024; 86:28-47. [PMID: 38771482 DOI: 10.1007/s12020-024-03878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently proposed to be renamed to metabolic dysfunction-associated steatotic liver disease (MASLD), is a major global public health concern, affecting approximately 25-30% of the adult population and possibly leading to cirrhosis, hepatocellular carcinoma, and liver transplantation. The liver is involved in the actions of sex steroids via their hepatic metabolism and production of the sex hormone-binding globulin (SHBG). Liver disease, including NAFLD, is associated with reproductive dysfunction in men and women, and the prevalence of NAFLD in patients with hypogonadism is considerable. A wide spectrum of possible pathophysiological mechanisms linking NAFLD and male/female hypogonadism has been investigated. As therapies targeting NAFLD may impact hypogonadism in men and women, and vice versa, treatments of the latter may affect NAFLD, and an insight into their pathophysiological pathways is imperative. This paper aims to elucidate the complex association between NAFLD and hypogonadism in men and women and discuss the therapeutic options and their impact on both conditions.
Collapse
Affiliation(s)
- Kasiani Papadimitriou
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Athanasios C Mousiolis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gesthimani Mintziori
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Vo K, Sharma Y, Paul A, Mohamadi R, Mohamadi A, Fields PE, Rumi MAK. Importance of Transcript Variants in Transcriptome Analyses. Cells 2024; 13:1502. [PMID: 39273072 PMCID: PMC11394320 DOI: 10.3390/cells13171502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
RNA sequencing (RNA-Seq) has become a widely adopted technique for studying gene expression. However, conventional RNA-Seq analyses rely on gene expression (GE) values that aggregate all the transcripts produced under a single gene identifier, overlooking the complexity of transcript variants arising from different transcription start sites or alternative splicing. Transcript variants may encode proteins with diverse functional domains, or noncoding RNAs. This study explored the implications of neglecting transcript variants in RNA-Seq analyses. Among the 1334 transcription factor (TF) genes expressed in mouse embryonic stem (ES) or trophoblast stem (TS) cells, 652 were differentially expressed in TS cells based on GE values (365 upregulated and 287 downregulated, ≥absolute 2-fold changes, false discovery rate (FDR) p-value ≤ 0.05). The 365 upregulated genes expressed 883 transcript variants. Further transcript expression (TE) based analyses identified only 174 (<20%) of the 883 transcripts to be upregulated. The remaining 709 transcripts were either downregulated or showed no significant changes. Meanwhile, the 287 downregulated genes expressed 856 transcript variants and only 153 (<20%) of the 856 transcripts were downregulated. The other 703 transcripts were either upregulated or showed no significant change. Additionally, the 682 insignificant TF genes (GE values < absolute 2-fold changes and/or FDR p-values > 0.05) between ES and TS cells expressed 2215 transcript variants. These included 477 (>21%) differentially expressed transcripts (276 upregulated and 201 downregulated, ≥absolute 2-fold changes, FDR p-value ≤ 0.05). Hence, GE based RNA-Seq analyses do not represent accurate expression levels due to divergent transcripts expression from the same gene. Our findings show that by including transcript variants in RNA-Seq analyses, we can generate a precise understanding of a gene's functional and regulatory landscape; ignoring the variants may result in an erroneous interpretation.
Collapse
Affiliation(s)
- Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yashica Sharma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anohita Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amelia Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patrick E Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Li Y, Liu Y, Li Y, Cao Y, Zhang H, Yuan P, Dong B, Shen L. Integrated lipidomics and network pharmacology analysis to determine how Gu Fu Sheng Capsule improves lipid metabolism in rats with steroid-induced osteonecrosis of the femoral head. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
5
|
Lee EB, Chakravarthi VP, Mohamadi R, Dahiya V, Vo K, Ratri A, Fields PE, Marsh CA, Rumi MAK. Loss of ERβ Disrupts Gene Regulation in Primordial and Primary Follicles. Int J Mol Sci 2024; 25:3202. [PMID: 38542176 PMCID: PMC10970686 DOI: 10.3390/ijms25063202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 11/03/2024] Open
Abstract
Loss of ERβ increases primordial follicle growth activation (PFGA), leading to premature ovarian follicle reserve depletion. We determined the expression and gene regulatory functions of ERβ in dormant primordial follicles (PdFs) and activated primary follicles (PrFs) using mouse models. PdFs and PrFs were isolated from 3-week-old Erβ knockout (Erβnull) mouse ovaries, and their transcriptomes were compared with those of control Erβfl/fl mice. We observed a significant (≥2-fold change; FDR p-value ≤ 0.05) deregulation of approximately 5% of genes (866 out of 16,940 genes, TPM ≥ 5) in Erβnull PdFs; ~60% (521 out of 866) of the differentially expressed genes (DEGs) were upregulated, and 40% were downregulated, indicating that ERβ has both transcriptional enhancing as well as repressing roles in dormant PdFs. Such deregulation of genes may make the Erβnull PdFs more susceptible to increased PFGA. When the PdFs undergo PFGA and form PrFs, many new genes are activated. During PFGA of Erβfl/fl follicles, we detected a differential expression of ~24% genes (4909 out of 20,743; ≥2-fold change; FDR p-value ≤ 0.05; TPM ≥ 5); 56% upregulated and 44% downregulated, indicating the gene enhancing and repressing roles of Erβ-activated PrFs. In contrast, we detected a differential expression of only 824 genes in Erβnull follicles during PFGA (≥2-fold change; FDR p-value ≤ 0.05; TPM ≥ 5). Moreover, most (~93%; 770 out of 824) of these DEGs in activated Erβnull PrFs were downregulated. Such deregulation of genes in Erβnull activated follicles may impair their inhibitory role on PFGA. Notably, in both Erβnull PdFs and PrFs, we detected a significant number of epigenetic regulators and transcription factors to be differentially expressed, which suggests that lack of ERβ either directly or indirectly deregulates the gene expression in PdFs and PrFs, leading to increased PFGA.
Collapse
Affiliation(s)
- Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Vinesh Dahiya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Courtney A. Marsh
- Department of Obstetrics and Gynecology, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA;
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| |
Collapse
|
6
|
Ouyang Q, Xie H, Ran M, Zhang X, He Z, Lin Y, Hu S, Hu J, He H, Li L, Liu H, Wang J. Estrogen Receptor Gene 1 ( ESR1) Mediates Lipid Metabolism in Goose Hierarchical Granulosa Cells Rather than in Pre-Hierarchical Granulosa Cells. BIOLOGY 2023; 12:962. [PMID: 37508392 PMCID: PMC10376489 DOI: 10.3390/biology12070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
(1) Background: The role of estrogen receptor gene 1 (ESR1) in female reproduction and lipid metabolism has been extensively investigated. However, its contribution to lipid metabolism during the development of poultry follicles remains unclear. (2) Methods: This study aimed to explore the function of ESR1 via overexpressing (ESR1ov) and interfering (ESR1si) with its expression in pre-hierarchical granulosa cells (phGCs) and hierarchical granulosa cells (poGCs). (3) Results: We successfully cloned and obtained an 1866 bp segment of the full-length CDS region of the Sichuan white goose ESR1 gene. In phGCs of the ESR1ov and ESR1si groups, there were no significant changes compared to the control group. However, in poGCs, the ESR1ov group exhibited decreased lipid deposition, triglycerides, and cholesterol compared to the control group, while the ESR1si group showed increased lipid deposition, triglycerides, and cholesterol. The expression of APOB and PPARα was significantly reduced in the ESR1ov group compared to the ESR1ov-NC group. Moreover, significant changes in the expression of ACCα, DGAT1, SCD, CPT1, and ATGL were observed between the ESR1si and ESR1si-NC group. (4) Conclusions: These findings shed light on the function and molecular mechanism of ESR1 in lipid metabolism in goose poGCs, providing a better understanding of the physiological process of goose follicular development.
Collapse
Affiliation(s)
- Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hengli Xie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingxia Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yueyue Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
8
|
Kamiya A, Ida K. Liver Injury and Cell Survival in Non-Alcoholic Steatohepatitis Regulated by Sex-Based Difference through B Cell Lymphoma 6. Cells 2022; 11:cells11233751. [PMID: 36497010 PMCID: PMC9737870 DOI: 10.3390/cells11233751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The liver is a crucial organ for maintaining homeostasis in living organisms and is the center of various metabolic functions. Therefore, abnormal metabolic activity, as in metabolic syndrome, leads to pathological conditions, such as abnormal accumulation of lipids in the liver. Inflammation and cell death are induced by several stresses in the fatty liver, namely steatohepatitis. In recent years, an increase in non-alcoholic steatohepatitis (NASH), which is not dependent on excessive alcohol intake, has become an issue as a major cause of liver cirrhosis and liver cancer. There are several recent findings on functional sex-based differences, NASH, and cell stress and death in the liver. In particular, NASH-induced liver injury and tumorigeneses were suppressed by B cell lymphoma 6, the transcriptional factor regulating sex-based liver functional gene expression. In this review, we discuss cell response to stress and lipotoxicity in NASH and its regulatory mechanisms.
Collapse
Affiliation(s)
- Akihide Kamiya
- Correspondence: ; Tel.: +81-463-93-1121 (ext. 2783); Fax: +81-463-95-3522
| | | |
Collapse
|
9
|
Yin G, Liang H, Sun W, Zhang S, Feng Y, Liang P, Chen S, Liu X, Pan W, Zhang F. Shuangyu Tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo. Front Pharmacol 2022; 13:1016745. [PMID: 36506575 PMCID: PMC9727266 DOI: 10.3389/fphar.2022.1016745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Our previous studies have found that Shuangyu Tiaozhi Decoction (SYTZD) could produce an improvement in NAFLD-related indicators, but the underlying mechanism associated with this improvement remains unclear. The study aimed to investigate the potential mechanism of SYTZD against NAFLD through network pharmacology and experimental verification. The components of SYTZD and SYTZD drug containing serum were analyzed using ultra-performance liquid chromatography to quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Active components and targets of SYTZD were screened by the traditional Chinese medical systems pharmacology (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM) databases. NAFLD-related targets were collected from the GeneCards and DisGeNET databases. The component-disease targets were mapped to identify the common targets of SYTZD against NAFLD. Protein-protein interaction (PPI) network of the common targets was constructed for selecting the core targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the core targets was performed using the database for annotation, visualization, and integrated discovery (DAVID) database. Furthermore, animal and cell models were constructed for validating the predictions of network pharmacology. Lipid accumulation, liver histopathology, insulin resistance, and core gene expression were measured by oil red O staining, hematoxylin and eosin staining, insulin tolerance test, real-time quantitative polymerase chain reaction, and Western blotting, respectively. Two components and 22 targets of SYTZD against NAFLD were identified by UPLC-Q/TOF-MS and relevant databases. PPI analysis found that ESR1, FASN, mTOR, HIF-1α, VEGFA, and GSK-3β might be the core targets of SYTZD against NAFLD, which were mainly enriched in the thyroid hormone pathway, insulin resistance pathway, HIF-1 pathway, mTOR pathway, and AMPK pathway. Experimental results revealed that SYTZD might exert multiple anti-NAFLD mechanisms, including improvements in lipid deposition, inflammation, and insulin resistance. SYTZD treatment led to decreases in the lipid profiles, hepatic enzyme levels, inflammatory cytokines, and homeostatic model assessment for insulin resistance (HOMA-IR). SYTZD treatment affected relative mRNA and protein levels associated with various pathways. Our findings reveal that SYTZD could alleviate NAFLD through a multi-component, multi-target, and multi-pathway mechanism of action.
Collapse
Affiliation(s)
- Guoliang Yin
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyi Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, China
| | - Shizhao Zhang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Feng
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengpeng Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Suwen Chen
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenchao Pan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Fengxia Zhang,
| |
Collapse
|
10
|
Yu D, Shao Z, Fu Y, Tang X, Chen Q, Deng Z. Metabolomics- and systems toxicology-based hepatotoxicity mechanism of Sophorae Tonkinensis Radix et Rhizoma in rats. Front Pharmacol 2022; 13:1015008. [DOI: 10.3389/fphar.2022.1015008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major challenge to the development and clinical application of drugs, especially limits the global application of Chinese herbal medicines, because the material basis and mechanisms of some Chinese herbal medicines are not well clear. In this study, a comprehensive method integrating metabolomics and systems toxicology (SysT) was used to investigate how the main substances in Sophorae TonkinensisRadix et Rhizoma (STRER) influence the metabolic pathways and molecular mechanisms of hepatotoxicity. Through a 28-day continuous oral administration toxicity study combined with serum metabolomics analyses, the aqueous, ethanol-precipitation and dichloromethane extracts of STRER exhibited significant hepatotoxic effects. In addition, 19 differential metabolites with a time-dose-effect relationship were identified in rats. The primary bile acid biosynthesis pathway was significantly altered, which was consistent with the findings of the SysT analysis. Furthermore, through the quantification of bile acids in serum, 16 differential bile acids were identified as being significantly changed; moreover, 21 relevant targets which intersected with the hepatotoxic targets of STRER were identified. Molecular docking was used to confirm the validation of bindings between targets and corresponding compounds, and finally, six important compounds and 14 potential targets were identified to be involved in STRER-induced liver injury in relation to bile acid metabolism.
Collapse
|
11
|
Sun N, Wang C, Lv W, Gan X, Yang L, He S, Fang C. 3D landscape reorganization in response to feeding preferences adaptation in the youngest split Gymnocypris fish. J Genet Genomics 2022; 50:289-292. [PMID: 36182045 DOI: 10.1016/j.jgg.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
12
|
Tff3 Deficiency Protects against Hepatic Fat Accumulation after Prolonged High-Fat Diet. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081288. [PMID: 36013467 PMCID: PMC9409972 DOI: 10.3390/life12081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Trefoil factor 3 (Tff3) protein is a small secretory protein expressed on various mucosal surfaces and is involved in proper mucosal function and recovery via various mechanisms, including immune response. However, Tff3 is also found in the bloodstream and in various other tissues, including the liver. Its complete attenuation was observed as the most prominent event in the early phase of diabetes in the polygenic Tally Ho mouse model of diabesity. Since then, its role in metabolic processes has emerged. To elucidate the complex role of Tff3, we used a new Tff3-deficient mouse model without additional metabolically relevant mutations (Tff3-/-/C57BL/6NCrl) and exposed it to a high-fat diet (HFD) for a prolonged period (8 months). The effect was observed in male and female mice compared to wild-type (WT) counter groups (n = 10 animals per group). We monitored the animals’ general metabolic parameters, liver morphology, ultrastructure and molecular genes in relevant lipid and inflammatory pathways. Tff3-deficient male mice had reduced body weight and better glucose utilization after 17 weeks of HFD, but longer HFD exposure (32 weeks) resulted in no such change. We found a strong reduction in lipid accumulation in male Tff3-/-/C57BL/6NCrl mice and a less prominent reduction in female mice. This was associated with downregulated peroxisome proliferator-activated receptor gamma (Pparγ) and upregulated interleukin-6 (Il-6) gene expression, although protein level difference did not reach statistical significance due to higher individual variations. Tff3-/-/C57Bl6N mice of both sex had reduced liver steatosis, without major fatty acid content perturbations. Our research shows that Tff3 protein is clearly involved in complex metabolic pathways. Tff3 deficiency in C57Bl6N genetic background caused reduced lipid accumulation in the liver; further research is needed to elucidate its precise role in metabolism-related events.
Collapse
|
13
|
Fanalli SL, da Silva BPM, Gomes JD, Ciconello FN, de Almeida VV, Freitas FAO, Moreira GCM, Silva-Vignato B, Afonso J, Reecy J, Koltes J, Koltes D, Regitano LCA, de Carvalho Baileiro JC, Freitas L, Coutinho LL, Fukumasu H, de Alencar SM, Luchiari Filho A, Cesar ASM. Effect of dietary soybean oil inclusion on liver-related transcription factors in a pig model for metabolic diseases. Sci Rep 2022; 12:10318. [PMID: 35725871 PMCID: PMC9209463 DOI: 10.1038/s41598-022-14069-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Dietary fatty acids (FA) are components of the lipids, which contribute to membrane structure, energy input, and biological functions related to cellular signaling and transcriptome regulation. However, the consumers still associate dietary FA with fat deposition and increased occurrence of metabolic diseases such as obesity and atherosclerosis. Previous studies already demonstrated that some fatty acids are linked with inflammatory response, preventing metabolic diseases. To better understand the role of dietary FA on metabolic diseases, for the first time, a study to identify key transcription factors (TF) involved in lipid metabolism and inflammatory response by transcriptome analysis from liver samples of animal models was performed. The key TF were identified by functional enrichment analysis from the list of differentially expressed genes identified in liver samples between 35 pigs fed with 1.5% or 3.0% soybean oil. The functional enrichment analysis detected TF linked to lipid homeostasis and inflammatory response, such as RXRA, EGFR, and SREBP2 precursor. These findings demonstrated that key TF related to lipid metabolism could be modulated by dietary inclusion of soybean oil. It could contribute to nutrigenomics research field that aims to elucidate dietary interventions in animal and human health, as well as to drive food technology and science.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Bruna Pereira Martins da Silva
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Julia Dezen Gomes
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Fernanda Nery Ciconello
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Vivian Vezzoni de Almeida
- College of Veterinary Medicine and Animal Science, Federal University of Goiás, Nova Veneza, km 8, Campus Samambaia, Goiânia, Goiás, 74690-900, Brazil
| | - Felipe André Oliveira Freitas
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Gabriel Costa Monteiro Moreira
- University of Liège, GIGA Medical Genomics, Unit of Animal Genomics, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liège, Belgium
| | - Bárbara Silva-Vignato
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Juliana Afonso
- Embrapa Pecuária Sudeste, Km 234 s/nº, São Carlos, São Paulo, 13560-970, Brazil
| | - James Reecy
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | - James Koltes
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | - Dawn Koltes
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | | | - Júlio Cesar de Carvalho Baileiro
- College of Veterinary Medicine and Animal Science, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13.635-900, Brazil
| | - Luciana Freitas
- DB Genética de Suínos, Avenue Juscelino Kubitschek de Oliveira, 2094, Patos de Minas, MG, 38.706-000, Brazil
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Severino Matias de Alencar
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Albino Luchiari Filho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil. .,Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
14
|
Feng Y, Borosha S, Ratri A, Lee EB, Wang H, Fields TA, Kinsey WH, Vivian JL, Rumi MAK, Fields PE. DOT1L Methyltransferase Regulates Calcium Influx in Erythroid Progenitor Cells in Response to Erythropoietin. Int J Mol Sci 2022; 23:5137. [PMID: 35563527 PMCID: PMC9099724 DOI: 10.3390/ijms23095137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Erythropoietin (EPO) signaling plays a vital role in erythropoiesis by regulating proliferation and lineage-specific differentiation of murine hematopoietic progenitor cells (HPCs). An important downstream response of EPO signaling is calcium (Ca2+) influx, which is regulated by transient receptor potential channel (TRPC) proteins, particularly TRPC2 and TRPC6. While EPO induces Ca2+ influx through TRPC2, TRPC6 inhibits the function of TRPC2. Thus, interactions between TRPC2 and TRPC6 regulate the rate of Ca2+ influx in EPO-induced erythropoiesis. In this study, we observed that the expression of TRPC6 in KIT-positive erythroid progenitor cells was regulated by DOT1L. DOT1L is a methyltransferase that plays an important role in many biological processes during embryonic development including early erythropoiesis. We previously reported that Dot1l knockout (Dot1lKO) HPCs in the yolk sac failed to develop properly, which resulted in lethal anemia. In this study, we detected a marked downregulation of Trpc6 gene expression in Dot1lKO progenitor cells in the yolk sac compared to the wild type (WT). The promoter and the proximal regions of the Trpc6 gene locus exhibited an enrichment of H3K79 methylation, which is mediated solely by DOT1L. However, the expression of Trpc2, the positive regulator of Ca2+ influx, remained unchanged, resulting in an increased TRPC2/TRPC6 ratio. As the loss of DOT1L decreased TRPC6, which inhibited Ca2+ influx by TRPC2, Dot1lKO HPCs in the yolk sac exhibited accelerated and sustained elevated levels of Ca2+ influx. Such heightened Ca2+ levels might have detrimental effects on the growth and proliferation of HPCs in response to EPO.
Collapse
Affiliation(s)
- Yi Feng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.F.); (S.B.); (A.R.); (E.B.L.); (T.A.F.); (J.L.V.); (M.A.K.R.)
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.F.); (S.B.); (A.R.); (E.B.L.); (T.A.F.); (J.L.V.); (M.A.K.R.)
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.F.); (S.B.); (A.R.); (E.B.L.); (T.A.F.); (J.L.V.); (M.A.K.R.)
| | - Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.F.); (S.B.); (A.R.); (E.B.L.); (T.A.F.); (J.L.V.); (M.A.K.R.)
| | - Huizhen Wang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.W.); (W.H.K.)
| | - Timothy A. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.F.); (S.B.); (A.R.); (E.B.L.); (T.A.F.); (J.L.V.); (M.A.K.R.)
| | - William H. Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.W.); (W.H.K.)
| | - Jay L. Vivian
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.F.); (S.B.); (A.R.); (E.B.L.); (T.A.F.); (J.L.V.); (M.A.K.R.)
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.F.); (S.B.); (A.R.); (E.B.L.); (T.A.F.); (J.L.V.); (M.A.K.R.)
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.F.); (S.B.); (A.R.); (E.B.L.); (T.A.F.); (J.L.V.); (M.A.K.R.)
| |
Collapse
|
15
|
Borosha S, Ratri A, Ghosh S, Malcom CA, Chakravarthi VP, Vivian JL, Fields TA, Rumi MAK, Fields PE. DOT1L Mediated Gene Repression in Extensively Self-Renewing Erythroblasts. Front Genet 2022; 13:828086. [PMID: 35401699 PMCID: PMC8984088 DOI: 10.3389/fgene.2022.828086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
DOT1L is essential for embryonic hematopoiesis but the precise mechanisms of its action remain unclear. The only recognized function of DOT1L is histone H3 lysine 79 (H3K79) methylation, which has been implicated in both transcriptional activation and repression. We observed that deletion of the mouse Dot1L gene (Dot1L-KO) or selective mutation of its methyltransferase domain (Dot1L-MM) can differentially affect early embryonic erythropoiesis. However, both mutations result in embryonic lethality by mid-gestation and growth of hematopoietic progenitor cells (HPCs) is similarly affected in extensively self-renewing erythroblast (ESRE) cultures established from yolk sac cells. To understand DOT1L-mediated gene regulation and to clarify the role of H3K79 methylation, we analyzed whole transcriptomes of wildtype and Dot1L-mutant ESRE cells. We observed that more than 80% of the differentially expressed genes (DEGs) were upregulated in the mutant ESRE cells either lacking the DOT1L protein or the DOT1L methyltransferase activity. However, approximately 45% of the DEGs were unique to either mutant group, indicating that DOT1L possesses both methyltransferase-dependent and -independent gene regulatory functions. Analyses of Gene Ontology and signaling pathways for the DEGs were consistent, with DEGs that were found to be common or unique to either mutant group. Genes related to proliferation of HPCs were primarily impacted in Dot1L-KO cells, while genes related to HPC development were affected in the Dot1L-MM cells. A subset of genes related to differentiation of HPCs were affected in both mutant groups of ESREs. Our findings suggest that DOT1L primarily acts to repress gene expression in HPCs, and this function can be independent of its methyltransferase activity.
Collapse
|
16
|
Jin YJ, Jang MG, Kim JW, Baek S, Ko HC, Hur SP, Kim SJ. Anti-Obesity Effects of Polymethoxyflavone-Rich Fraction from Jinkyool (Citrus sunki Hort. ex Tanaka) Leaf on Obese Mice Induced by High-Fat Diet. Nutrients 2022; 14:nu14040865. [PMID: 35215514 PMCID: PMC8878017 DOI: 10.3390/nu14040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Polymethoxyflavones (PMFs) are flavonoids exclusively found in certain citrus fruits and have been reported to be beneficial to human health. Most studies have been conducted with PMFs isolated from citrus peels, while there is no study on PMFs isolated from leaves. In this study, we prepared a PMF-rich fraction (PRF) from the leaves of Citrus sunki Hort ex. Tanaka (Jinkyool) and investigated whether the PRF could improve metabolic decline in obese mice induced by a high-fat diet (HFD) for 5 weeks. The HFD-induced obese mice were assigned into HFD, OR (HFD + orlistat at 15.6 mg/kg of body weight/day), and PRF (HFD + 50, 100, and 200 mg/kg of body weight/day) groups. Orlistat and PRF were orally administered for 5 weeks. At the end of the experiment, the serum biochemical parameters, histology, and gene expression profiles in the tissues of each group were analyzed. The body weight gain of the obese mice was significantly reduced after orlistat and PRF administration for 5 weeks. PRF effectively improved HFD-induced insulin resistance and dyslipidemia. Histological analysis in the liver demonstrated that PRF decreased adipocyte size and potentially improved the liver function, as it inhibited the incidence of fatty liver. PRF activated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and hormone-sensitive lipase (HSL) in HFD-induced obese mice. Moreover, liver transcriptome analysis revealed that PRF administration enriched genes mainly related to fatty-acid metabolism and immune responses. Overall, these results suggest that the PRF exerted an anti-obesity effect via the modulation of lipid metabolism.
Collapse
Affiliation(s)
- Yeong-Jun Jin
- Department of Biology, Jeju National University, Jeju 63243, Korea;
| | - Mi-Gyeong Jang
- Biotech Regional Innovation Center, Jeju Nation University, Jeju 63423, Korea; (M.-G.J.); (J.-W.K.); (S.B.)
| | - Jae-Won Kim
- Biotech Regional Innovation Center, Jeju Nation University, Jeju 63423, Korea; (M.-G.J.); (J.-W.K.); (S.B.)
| | - Songyee Baek
- Biotech Regional Innovation Center, Jeju Nation University, Jeju 63423, Korea; (M.-G.J.); (J.-W.K.); (S.B.)
| | - Hee-Chul Ko
- Jeju Institute of Korean Medicine, Jeju 63309, Korea;
| | - Sung-Pyo Hur
- Jeju International Marine Science Research & Logistics Center, Korea Institute of Ocean Science & Technology, Gujwa, Jeju 63349, Korea;
| | - Se-Jae Kim
- Department of Biology, Jeju National University, Jeju 63243, Korea;
- Biotech Regional Innovation Center, Jeju Nation University, Jeju 63423, Korea; (M.-G.J.); (J.-W.K.); (S.B.)
- Correspondence: ; Tel.: +82-64-754-3529
| |
Collapse
|
17
|
The inhibition mechanisms of pancreatic lipase by apigenin and its anti-obesity mechanisms revealed by using network pharmacology. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Ho AMC, Winham SJ, McCauley BM, Kundakovic M, Robertson KD, Sun Z, Ordog T, Webb LM, Frye MA, Veldic M. Plasma Cell-Free DNA Methylomics of Bipolar Disorder With and Without Rapid Cycling. Front Neurosci 2021; 15:774037. [PMID: 34916903 PMCID: PMC8669968 DOI: 10.3389/fnins.2021.774037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Rapid cycling (RC) burdens bipolar disorder (BD) patients further by causing more severe disability and increased suicidality. Because diagnosing RC can be challenging, RC patients are at risk of rapid decline due to delayed suitable treatment. Here, we aimed to identify the differences in the circulating cell-free DNA (cfDNA) methylome between BD patients with and without RC. The cfDNA methylome could potentially be developed as a diagnostic test for BD RC. We extracted cfDNA from plasma samples of BD1 patients (46 RC and 47 non-RC). cfDNA methylation levels were measured by 850K Infinium MethylationEPIC array. Principal component analysis (PCA) was conducted to assess global differences in methylome. cfDNA methylation levels were compared between RC groups using a linear model adjusted for age and sex. PCA suggested differences in methylation profiles between RC groups (p = 0.039) although no significant differentially methylated probes (DMPs; q > 0.15) were found. The top four CpG sites which differed between groups at p < 1E-05 were located in CGGPB1, PEX10, NR0B2, and TP53I11. Gene set enrichment analysis (GSEA) on top DMPs (p < 0.05) showed significant enrichment of gene sets related to nervous system tissues, such as neurons, synapse, and glutamate neurotransmission. Other top notable gene sets were related to parathyroid regulation and calcium signaling. To conclude, our study demonstrated the feasibility of utilizing a microarray method to identify circulating cfDNA methylation sites associated with BD RC and found the top differentially methylated CpG sites were mostly related to the nervous system and the parathyroid.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Stacey J Winham
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Bryan M McCauley
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, New York, NY, United States
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Zhifu Sun
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Lauren M Webb
- Mayo Clinic Alix School of Medicine, Rochester, MN, United States
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Zhai R, Feng L, Zhang Y, Liu W, Li S, Hu Z. Combined Transcriptomic and Lipidomic Analysis Reveals Dysregulated Genes Expression and Lipid Metabolism Profiles in the Early Stage of Fatty Liver Disease in Rats. Front Nutr 2021; 8:733197. [PMID: 34604283 PMCID: PMC8484319 DOI: 10.3389/fnut.2021.733197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Non-alcoholic fatty liver disease develops from simple steatosis to non-alcoholic steatohepatitis (NASH), which then potentially develops into liver cirrhosis. It is a serious threat to human health. Therefore, investigating the formation and development mechanism of non-alcoholic fatty liver disease (NAFLD) is of great significance. Herein, an early model of NAFLD was successfully established by feeding rats with a high-fat and choline-deficient diet. Liver tissue samples were obtained from rats in the fatty liver model group (NAFL) and normal diet control group (CON). Afterward, transcriptome and lipidomic analysis was performed. Transcriptome results revealed that 178 differentially expressed genes were detected in NAFL and CON groups. Out of which, 105 genes were up-regulated, 73 genes were downregulated, and 8 pathways were significantly enriched. A total of 982 metabolites were detected in lipidomic analysis. Out of which 474 metabolites were significantly different, 273 were up-regulated, 201 were downregulated, and 7 pathways were significantly enriched. Based on the joint analysis, 3 common enrichment pathways were found, including cholesterol metabolism and fat digestion and absorption metabolic pathways. Overall, in the early stage of NAFLD, a small number of genetic changes caused a strong response to lipid components. The strongest reflection was glycerides and glycerophospholipids. A significant increase in fatty acid uptake accompanied by cholesterol metabolism is the most prominent metabolic feature of the liver in the early stage of NAFLD. In the early stage of fatty liver, the liver had shown the characteristics of NASH.
Collapse
Affiliation(s)
- Ruina Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Lei Feng
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yu Zhang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wei Liu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
20
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
21
|
Robeva R, Mladenović D, Vesković M, Hrnčić D, Bjekić-Macut J, Stanojlović O, Livadas S, Yildiz BO, Macut D. The interplay between metabolic dysregulations and non-alcoholic fatty liver disease in women after menopause. Maturitas 2021; 151:22-30. [PMID: 34446275 DOI: 10.1016/j.maturitas.2021.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
The hypoestrogenic period after menopause and associated metabolic imbalance might facilitate the onset of non-alcoholic fatty liver disease (NAFLD) and its progression. The prevalence of NAFLD increases in patients experiencing premature ovarian insufficiency, as well as surgical or natural menopause. The postmenopausal period is characterized by dyslipidemia and insulin resistance associated with an increased influx of free fatty acids to the liver with consequent steatosis and further progression of NAFLD. More than half of postmenopausal women with diabetes mellitus type 2 suffer from NAFLD. It is suggested that estrogens slow the progression of chronic liver diseases by suppression of inflammation, improvement of mitochondrial function, alleviation of oxidative stress, insulin resistance, and fibrogenesis. The hyperandrogenic state of polycystic ovary syndrome (PCOS) is associated with the development of NAFLD in women of reproductive age, but it is difficult to extend these findings to menopause due to inappropriate diagnosis of PCOS after menopause. Lifestyle intervention, including physical activity and dietary regimens, remains the first-line preventive and therapeutic option for NAFLD. There are contradictory reports on the use of menopausal hormonal therapy (MHT) and NAFLD. It is necessary to investigate the potential effects of estradiol dose, progesterone type, selective estrogen receptor modulators and tissue-selective estrogen complex compounds on NAFLD development and progression in postmenopausal women. The present review aims to explore the pathophysiological and clinical aspects of liver metabolic disturbances in women after menopause, focusing on the possible preventive and therapeutic strategies in NAFLD, including the potential role of MHT.
Collapse
Affiliation(s)
- Ralitsa Robeva
- Department of Endocrinology, USHATE "Acad. Iv. Penchev", Faculty of Medicine, Medical University-Sofia, Sofia, Bulgaria
| | - Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Hrnčić
- Institute of Medicinal Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelica Bjekić-Macut
- Department of Endocrinology, CHC Bežanijska kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlović
- Institute of Medicinal Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Bulent O Yildiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotića 13, 11000 Belgrade, Serbia.
| |
Collapse
|
22
|
Chakravarthi VP, Ratri A, Masumi S, Borosha S, Ghosh S, Christenson LK, Roby KF, Wolfe MW, Rumi MAK. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: The role of estrogen receptor β. Mol Cell Endocrinol 2021; 528:111212. [PMID: 33676987 PMCID: PMC8916094 DOI: 10.1016/j.mce.2021.111212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Follicle development beyond the preantral stage is dependent on gonadotropins. FSH signaling is crucial for the advancement of preantral follicles to the antral stage, and LH signaling is essential for further maturation of preovulatory follicles. Estrogen is intricately tied to gonadotropin signaling during the advanced stages of folliculogenesis. We observed that Erβnull ovarian follicles fail to develop beyond the antral stage, even after exogenous gonadotropin stimulation. As ERβ is primarily expressed in the granulosa cells (GCs), we explored the gonadotropin-regulated GC genes that induce maturation of antral follicles. Synchronized follicle development was induced by administration of exogenous gonadotropins to wildtype 4-wk-old female rats. The GC transcriptome was analyzed via RNA-sequencing before and after gonadotropin stimulation. An Erβnull mutant model that fails to show follicle maturation was also included in order to identify the ERβ-regulated genes involved at this step. We observed that specific groups of genes were differentially expressed in response to PMSG or hCG administration in wildtype rats. While some of the PMSG or hCG-induced genes showed a similar expression pattern in Erβnull GCs, a subset of PMSG- or hCG-induced genes showed a differential expression pattern in Erβnull GCs. These latter ERβ-regulated genes included previously known FSH or LH target genes including Lhcgr, Cyp11a1, Cyp19a1, Pgr, Runx2, Egfr, Kiss1, and Ptgs2, which are involved in follicle development, oocyte maturation, and ovulation. We also identified novel ERβ-regulated genes including Jaml, Galnt6, Znf750, Dusp9, Wnt16, and Mageb16 that failed to respond to gonadotropin stimulation in Erβnull GCs. Our findings indicate that the gonadotropin-induced spatiotemporal pattern of gene expression is essential for ovarian follicle maturation beyond the antral stage. However, expression of a subset of those gonadotropin-induced genes is dependent on transcriptional regulation by ERβ.
Collapse
Affiliation(s)
| | - Anamika Ratri
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katherine F Roby
- Department of Anatomy and Cell Biology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
23
|
Chen QL, Yan Q, Feng KL, Xie CF, Fang CK, Wang JN, Liu LH, Li Y, Zhong C. Using Integrated Bioinformatics Analysis to Identify Abnormally Methylated Differentially Expressed Genes in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:805-823. [PMID: 33732011 PMCID: PMC7956867 DOI: 10.2147/ijgm.s294505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Objective For the identification of abnormally methylated differentially expressed genes (MDEGs) in hepatocellular carcinoma (HCC), this study integrated four microarray datasets to investigate the fundamental mechanisms of tumorigenesis. Methods We obtained the expression (GSE76427, GSE57957) and methylation (GSE89852, GSE54503) profiles from Gene Expression Omnibus (GEO). The abnormally MDEGs were identified by using R software. We used the clusterProfiler package for the functional and pathway enrichment analysis. The String database was used to build the protein–protein interaction (PPI) network and visualize it in Cytoscape. MCODE was employed in the module analysis. Additionally, Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) were employed to validate results. Lastly, we used cBioPortal software to examine the hub genetic alterations. Results We identified 162 hypermethylated, down-regulated genes and 190 hypomethylated, up-regulated genes. Up-regulated genes with low methylation were enriched in biological processes, such as keratinocyte proliferation, and calcium homeostasis. Pathway analysis was enriched in the AMPK and PI3K-Akt signaling pathways. The PPI network identified PTK2, VWF, and ITGA2 as hypomethylated, high-expressing hub genes. Down-regulated genes with high methylation were related to responses to peptide hormones and estradiol, multi-multicellular organism process. Pathway analysis indicated enrichment in camp, oxytocin signaling pathways. The PPI network identified CFTR, ESR1, and CXCL12 as hypermethylated, low-expressing hub genes. Upon verification in TCGA databases, we found that the expression and methylation statuses of the hub genes changed significantly, and it was consistent with our results. Conclusion The novel abnormally MDEGs and pathways in HCC were identified. These results helped us further understand the molecular mechanisms underlying HCC invasion, metastasis, and development. Hub genes can serve as biomarkers for an accurate diagnosis and treatment of HCC, and PTK2, VWF, ITGA2, CFTR, ESR1, and CXCL12 are included.
Collapse
Affiliation(s)
- Qing-Lian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Qian Yan
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Kun-Liang Feng
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chun-Feng Xie
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chong-Kai Fang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Ji-Nan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Li-Hua Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Ya Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| |
Collapse
|
24
|
Zhou G, Liu L, Li X, Hou X, Wang L, Sun R, Huang H, Li Z, Li W, Wang C, Ba Y. ESRα Promoter Methylation May Modify the Association Between Lipid Metabolism and Type 2 Diabetes in Chinese Farmers. Front Public Health 2021; 9:578134. [PMID: 33748055 PMCID: PMC7969800 DOI: 10.3389/fpubh.2021.578134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study is aimed to explore the potential association among the estrogen receptor alpha (ESRα) promoter methylation, lipid metabolism and the risk of type 2 diabetes mellitus (T2DM). Methods: A total of 1143 rural residents were recruited randomly from Henan Province, China. The circulating methylation levels in ESRα promoter region were determined by quantitative methylation-specific polymerase chain reaction. Serum high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC) and fasting plasma-glucose (FPG) were measured. Results: The ESRα promoter methylation levels were negatively associated with HDL-C levels whether gender stratification was performed (P < 0.05) and positively correlated with LDL-C in men (P < 0.05). Each unit standard deviation (SD) increment in TG was associated with a 43% increase (95% CI: 1.25, 1.64) in the risks of T2DM in all participants, a 36% increase (95% CI: 1.13, 1.64) in the risks of T2DM in men and a 49% increase (95% CI: 1.21, 1.83) in the risks of T2DM in women. Furthermore, each SD increment in HDL-C was associated with a reduction of 25% (OR = 0.75, 95% CI: 0.58, 0.97) in the risks of T2DM in men, and the risk of T2DM in men may be more susceptible to HDL-C than that in women (P for interaction < 0.05). Additionally, we found that the risk of T2DM in participants with lower methylation levels (≤4.07%) were more susceptible to HDL-C (P for interaction < 0.05). Conclusions: These findings suggested that lipid metabolism was associated with ESRα promoter methylation levels and the risk of T2DM. Besides, the levels of ESRα promoter methylation and gender can modify the association of HDL-C and T2DM.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China.,Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, China
| | - Lihua Liu
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xing Li
- Department of Nutrition and Food Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiangbo Hou
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ling Wang
- Department of Nutrition and Food Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Renjie Sun
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Huang
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhiyuan Li
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenjie Li
- Department of Nutrition and Food Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yue Ba
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China.,Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Motifs enable communication efficiency and fault-tolerance in transcriptional networks. Sci Rep 2020; 10:9628. [PMID: 32541819 PMCID: PMC7296022 DOI: 10.1038/s41598-020-66573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Analysis of the topology of transcriptional regulatory networks (TRNs) is an effective way to study the regulatory interactions between the transcription factors (TFs) and the target genes. TRNs are characterized by the abundance of motifs such as feed forward loops (FFLs), which contribute to their structural and functional properties. In this paper, we focus on the role of motifs (specifically, FFLs) in signal propagation in TRNs and the organization of the TRN topology with FFLs as building blocks. To this end, we classify nodes participating in FFLs (termed motif central nodes) into three distinct roles (namely, roles A, B and C), and contrast them with TRN nodes having high connectivity on the basis of their potential for information dissemination, using metrics such as network efficiency, path enumeration, epidemic models and standard graph centrality measures. We also present the notion of a three tier architecture and how it can help study the structural properties of TRN based on connectivity and clustering tendency of motif central nodes. Finally, we motivate the potential implication of the structural properties of motif centrality in design of efficient protocols of information routing in communication networks as well as their functional properties in global regulation and stress response to study specific disease conditions and identification of drug targets.
Collapse
|
27
|
Meda C, Barone M, Mitro N, Lolli F, Pedretti S, Caruso D, Maggi A, Della Torre S. Hepatic ERα accounts for sex differences in the ability to cope with an excess of dietary lipids. Mol Metab 2019; 32:97-108. [PMID: 32029233 PMCID: PMC6957843 DOI: 10.1016/j.molmet.2019.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Among obesity-associated metabolic diseases, non-alcoholic fatty liver disease (NAFLD) represents an increasing public health issue due to its emerging association with atherogenic dyslipidemia and cardiovascular diseases (CVDs). The lower prevalence of NAFLD in pre-menopausal women compared with men or post-menopausal women led us to hypothesize that the female-inherent ability to counteract this pathology might strongly rely on estrogen signaling. In female mammals, estrogen receptor alpha (ERα) is highly expressed in the liver, where it acts as a sensor of the nutritional status and adapts the metabolism to the reproductive needs. As in the male liver this receptor is little expressed, we here hypothesize that hepatic ERα might account for sex differences in the ability of males and females to cope with an excess of dietary lipids and counteract the accumulation of lipids in the liver. Methods Through liver metabolomics and transcriptomics we analyzed the relevance of hepatic ERα in the metabolic response of males and females to a diet highly enriched in fats (HFD) as a model of diet-induced obesity. Results The study shows that the hepatic ERα strongly contributes to the sex-specific response to an HFD and its action accounts for opposite consequences for hepatic health in males and females. Conclusion This study identified hepatic ERα as a novel target for the design of sex-specific therapies against fatty liver and its cardio-metabolic consequences. Hepatic ERα contributes to sex-specific response to a fat-enriched diet. Hepatic ERα action accounts for contrasting consequences in males and females. In males, hepatic ERα action does not prevent liver lipid accumulation. The lack of ERα is responsible for an altered plasma lipid profile in males. In females, liver ERα controls lipid catabolism and counteracts NAFLD development.
Collapse
Affiliation(s)
- Clara Meda
- Department of Health Sciences, University of Milan, Italy
| | - Mara Barone
- Department of Pharmaceutical Sciences, University of Milan, Italy; Center of Excellence on Neurodegenerative Diseases, University of Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Federica Lolli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Adriana Maggi
- Department of Pharmaceutical Sciences, University of Milan, Italy; Center of Excellence on Neurodegenerative Diseases, University of Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Italy; Center of Excellence on Neurodegenerative Diseases, University of Milan, Italy.
| |
Collapse
|