1
|
Lin Z, Gong Y, Yu C, Yang C, Yin L, Zhang D, Tang Y, Xu F, Wang Y, Liu Y. IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway. Poult Sci 2024; 104:104761. [PMID: 39754922 DOI: 10.1016/j.psj.2024.104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells. Small RNA sequencing revealed that miR-15c-3p expression was elevated by oxidative stress induction and attenuated by antioxidant curcumin. Functional validation with miR-15c-3p mimic and inhibitor confirmed the role of miR-15c-3p in exacerbating oxidative stress and resultant suppression of lipid droplet storage and progesterone secretion in chicken granulosa cells by targeting insulin-like growth factor 2 binding protein 3 (IGF2BP3). These regulatory effects were mediated through the sequential downstream signaling cascade of AKT-Raf1-ERK1/2. In conclusion, IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway. These findings offer new insights into the molecular mechanisms by which oxidative stress damages reproductive capacity and a theoretical basis for mitigating oxidative stress in laying hens through genetic improvement.
Collapse
Affiliation(s)
- Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanrong Gong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuan Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China.
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Mahmoud AA, Shaaban MAM, Basal WT. Anacyclus pyrethrum enhances fertility in cadmium-intoxicated male rats by improving sperm functions. BMC Complement Med Ther 2024; 24:409. [PMID: 39604977 PMCID: PMC11600599 DOI: 10.1186/s12906-024-04711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Environmental pollutants, particularly heavy metals, have been frequently connected to male infertility. Cadmium was previously shown to reduce male fertility by causing oxidative stress. Anacyclus pyrethrum is a well-known medicinal plant. Most of its parts, notably the roots, have excellent antioxidant and anti-inflammatory properties. The present study investigated the potential ability of Anacyclus pyrethrum to protect male rats against cadmium reproductive toxicity. METHODS Twenty-eight adult Wistar male rats (8 weeks old) weighing (170-200g) were randomly divided into four groups (n = 7): group (1) the control, group (2) was orally administrated with Anacyclus pyrethrum extract (100mg/kg) for 56 consecutive days, group (3) received a single intraperitoneal (IP) injection of cadmium chloride (1mg/kg), and group (4) received a single IP dose of CdCl2 followed by 8 weeks of oral Anacyclus extract treatment. RESULTS Cadmium Cd toxicity resulted in a significant decrease in the concentration of antioxidant enzymes (superoxide dismutase SOD and glutathione peroxidase GPx) in the semen coupled with a significant rise in malondialdehyde MDA level. Consequently, sperm analysis parameters were significantly affected showing decreased motility, viability, concentration and increased morphological aberrations. DNA fragmentation was also detected in the sperms of rats exposed to Cd using comet assay. Serum levels of testosterone T, follicle stimulating hormone FSH, and luteinizing hormone LH were significantly decreased. The mRNA expression levels of sex hormone receptors (FSHR, LHR and AR) in the testis of the Cd exposed rats were significantly decreased. Expression levels of Bax and Bcl2 genes in the sperms of Cd intoxicated rats were also affected shifting the Bax/Bcl2 ratio towards the induction of apoptosis. Co-treatment with the Anacyclus pyrethrum extract restored the oxidative enzymes activities and decreased the formation of lipid peroxidation byproduct, which in turn ameliorated the effect of Cd on sperm parameters, sperm DNA damage, circulating hormone levels, gene expression and apoptosis. These results indicate that Anacyclus pyrethrum could serve as a protective agent against cadmium-induced sperm toxicity. CONCLUSION Taken together, it can be concluded that the antioxidant activities of Anacyclus pyrethrum restored the semen quality and enhanced fertility in Cd-intoxicated male rats.
Collapse
Affiliation(s)
- Aya A Mahmoud
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | | - Wesam T Basal
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Mohamed DH, Said RS, Kassem DH, Gad AM, El-Demerdash E, Mantawy EM. Hesperidin attenuates radiation-induced ovarian failure in rats: Emphasis on TLR-4/NF-ĸB signaling pathway. Toxicol Appl Pharmacol 2024; 492:117111. [PMID: 39326792 DOI: 10.1016/j.taap.2024.117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Young women suffering from premature ovarian failure after radiotherapy carry a huge burden in the field of cancer therapy including reproductive loss, emotional stress, and physical troubles that reduce their long-term quality of life. Hesperidin (HSP) exhibited antioxidant, anti-inflammatory, and anti-apoptotic properties. HSP enhanced in vitro follicular maturation and preserved in vivo ovarian stockpile. In this research, the role of HSP in radiation-induced POF in rats was investigated besides ascertaining its underlying mechanisms. Female Sprague-Dawley rats were arbitrarily allocated into four groups: control-group, ϒ-irradiated-group (3.2 Gy once on the 7th day), HSP-group (100 mg/kg, orally for 10 days), and HSP/ϒ-irradiated-group (ϒ-radiation was applied one hour after HSP). At the end of experiment, the whole ovaries were collected for histological and biochemical analyses. Administration of HSP preserved the ovarian histoarchitecture and follicular stock, retained ovarian weight, and conserved serum estradiol and AMH levels following radiation exposure. HSP ameliorated the ovarian oxidative damage mediated by radiation through augmenting the activities of glutathione peroxidase, glutathione reductase, and catalase antioxidant enzymes. HSP exhibited remarkable anti-inflammatory activity by downregulating the expression of ovarian TLR-4, NF-ĸB, and TNF-α. Moreover, HSP suppressed the apoptotic machinery triggered by radiation by reducing p53 and Bax while increasing Bcl-2 mRNA expressions alongside diminishing caspase-3 expression. Additionally, HSP regulated estrous cycle disorder of irradiated rats and improved their reproductive capacity reflected by enhancing pregnancy outcomes. Therefore, HSP represents an appealing candidate as an adjunct remedy for female cancer patients during radiotherapy protocols owing to its antioxidant, anti-inflammatory, anti-apoptotic, and hormone-regulatory effects.
Collapse
Affiliation(s)
- Doaa H Mohamed
- Central Administration of Drug Control, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Dina H Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Navratil J, Kratochvilova M, Raudenska M, Balvan J, Vicar T, Petrlakova K, Suzuki K, Jadrna L, Bursa J, Kräter M, Kim K, Masarik M, Gumulec J. Long-term zinc treatment alters the mechanical properties and metabolism of prostate cancer cells. Cancer Cell Int 2024; 24:313. [PMID: 39261823 PMCID: PMC11389562 DOI: 10.1186/s12935-024-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The failure of intracellular zinc accumulation is a key process in prostate carcinogenesis. Although prostate cancer cells can accumulate zinc after long-term exposure, chronic zinc oversupply may accelerate prostate carcinogenesis or chemoresistance. Because cancer progression is associated with energetically demanding cytoskeletal rearrangements, we investigated the effect of long-term zinc presence on biophysical parameters, ATP production, and EMT characteristics of two prostate cancer cell lines (PC-3, 22Rv1). Prolonged exposure to zinc increased ATP production, spare respiratory capacity, and induced a response in PC-3 cells, characterized by remodeling of vimentin and a shift of cell dry mass density and caveolin-1 to the perinuclear region. This zinc-induced remodeling correlated with a greater tendency to maintain actin architecture despite inhibition of actin polymerization by cytochalasin. Zinc partially restored epithelial characteristics in PC-3 cells by decreasing vimentin expression and increasing E-cadherin. Nevertheless, the expression of E-cadherin remained lower than that observed in predominantly oxidative, low-invasive 22Rv1 cells. Following long-term zinc exposure, we observed an increase in cell stiffness associated with an increased refractive index in the perinuclear region and an increased mitochondrial content. The findings of the computational simulations indicate that the mechanical response cannot be attributed exclusively to alterations in cytoskeletal composition. This observation suggests the potential involvement of an additional, as yet unidentified, mechanical contributor. These findings indicate that long-term zinc exposure alters a group of cellular parameters towards an invasive phenotype, including an increase in mitochondrial number, ATP production, and cytochalasin resistance. Ultimately, these alterations are manifested in the biomechanical properties of the cells.
Collapse
Affiliation(s)
- Jiri Navratil
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Katerina Petrlakova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kanako Suzuki
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucie Jadrna
- Department of Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61669, Brno, Czech Republic
| | - Jiri Bursa
- Department of Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61669, Brno, Czech Republic
| | - Martin Kräter
- Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik Und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
- Rivercyte GmbH, Henkestraße 91, 91052, Erlangen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik Und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Michal Masarik
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jaromir Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Tang F, Hummitzsch K, Rodgers RJ. Unique features of KGN granulosa-like tumour cells in the regulation of steroidogenic and antioxidant genes. PLoS One 2024; 19:e0308168. [PMID: 39110703 PMCID: PMC11305538 DOI: 10.1371/journal.pone.0308168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
The ovarian KGN granulosa-like tumour cell line is commonly used as a model for human granulosa cells, especially since it produces steroid hormones. To explore this further, we identified genes that were differentially expressed by KGN cells compared to primary human granulosa cells using three public RNA sequence datasets. Of significance, we identified that the expression of the antioxidant gene TXNRD1 (thioredoxin reductase 1) was extremely high in KGN cells. This is ominous since cytochrome P450 enzymes leak electrons and produce reactive oxygen species during the biosynthesis of steroid hormones. Gene Ontology (GO) analysis identified steroid biosynthetic and cholesterol metabolic processes were more active in primary granulosa cells, whilst in KGN cells, DNA processing, chromosome segregation and kinetochore pathways were more prominent. Expression of cytochrome P450 cholesterol side-chain cleavage (CYP11A1) and cytochrome P450 aromatase (CYP19A1), which are important for the biosynthesis of the steroid hormones progesterone and oestrogen, plus their electron transport chain members (FDXR, FDX1, POR) were measured in cultured KGN cells. KGN cells were treated with 1 mM dibutyryl cAMP (dbcAMP) or 10 μM forskolin, with or without siRNA knockdown of TXNRD1. We also examined expression of antioxidant genes, H2O2 production by Amplex Red assay and DNA damage by γH2Ax staining. Significant increases in CYP11A1 and CYP19A1 were observed by either dbcAMP or forskolin treatments. However, no significant changes in H2O2 levels or DNA damage were found. Knockdown of expression of TXNRD1 by siRNA blocked the stimulation of expression of CYP11A1 and CYP19A1 by dbcAMP. Thus, with TXNRD1 playing such a pivotal role in steroidogenesis in the KGN cells and it being so highly overexpressed, we conclude that KGN cells might not be the most appropriate model of primary granulosa cells for studying the interplay between ovarian steroidogenesis, reactive oxygen species and antioxidants.
Collapse
Affiliation(s)
- Feng Tang
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Raymond J. Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Hummitzsch K, Kelly JE, Hatzirodos N, Bonner WM, Tang F, Harris HH, Rodgers RJ. Expression levels of the selenium-uptake receptor LRP8, the antioxidant selenoprotein GPX1 and steroidogenic enzymes correlate in granulosa cells. REPRODUCTION AND FERTILITY 2024; 5:e230074. [PMID: 38990713 PMCID: PMC11301534 DOI: 10.1530/raf-23-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
Abstract Reactive oxygen species (ROS) are a by-product of the activity of cytochrome P450 steroidogenic enzymes. Antioxidant enzymes protect against ROS damage. To identify if any particular antioxidant enzyme is used to protect against ROS produced by granulosa cells as follicles enlarge and produce oestradiol, we measured in the bovine granulosa cells the expression of two steroidogenic enzymes (CYP11A1, CYP19A1), important for progesterone and oestradiol production. We also measured the expression of the members (FDXR, FDX1, POR) of their electron transport chains (ETC). We measured antioxidant enzymes (GPXs 1-8, CAT, SODs 1 and 2, PRDXs 1-6, GSR, TXN, TXNRDs 1-3). Since selenium is an active component of GPXs, the selenium-uptake receptors (LRPs 2 and 8) were measured. Only the selenium-dependent GPX1 showed the same increase in expression as the steroidogenic enzymes did with increasing follicle size. GPX4 and PRDX2/6 decreased with follicle size, whereas SOD1/2, CAT, GSR, and TXNRD3 were lowest at the intermediate sizes. The other antioxidant enzymes were unchanged or expressed at low levels. The expression of the selenium-uptake receptor LRP8 also increased significantly with follicle size. Correlation analysis revealed statistically significant and strongly positive correlations of the steroidogenic enzymes and their ETCs with both GPX1 and LRP8. These results demonstrate a relationship between the expression of genes involved in steroidogenesis and selenium-containing antioxidant defence mechanisms. They suggest that during the late stages of folliculogenesis, granulosa cells are dependent on sufficient expression of GPX1 and the selenium transporter LRP8 to counteract increasing ROS levels caused by the production of steroid hormones. Lay summary In the ovary, eggs are housed in follicles which contain the cells that produce oestrogen in the days leading up to ovulation of the egg. Oestrogen is produced by the action of enzymes. However, some of these enzymes also produce by-products called reactive oxygen species (ROS). These are harmful to eggs. Fortunately, cells have protective antioxidant enzymes that can neutralise ROS. This study was interested in which particular antioxidant enzyme(s) might be involved in neutralising the ROS in follicle cells. It was found that only one antioxidant enzyme, GPX1, appeared to be co-regulated with the enzymes that produce oestrogen and progesterone in the follicular cells. GPX1 contains the essential mineral selenium. In summary, this study has identified which antioxidant appears to be involved in neutralising ROS in the days leading to ovulation. It highlights the importance of selenium in the diet.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, South Australia, Australia.
| | - Jasmine E Kelly
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, South Australia, Australia.
| | - Nicholas Hatzirodos
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, South Australia, Australia.
| | - Wendy M Bonner
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, South Australia, Australia.
| | - Feng Tang
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, South Australia, Australia.
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, South Australia, Australia.
| | - Raymond J Rodgers
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, South Australia, Australia.
- Adelaide Health and Medical Sciences Building, The University of Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Chettiar V, Patel A, Chettiar SS, Jhala DD. Meta-analysis of endometrial transcriptome data reveals novel molecular targets for recurrent implantation failure. J Assist Reprod Genet 2024; 41:1417-1431. [PMID: 38456991 PMCID: PMC11143096 DOI: 10.1007/s10815-024-03077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
PURPOSE Gene expression analysis of the endometrium has been shown to be a useful approach for identifying the molecular signatures and pathways involved in recurrent implantation failure (RIF). Nevertheless, individual studies have limitations in terms of study design, methodology and analysis to detect minor changes in expression levels or identify novel gene signatures associated with RIF. METHOD To overcome this, we conducted an in silico meta-analysis of nine studies, the systematic collection and integration of gene expression data, utilizing rigorous selection criteria and statistical techniques to ensure the robustness of our findings. RESULTS Our meta-analysis successfully unveiled a meta-signature of 49 genes closely associated with RIF. Of these genes, 38 were upregulated and 11 downregulated in RIF patients' endometrium and believed to participate in key processes like cell differentiation, communication, and adhesion. GADD45A, IGF2, and LIF, known for their roles in implantation, were identified, along with lesser-studied genes like OPRK1, PSIP1, SMCHD1, and SOD2 related to female infertility. Many of these genes are involved in MAPK and PI3K-Akt pathways, indicating their role in inflammation. We also investigated to look for key miRNAs regulating these 49 dysregulated mRNAs as potential diagnostic biomarkers. Along with this, we went to associate protein-protein interactions of 49 genes, and we could recognize one cluster consisting of 11 genes (consisted of 22 nodes and 11 edges) with the highest score (p = 0.001). Finally, we validated some of the genes by qRT-PCR in our samples. CONCLUSION In summary, the meta-signature genes hold promise for improving RIF patient identification and facilitating the development of personalized treatment strategies, illuminating the multifaceted nature of this complex condition.
Collapse
Affiliation(s)
- Venkatlaxmi Chettiar
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Alpesh Patel
- GeneXplore Diagnostics and Research Centre PVT. LTD., Ahmedabad, Gujarat, India
| | | | - Devendrasinh D Jhala
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.
| |
Collapse
|
8
|
Liu X, Chen X, Wang C, Song J, Xu J, Gao Z, Huang Y, Suo H. Mechanisms of probiotic modulation of ovarian sex hormone production and metabolism: a review. Food Funct 2024; 15:2860-2878. [PMID: 38433710 DOI: 10.1039/d3fo04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Sex hormones play a pivotal role in the growth and development of the skeletal, neurological, and reproductive systems. In women, the dysregulation of sex hormones can result in various health complications such as acne, hirsutism, and irregular menstruation. One of the most prevalent diseases associated with excess androgens is polycystic ovary syndrome with a hyperandrogenic phenotype. Probiotics have shown the potential to enhance the secretion of ovarian sex hormones. However, the underlying mechanism of action remains unclear. Furthermore, comprehensive reviews detailing how probiotics modulate ovarian sex hormones are scarce. This review seeks to shed light on the potential mechanisms through which probiotics influence the production of ovarian sex hormones. The role of probiotics across various biological axes, including the gut-ovarian, gut-brain-ovarian, gut-liver-ovarian, gut-pancreas-ovarian, and gut-fat-ovarian axes, with a focus on the direct impact of probiotics on the ovaries via the gut and their effects on brain gonadotropins is discussed. It is also proposed herein that probiotics can significantly influence the onset, progression, and complications of ovarian sex hormone abnormalities. In addition, this review provides a theoretical basis for the therapeutic application of probiotics in managing sex hormone-related health conditions.
Collapse
Affiliation(s)
- Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, P. R. China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Abd-Elkareem M, Khormi MA, Mohamed RH, Ali F, Hassan MS. Histological, immunohistochemical and serological investigations of the ovary during follicular phase of estrous cycle in Saidi sheep. BMC Vet Res 2024; 20:98. [PMID: 38461282 PMCID: PMC10924360 DOI: 10.1186/s12917-024-03933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/11/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Saidi sheep are the most abundant ruminant livestock species in Upper Egypt, especially in the Assiut governorate. Sheep are one of the most abundant animals raised for food in Egypt. They can convert low-quality roughages into meat and milk in addition to producing fiber and hides therefore; great opportunity exists to enhance their reproduction. Saidi breed is poorly known in terms of reproduction. So this work was done to give more information on some hormonal, oxidative, and blood metabolites parameters in addition to histological, histochemical and immunohistochemical investigations of the ovary during follicular phase of estrous cycle. The present study was conducted on 25 healthy Saidi ewes for serum analysis and 10 healthy ewes for histological assessment aged 2 to 5 years and weighted (38.5 ± 2.03 kg). RESULTS The follicular phase of estrous cycle in Saidi sheep was characterized by the presence of ovarian follicles in different stages of development and atresia in addition to regressed corpus luteum. Interestingly, apoptosis and tissue oxidative markers play a crucial role in follicular and corpus luteum regression. The most prominent features of the follicular phase were the presence of mature antral (Graafian) and preovulatory follicles as well as increased level of some blood metabolites and oxidative markers. Here we give a new schematic sequence of ovarian follicles in Saidi sheep and describing the features of different types. We also clarified that these histological pictures of the ovary was influenced by hormonal, oxidative and blood metabolites factors that characterizes the follicular phase of estrous cycle in Saidi sheep. CONCLUSION This work helps to understanding the reproduction in Saidi sheep which assist in improving the reproductive outcome of this breed of sheep. These findings are increasingly important for implementation of a genetic improvement program and utilizing the advanced reproductive techniques as estrous synchronization, artificial insemination and embryo transfer.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - M A Khormi
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Ragab Hassan Mohamed
- Theriogenology Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Fatma Ali
- Physiology Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Mervat S Hassan
- Theriogenology Department, Faculty of Veterinary Medicine, New-Valley University, New Valley, 725211, Egypt
| |
Collapse
|
10
|
Zhao S, Ma R, Jueraitetibaike K, Xu Y, Jing J, Tang T, Shi M, Zhang H, Ge X, Chen L, Yao B, Guo Z. ZDHHC17 participates in the pathogenesis of polycystic ovary syndrome by affecting androgen conversion to estrogen in granulosa cells. Mol Cell Endocrinol 2023; 578:112076. [PMID: 37769867 DOI: 10.1016/j.mce.2023.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age and is a significant cause of female subfertility. Our previous research demonstrated that the abnormal palmitoylation of heat shock protein-90α (HSP90α) plays a role in the development of PCOS. However, the palmitoyl acyltransferases in HSP90α palmitoylation remain poorly understood. Herein, we identified ZDHHC17 as a major palmitoyl acyltransferase for HSP90α palmitoylation in granulosa cells. ZDHHC17 protein expression was diminished under excess androgen conditions in vitro and in vivo. Consistently, ovarian ZDHHC17 expression was found to be attenuated in patients with PCOS. ZDHHC17 depletion decreased HSP90α palmitoylation levels and hampered the conversion of androgen to estrogen via CYP19A1. Furthermore, ZDHHC17-mediated regulation of CYP19A1 expression was dependent on HSP90α palmitoylation. Our findings reveal that the regulatory role of HSP90α palmitoylation by ZDHHC17 is critical in PCOS pathophysiology and provide insights into the role of ZDHHC17 in reproductive endocrinology.
Collapse
Affiliation(s)
- Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Rujun Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Yao Xu
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun Jing
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ting Tang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China
| | - Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Hong Zhang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China
| | - Xie Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China.
| | - Li Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Bing Yao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
11
|
Paula VG, Sinzato YK, Gallego FQ, Cruz LL, Aquino AMD, Scarano WR, Corrente JE, Volpato GT, Damasceno DC. Intergenerational Hyperglycemia Impairs Mitochondrial Function and Follicular Development and Causes Oxidative Stress in Rat Ovaries Independent of the Consumption of a High-Fat Diet. Nutrients 2023; 15:4407. [PMID: 37892483 PMCID: PMC10609718 DOI: 10.3390/nu15204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
We analyzed the influence of maternal hyperglycemia and the post-weaning consumption of a high-fat diet on the mitochondrial function and ovarian development of the adult pups of diabetic rats. Female rats received citrate buffer (Control-C) or Streptozotocin (for diabetes induction-D) on postnatal day 5. These adult rats were mated to obtain female pups (O) from control dams (OC) or from diabetic dams (OD), and they received a standard diet (SD) or high-fat diet (HFD) from weaning to adulthood and were distributed into OC/SD, OC/HFD, OD/SD, and OD/HFD. In adulthood, the OGTT and AUC were performed. These rats were anesthetized and euthanized for sample collection. A high percentage of diabetic rats were found to be in the OD/HFD group (OD/HFD 40% vs. OC/SD 0% p < 0.05). Progesterone concentrations were lower in the experimental groups (OC/HFD 0.40 ± 0.04; OD/SD 0.30 ± 0.03; OD/HFD 0.24 ± 0.04 vs. OC/SD 0.45 ± 0.03 p < 0.0001). There was a lower expression of MFF (OD/SD 0.34 ± 0.33; OD/HFD 0.29 ± 0.2 vs. OC/SD 1.0 ± 0.41 p = 0.0015) and MFN2 in the OD/SD and OD/HFD groups (OD/SD 0.41 ± 0.21; OD/HFD 0.77 ± 0.18 vs. OC/SD 1.0 ± 0.45 p = 0.0037). The number of follicles was lower in the OD/SD and OD/HFD groups. A lower staining intensity for SOD and Catalase and higher staining intensity for MDA were found in ovarian cells in the OC/HFD, OD/SD, and OD/HFD groups. Fetal programming was responsible for mitochondrial dysfunction, ovarian reserve loss, and oxidative stress; the association of maternal diabetes with an HFD was responsible for the higher occurrence of diabetes in female adult pups.
Collapse
Affiliation(s)
- Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Larissa Lopes Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças 78600-000, MG, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
12
|
Chiu CC, Cheng KC, Lin YH, He CX, Bow YD, Li CY, Wu CY, Wang HMD, Sheu SJ. Prolonged Exposure to High Glucose Induces Premature Senescence Through Oxidative Stress and Autophagy in Retinal Pigment Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2023; 71:21. [PMID: 37638991 DOI: 10.1007/s00005-023-00686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023]
Abstract
Chronic hyperglycemia involves persistent high-glucose exposure and correlates with retinal degeneration. It causes various diseases, including diabetic retinopathy (DR), a major cause of adult vision loss. Most in vitro studies have investigated the damaging short-term effects of high glucose exposure on retinal pigment epithelial (RPE) cells. DR is also a severe complication of diabetes. In this study, we established a model with prolonged high-glucose exposure (15 and 75 mM exogenous glucose for two months) to mimic RPE tissue pathophysiology in patients with hyperglycemia. Prolonged high-glucose exposure attenuated glucose uptake and clonogenicity in ARPE-19 cells. It also significantly increased reactive oxygen species levels and decreased antioxidant protein (superoxide dismutase 2) levels in RPE cells, possibly causing oxidative stress and DNA damage and impairing proliferation. Western blotting showed that autophagic stress, endoplasmic reticulum stress, and genotoxic stress were induced by prolonged high-glucose exposure in RPE cells. Despite a moderate apoptotic cell population detected using the Annexin V-staining assay, the increases in the senescence-associated proteins p53 and p21 and SA-β-gal-positive cells suggest that prolonged high-glucose exposure dominantly sensitized RPE cells to premature senescence. Comprehensive next-generation sequencing suggested that upregulation of oxidative stress and DNA damage-associated pathways contributed to stress-induced premature senescence of ARPE-19 cells. Our findings elucidate the pathophysiology of hyperglycemia-associated retinal diseases and should benefit the future development of preventive drugs. Prolonged high-glucose exposure downregulates glucose uptake and oxidative stress by increasing reactive oxygen species (ROS) production through regulation of superoxide dismutase 2 (SOD2) expression. Autophagic stress, ER stress, and DNA damage stress (genotoxic stress) are also induced by prolonged high-glucose exposure in RPE cells. Consequently, multiple stresses induce the upregulation of the senescence-associated proteins p53 and p21. Although both apoptosis and premature senescence contribute to high glucose exposure-induced anti-proliferation of RPE cells, the present work shows that premature senescence rather than apoptosis is the dominant cause of RPE degeneration, eventually leading to the pathogenesis of DR.
Collapse
Affiliation(s)
- Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Xi He
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yung-Ding Bow
- Ph.D. Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
13
|
Liang R, Sheng M, Li X, Jin J, Yi Y. Transcriptomic analysis reveals that the anti-PCOS effects of Zishen Qingre Lishi Huayu recipe may involve pathways and genes related to autophagy, steroidogenesis, oxidative stress, and inflammation in granulosa cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116551. [PMID: 37121450 DOI: 10.1016/j.jep.2023.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Qingre Lishi Huayu recipe (ZQLHR) is a Chinese medicine compound composed of nine herbs for the treatment of polycystic ovary syndrome (PCOS). It is used to nourish kidneys, clear heat, reduce dampness and dissipation blood stasis by promoting diuresis and blood circulation, dredging the meridians and harmonizing menstruation in the treatment of PCOS. Several clinical studies have shown that ZQLHR is effective in the treatment of PCOS, but the underlying mechanism remains unclear. AIM OF THE STUDY In this study, we researched on the effects and mechanism of action of ZQLHR during treatment of human granulosa cells (hGCs) obtained from PCOS patients in order to provide a scientific basis for the clinical application of ZQLHR in the treatment of PCOS, emphasize the importance of some genes that have been reported to play a role in the pathogenesis or therapeutic mechanisms of PCOS from the perspective of disease treatment, and identify some new genes and signaling pathways that may play an important role in the treatment of PCOS. MATERIALS AND METHODS KGN cells (a granulosa cell-like tumor cell line) were subjected to a cell counting kit-8 assay to explore the appropriate intervention concentration and duration of ZQLHR. Treated with or without ZQLHR (ZQLHR and control groups), the hGCs obtained from PCOS patients were sequenced using RNA sequencing, and the genes thus detected were further analyzed through Kyoto encyclopedia of genes and genomes enrichment analysis, gene set enrichment analysis, and individuation gene analysis. These genes were also compared with PCOS-related genes in other databases. To further verify the authenticity of the differentially expressed genes between the two groups, the expression of eight randomly selected vital genes and three proteins of interest was verified through real time quantitative polymerase chain reaction and Western blot experiment respectively. RESULTS The best intervention concentration and duration for ZQLHR to promote the proliferation of KGN cells were 0.2% and 48 h respectively in this experiment. Multiple signaling pathways and 55 focus differentially expressed genes, both related to autophagy, steroidogenesis, oxidative stress-related longevity, inflammation, and complications of PCOS, may play an important role in the therapeutic mechanism of action of ZQLHR. The expression of eight genes is consistent with the result of RNA sequencing, and the expression of three proteins of interest is the same as expected. CONCLUSIONS The promotion of hGCs proliferation upon treatment with ZQLHR may be a manifestation of ZQLHR in the treatment of PCOS patients. The positive effects of ZQLHR against PCOS may involve pathways and genes related to autophagy, steroidogenesis, oxidative stress-related longevity, and inflammation in hGCs. Some components of ZQLHR applied for the treatment of PCOS may also be effective for the treatment of some complications of PCOS.
Collapse
Affiliation(s)
- Ruining Liang
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Mengzhen Sheng
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Xin Li
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Jing Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Yao Yi
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| |
Collapse
|
14
|
Liao X, Ye M, Liang J, Jian J, Li S, Gan Q, Liu Z, Mo Z, Huang Y, Sun S. Comprehensive insights into the gallic acid assisted bioleaching process for spent LIBs: Relationships among bacterial functional genes, Co(III) reduction and metal dissolution behavior. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130773. [PMID: 36641848 DOI: 10.1016/j.jhazmat.2023.130773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Despite the growing demand for resource recovery from spent lithium-ion batteries (LIBs) by bioleaching, low Co leaching efficiency has hindered the development and application of this technology. Therefore, a novel process was designed, combining gallic acid (GA) and mixed culture bioleaching (MCB), to enhance the removal of metals from spent LIBs. Results indicated that the GA + MCB process achieved 98.03% Co and 98.02% Li leaching from spent LIBs, simultaneously reducing the biotoxicity, phytotoxicity and leaching toxicity of spent LIBs under optimal conditions. The results of mechanism analysis demonstrated that functional microorganisms adapted to the leaching system through various strategies, including oxidative stress reduction, DNA damage repair, heavy metal resistance and biofilm formation, maintaining normal physiological activities and the continuous production of biological acid. The biological acid erodes the surface of waste LIBs, causing some Co and a large amount of Li to be released, while also increasing the contact area between GA and Co(III). Therefore, GA is beneficial for reducing insoluble Co(III), forming soluble Co(II). Finally, biological acid can effectively promote Co(II) leaching. Collectively, the results of this study provide valuable insight into the simultaneous enhancement of metal extraction and the mitigation of environmental pollution from spent LIBs.
Collapse
Affiliation(s)
- Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jialin Liang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianxiong Jian
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiaowei Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zihang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
15
|
da Cruz LL, Barco VS, Paula VG, Gallego FQ, Souza MR, Corrente JE, Zambrano E, Volpato GT, Damasceno DC. Severe Diabetes Induction as a Generational Model for Growth Restriction of Rat. Reprod Sci 2023:10.1007/s43032-023-01198-9. [PMID: 36849856 DOI: 10.1007/s43032-023-01198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
We used uncontrolled maternal diabetes as a model to provoke fetal growth restriction in the female in the first generation (F1) and to evaluate reproductive outcomes and the possible changes in metabolic systems during pregnancy, as well as the repercussions at birth in the second generation (F2). For this, nondiabetic and streptozotocin-induced severely diabetic Sprague-Dawley rats were mated to obtain female pups (F1), which were classified as adequate (AGA) or small (SGA) for gestational weight. Afterward, we composed two groups: F1 AGA from nondiabetic dams (Control) and F1 SGA from severely diabetic dams (Restricted) (n minimum = 10 animals/groups). At adulthood, these rats were submitted to the oral glucose tolerance test, mated, and at day 17 of pregnancy, blood samples were collected to determine glucose and insulin levels for assessment of insulin resistance. At the end of the pregnancy, the blood and liver samples were collected to evaluate redox status markers, and reproductive, fetal, and placental outcomes were analyzed. Maternal diabetes was responsible for increased SGA rates and a lower percentage of AGA fetuses (F1 generation). The restricted female pups from severely diabetic dams presented rapid neonatal catch-up growth, glucose intolerance, and insulin resistance status before and during pregnancy. At term pregnancy of F1 generation, oxidative stress status was observed in the maternal liver and blood samples. In addition, their offspring (F2 generation) had lower fetal weight and placental efficiency, regardless of gender, which caused fetal growth restriction and confirmed the fetal programming influence.
Collapse
Affiliation(s)
- Larissa Lopes da Cruz
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Vinícius Soares Barco
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Verônyca Gonçalves Paula
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Franciane Quintanilha Gallego
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Maysa Rocha Souza
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Department of Reproductive Biology, Mexico City, Mexico
| | - Gustavo Tadeu Volpato
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora Cristina Damasceno
- Postgraduate Course on Tocogynecology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil.
| |
Collapse
|
16
|
Depletion of SOD2 enhances nasopharyngeal carcinoma cell radiosensitivity via ferroptosis induction modulated by DHODH inhibition. BMC Cancer 2023; 23:117. [PMID: 36737723 PMCID: PMC9896811 DOI: 10.1186/s12885-022-10465-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recurrence due to the development of radioresistance remains a major challenge in the clinical management of nasopharyngeal carcinoma. The objective of this study was to increase the sensitivity of nasopharyngeal carcinoma cells to ionizing radiation by enhancing oxidative stress and ferroptosis caused by disrupting the mitochondrial anti-oxidant enzyme system. METHODS Oxidative stress cell model was constructed by SOD2 knockdown using shRNA. The expression and activity of DHODH was suppressed by siRNA and brequinar in SOD2 depleted cells. Protein levels were determined by western blotting and ferroptosis was assessed by C11 BODIPY and malondialdehyde assay. Cell viability was evaluated using CCK-8 assay while radiotoxicity was assessed by colony formation assay. Cellular ATP level was determined by ATP assay kits, ROS was determined by DCFD and DHE, while mitochondrial oxygen consumption was determined by seahorse assay. Data were analyzed by two-tailed independent t-test. RESULTS Radiation upregulated SOD2 expression and SOD2 depletion increased cellular O2.-, malondialdehyde, and the fluorescence intensity of oxidized C11 BODIPY. It also resulted in mitochondrial damage. Its depletion decreased colony formation both under ionizing and non-ionizing radiation conditions. The ferroptosis inhibitor, deferoxamine, rescued cell viability and colony formation in SOD2 depleted cells. Cellular level of malondialdehyde, fluorescence intensity of oxidized C11 BODIPY, O2.- level, ATP, and mitochondrial oxygen consumption decreased following DHODH inhibition in SOD2 depleted cells. Cell viability and colony formation was rescued by DHODH inhibition in SOD2 depleted cells. CONCLUSION Inducing oxidative stress by SOD2 inhibition sensitized nasopharyngeal carcinoma cells to ionizing radiation via ferroptosis induction. This was found to be dependent on DHODH activity. This suggests that DHODH inhibitors should be used with caution during radiotherapy in nasopharyngeal carcinoma patients.
Collapse
|
17
|
Elmosalamy SH, Elleithy EMM, Ahmed ZSO, Rashad MM, Ali GE, Hassan NH. Dysregulation of intraovarian redox status and steroidogenesis pathway in letrozole-induced PCOS rat model: a possible modulatory role of l-Carnitine. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Polycystic ovarian syndrome (PCOS) is a reproductive disorder associated with several endocrine and metabolic alterations. The mechanism underlying this syndrome is controversial. On the other hand, drugs used for the treatment are associated with several side effects and poor in controlling PCOS phenotype. l-Carnitine (LC) has been reported to have a significant regulatory function on the redox and metabolic status of female reproductive system. Nevertheless, its regulatory pathways to regulate PCOS are still under investigation. Therefore, this study aimed to evaluate the effects of LC on the steroidogenic pathways, oxidative stress markers and metabolic profile in letrozole (LTZ)-induced PCOS rat model.
Methods
For this aim, animals were divided into four groups (n = 6). Control group, untreated letrozole-induced PCOS group (1 mg/kg bwt) for 21 days, PCOS group treated with l-Carnitine (100 mg/kg bwt) for 14 days and PCOS group treated with clomiphene citrate (2 mg/kg bwt) for 14 days. Finally, body and ovarian weight, metabolic state(glucose and lipid profile), hormonal assays (testosterone, 17 β estradiol, LH and FSH levels), intraovarian relative gene expression (CYP17A1, StAR, CYP11A1 and CYP19A1 genes), ovarian redox state (malondialdehyde (MDA), reduced glutathione content (GSH) and catalase enzyme activity (CAT)) as well as serum total antioxidant capacity (TAC) were detected. Also, histomorphometric ovarian evaluation (number and diameter of cystic follicles, granulosa cell thickness and theca cell thickness) as well as immune expression of caspase-3 of granulosa cells of cystic follicles were determined.
Results
LC significantly improved ovarian redox state (GSH, MDA and CAT), steroidogenic pathways gene expression (CYP17A1, StAR, CYP11A1 and CYP19A1 genes), hormonal profile (Follicle stimulating hormone (FSH) and luteinizing hormone (LH), testosterone and estradiol), metabolic state (Glucose and lipid profile) histomorphometric alterations and decreased caspase 3 immune reaction of granulosa cells.
Conclusion
l-Carnitine supplementation can ameliorate the PCOS phenotype through its energetic, antioxidant and antiapoptotic functions as well as steroidogenesis regulatory role. This protocol could be modified to produce the best therapeutic benefits, and it could be regarded as a prospective therapeutic intervention for PCOS.
Collapse
|
18
|
Identification of Candidate Genes for Twinning Births in Dezhou Donkeys by Detecting Signatures of Selection in Genomic Data. Genes (Basel) 2022; 13:genes13101902. [PMID: 36292787 PMCID: PMC9601833 DOI: 10.3390/genes13101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Twinning trait in donkeys is an important manifestation of high fecundity, but few reports are available elucidating its genetic mechanism. To explore the genetic mechanism underlying the twin colt trait in Dezhou donkeys, DNA from 21 female Dezhou donkeys that had birthed single or twin colts were collected for whole-genome resequencing. FST, θπ and Tajima’s D were used to detect the selective sweeps between single and twin colt fecundity in the Dezhou donkey groups. Another set of 20 female Dezhou donkeys with single or multiple follicles during estrus were selected to compare concentrations of reproductive hormone including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and progesterone (P4). Four candidate genes including ENO2, PTPN11, SOD2 and CD44 were identified in the present study. The CD44 gene had the highest FST value, and ENO2, PTPN11 and SOD2 were screened by two joint analyses (FST and θπ, θπ and Tajima’s D). There was no significant difference in the LH, FSH and P4 levels between the two groups (p > 0.05); however, the serum E2 content in the multi-follicle group was significantly higher than that in the single-follicle group (p < 0.05). The identified candidate genes may provide new insights into the genetic mechanism of donkey prolificacy and may be useful targets for further research on high reproductive efficiency.
Collapse
|
19
|
Di-n-Butyl Phthalate and Its Monoester Metabolite Impairs Steroid Hormone Biosynthesis in Human Cells: Mechanistic In Vitro Studies. Cells 2022; 11:cells11193029. [PMID: 36230992 PMCID: PMC9561974 DOI: 10.3390/cells11193029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread environmental contaminant di-n-butyl phthalate (DBP) has been linked with reduced testosterone levels and adverse reproductive health outcomes in men. However, the underlying mechanisms of these anti-androgenic effects and the potential effects on other classes of steroid hormones remain to be elucidated. Here, we conducted mechanistic studies in human adrenocortical H295R cells exposed to 1–500 µM of DBP or its metabolite, mono-n-butyl phthalate (MBP), for 48 h. Quantification of steroid hormones in the cell medium by liquid chromatography-mass spectrometry revealed that both phthalates significantly decreased testosterone, androstenedione, corticosterone, and progesterone levels, in particular after dibutyryl-cyclic-AMP stimulation of steroidogenesis. Western blot analysis of key steroidogenic proteins showed that DBP induced a dose-dependent decrease of CYP11A1 and HSD3β2 levels, while MBP only significantly decreased CYP17A1 levels, indicating that the compounds affect early steps of the steroidogenesis differently. Both DBP and MBP exposure also lead to a dose-related decrease in HSD17β3, the enzyme which catalyzes the final step in the testosterone biosynthesis pathway, although these effects were not statistically significant. Interestingly, DBP increased the cortisol concentration, which may be due to the non-significant CYP11B1 increase in DBP-exposed cells. In contrast, MBP decreased cortisol concentration. Moreover, the analysis of superoxide generation and quantification of the protein oxidation marker nitrotyrosine demonstrated that DBP induced oxidative stress in H295R cells while MBP reduced protein nitrotyrosine levels. These findings confirm the anti-androgenic effects of DBP and MBP and reveal several differences in their toxicological mechanisms, with possible implications for future research on phthalate toxicity.
Collapse
|
20
|
Dutta S, Gorain B, Choudhury H, Roychoudhury S, Sengupta P. Environmental and occupational exposure of metals and female reproductive health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62067-62092. [PMID: 34558053 DOI: 10.1007/s11356-021-16581-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Untainted environment promotes health, but the last few decades experienced steep upsurge in environmental contaminants posing detrimental physiological impact. The responsible factors mainly include the exponential growth of human population, havoc rise in industrialization, poorly planned urbanization, and slapdash environment management. Environmental degradation can increase the likelihood of human exposure to heavy metals, resulting in health consequences such as reproductive problems. As a result, research into metal-induced causes of reproductive impairment at the genetic, epigenetic, and biochemical levels must be strengthened further. These metals impact upon the female reproduction at all strata of its regulation and functions, be it development, maturation, or endocrine functions, and are linked to an increase in the causes of infertility in women. Chronic exposures to the heavy metals may lead to breast cancer, endometriosis, endometrial cancer, menstrual disorders, and spontaneous abortions, as well as pre-term deliveries, stillbirths. For example, endometriosis, endometrial cancer, and spontaneous abortions are all caused by the metalloestrogen cadmium (Cd); lead (Pb) levels over a certain threshold can cause spontaneous abortion and have a teratogenic impact; toxic amounts of mercury (Hg) have an influence on the menstrual cycle, which can lead to infertility. Impact of environmental exposure to heavy metals on female fertility is therefore a well-known fact. Thus, the underlying mechanisms must be explained and periodically updated, given the growing evidence on the influence of increasing environmental heavy metal load on female fertility. The purpose of this review is to give a concise overview of how heavy metal affects female reproductive health.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hira Choudhury
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia.
| |
Collapse
|
21
|
Lin L, Chen X, Sun X, Xiao B, Li J, Liu J, Li G. MiR-125b-5p is targeted by curcumin to regulate the cellular antioxidant capacity. Free Radic Res 2022; 56:640-650. [PMID: 36583645 DOI: 10.1080/10715762.2022.2162393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a natural polyphenolic food supplement and the principal curcuminoid in turmeric, curcumin shows antioxidant, anti-inflammatory, and antitumor activities. However, its specific functional mechanism remains unclear. Our preliminary study indicated that miR-125b-5p was downregulated by a curcumin extract. This study aimed to determine whether miR-125b-5p is involved in the antioxidant regulation of curcumin. The results showed that miR-125b-5p overexpression had a pro-oxidant effect by reducing the cellular antioxidant capacity, as well as decreasing the activities of catalase (CAT) and superoxide dismutase (SOD) in the normal liver cell line LO2. However, miR-125b-5p repression significantly increased the cellular antioxidant capacity and enhanced the activities of CAT and SOD. Further investigation demonstrated that the cellular antioxidant capacity induced by curcumin extract was inhibited by miR-125b-5p overexpression. Thus, curcumin may exhibit antioxidant effects by repressing miR-125b-5p expression, which provides new insights into the molecular antioxidant mechanism of curcumin and other functional food components.
Collapse
Affiliation(s)
- Lingli Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Xi Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Xiaoting Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Baoping Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| |
Collapse
|
22
|
Källsten L, Almamoun R, Pierozan P, Nylander E, Sdougkou K, Martin JW, Karlsson O. Adult Exposure to Di-N-Butyl Phthalate (DBP) Induces Persistent Effects on Testicular Cell Markers and Testosterone Biosynthesis in Mice. Int J Mol Sci 2022; 23:ijms23158718. [PMID: 35955852 PMCID: PMC9369267 DOI: 10.3390/ijms23158718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Studies indicate that phthalates are endocrine disruptors affecting reproductive health. One of the most commonly used phthalates, di-n-butyl phthalate (DBP), has been linked with adverse reproductive health outcomes in men, but the mechanisms behind these effects are still poorly understood. Here, adult male mice were orally exposed to DBP (10 or 100 mg/kg/day) for five weeks, and the testis and adrenal glands were collected one week after the last dose, to examine more persistent effects. Quantification of testosterone, androstenedione, progesterone and corticosterone concentrations by liquid chromatography-mass spectrometry showed that testicular testosterone was significantly decreased in both DBP treatment groups, whereas the other steroids were not significantly altered. Western blot analysis of testis revealed that DBP exposure increased the levels of the steroidogenic enzymes CYP11A1, HSD3β2, and CYP17A1, the oxidative stress marker nitrotyrosine, and the luteinizing hormone receptor (LHR). The analysis further demonstrated increased levels of the germ cell marker DAZL, the Sertoli cell markers vimentin and SOX9, and the Leydig cell marker SULT1E1. Overall, the present work provides more mechanistic understanding of how adult DBP exposure can induce effects on the male reproductive system by affecting several key cells and proteins important for testosterone biosynthesis and spermatogenesis, and for the first time shows that these effects persist at least one week after the last dose. It also demonstrates impairment of testosterone biosynthesis at a lower dose than previously reported.
Collapse
|
23
|
Pogrmic-Majkic K, Samardzija Nenadov D, Tesic B, Fa Nedeljkovic S, Kokai D, Stanic B, Andric N. Mapping DEHP to the adverse outcome pathway network for human female reproductive toxicity. Arch Toxicol 2022; 96:2799-2813. [PMID: 35790550 PMCID: PMC9352620 DOI: 10.1007/s00204-022-03333-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023]
Abstract
Adverse outcome pathways (AOPs) and AOP networks are tools for mechanistic presentation of toxicological effects across different levels of biological organization. These tools are used to better understand how chemicals impact human health. In this study, a four-step workflow was used to derive the AOP network of human female reproductive toxicity (HFRT-AOP) from five AOPs available in the AOP-Wiki and ten AOPs obtained from the literature. Standard network analysis identified key events (KEs) that are point of convergence and divergence, upstream and downstream KEs, and bottlenecks across the network. To map di-(2-ethylhexyl) phthalate (DEHP) to the HFRT-AOP network, we extracted DEHP target genes and proteins from the Comparative Toxicogenomic and the CompTox Chemicals Dashboard databases. Enriched GO terms analysis was used to identify relevant biological processes in the ovary that are DEHP targets, whereas screening of scientific literature was performed manually and automatically using AOP-helpFinder. We combined this information to map DEHP to HFRT-AOP network to provide insight on the KEs and system-level perturbations caused by this endocrine disruptor and the emergent paths. This approach can enable better understanding of the toxic mechanism of DEHP-induced human female reproductive toxicity and reveal potential novel DEHP female reproductive targets for experimental studies.
Collapse
Affiliation(s)
- Kristina Pogrmic-Majkic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia.
| | - Dragana Samardzija Nenadov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Biljana Tesic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Svetlana Fa Nedeljkovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Dunja Kokai
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Bojana Stanic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| |
Collapse
|
24
|
Xu S, Dong Y, Chen S, Liu Y, Li Z, Jia X, Briens M, Jiang X, Lin Y, Che L, Zhuo Y, Li J, Feng B, Fang Z, Wang J, Ren Z, Wu D. 2-Hydroxy-4-Methylselenobutanoic Acid Promotes Follicle Development by Antioxidant Pathway. Front Nutr 2022; 9:900789. [PMID: 35619952 PMCID: PMC9127692 DOI: 10.3389/fnut.2022.900789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Selenium (Se) is assumed to promote the follicle development by attenuating oxidative stress. The current study was developed to evaluate the effects of dietary 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) supplementation on the follicle development in vivo and on the function of ovarian granulosa cells (GCs) in vitro. Thirty-six gilts were randomly assigned to fed control diet (CON), Na2SeO3 diet (0.3 mg Se/kg) or HMSeBA diet (0.3 mg Se/kg). The results showed that HMSeBA and Na2SeO3 supplementation both increased the total selenium content in liver and serum compared with control, while HMSeBA increased the total selenium content in liver compared with Na2SeO3 group. HMSeBA tended to increase the total selenium content in ovary compared with control. HMSeBA and Na2SeO3 supplementation both increased the weight of uteri in gilts at the third estrus. Moreover, HMSeBA supplementation down-regulated the gene expression of growth differentiation factor-9 (GDF-9) and bone morpho-genetic protein-15 (BMP-15) in cumulus-oocyte complexes (COCs). HMSeBA supplementation decreased malondialdehyde (MDA) content in serum, liver and ovary, increased activity of T-AOC in liver, TXNRD in ovary and GPX in serum, liver and ovary, while up-regulated the liver GPX2, SOD1 and TXNRD1, ovarian GPX1 gene expression. In vitro, HMSeBA treatment promoted GCs' proliferation and secretion of estradiol (E2). HMSeBA treatment increased the activity of T-AOC, T-SOD, GPX, TXNRD and decreased MDA content in GCs in vitro. Meanwhile, HMSeBA treatment up-regulated SOD2 and GPX1 gene expression in GCs in vitro. In conclusion, HMSeBA supplementation is more conducive to promoting follicle development by antioxidant pathway.
Collapse
Affiliation(s)
- Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,*Correspondence: Shengyu Xu
| | - Yanpeng Dong
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Sirun Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yalei Liu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zimei Li
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinlin Jia
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,De Wu
| |
Collapse
|
25
|
A Review on CYP11A1, CYP17A1, and CYP19A1 Polymorphism Studies: Candidate Susceptibility Genes for Polycystic Ovary Syndrome (PCOS) and Infertility. Genes (Basel) 2022; 13:genes13020302. [PMID: 35205347 PMCID: PMC8871850 DOI: 10.3390/genes13020302] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome is a multifactorial condition associated with reproductive and endocrine organs and might cause infertility and metabolic abnormalities in childbearing age. PCOS seems to be a multifactorial disorder resulting from the combination of several genetic and environmental factors. Little research has been conducted to date on the impact of polymorphisms in infertility. We aim to review the appearance of polymorphisms in females of diverse ethnicities and their effect on infertility in the population with polycystic ovary syndrome. There have been numerous reports of the importance of the steroidogenesis pathway and genetic variants in PCOS pathogenesis. The most important genes that play a role in the aetiology of PCOS are CYP11A1, CYP17A1, and CYP19A1. We evaluated the occurrence of polymorphisms in various ethnicities in the CYP11A1, CYP17A1, and CYP19A1 genes and their efficacy on increasing PCOS risk with infertility. Our findings revealed that polymorphisms in various ethnicities are associated with the risk of PCOS with infertility. Although conflicting results regarding CYP11A1, CYP17A1, and CYP19A1 polymorphisms and their influence on PCOS with infertility have been reported in a small number of papers, the authors feel this may be attributable to the sample size and ethnic composition of the examined populations. In conclusion, our study strongly suggests that the CYP11A1, CYP17A1, and CYP19A1 genes might significantly enhance the probability of developing PCOS with infertility.
Collapse
|
26
|
Aghaie F, Moradifar F, Hosseini A. Rapamycin attenuates depression and anxiety-like behaviors through modulation of the NLRP3 pathway in pentylenetetrazole-kindled male Wistar rats. Fundam Clin Pharmacol 2021; 35:1045-1054. [PMID: 33930202 DOI: 10.1111/fcp.12689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is cumulative evidence that shows the effect of epilepsy on behavioral conditions like anxiety and depression. OBJECTIVES The effects of rapamycin on anxiety and depression caused by pentylenetetrazole (PTZ) in the rat and possible underlying mechanisms were evaluated. METHODS Male Wistar rats were divided into experimental and control groups. The experimental groups were treated with intraperitoneal (i.p.) injection of 0.5, 1, and 2 mg/kg of rapamycin, while the control group received normal saline only. Kindling was induced by sub-threshold dose (35 mg/kg, i.p.) of PTZ for one month. When the kindling procedure was done, the seizure behaviors and the behavioral function were evaluated. For anxiety parameters, the elevated plus maze (EPM) was used. The forced swim test was employed to assess the antidepressant potential. At the end of the experiment, rats were euthanized and the blood serum and brain samples were isolated for respective measurement of oxidative stress and gene expression parameters. RESULTS Rapamycin delayed the development of kindling and the onset time of seizures. Rapamycin administration reduced immobility time in the FST, exerting antidepressant-like activity. In the EPM test, rapamycin produced an anxiolytic-like effect. In addition, rapamycin increased the catalase and superoxide dismutase levels in the serum and significantly decreased the gene expression of I11b and Nlrp3 compared to the PTZ group. CONCLUSION Our results showed that the inhibitory effect of mTOR inhibitor (rapamycin) on reactive oxygen species production during NLRP3 inflammasome activation could bring about behavioral alterations in anxiety and depression.
Collapse
Affiliation(s)
- Fatemeh Aghaie
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
27
|
Colella M, Cuomo D, Peluso T, Falanga I, Mallardo M, De Felice M, Ambrosino C. Ovarian Aging: Role of Pituitary-Ovarian Axis Hormones and ncRNAs in Regulating Ovarian Mitochondrial Activity. Front Endocrinol (Lausanne) 2021; 12:791071. [PMID: 34975760 PMCID: PMC8716494 DOI: 10.3389/fendo.2021.791071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
The number of mitochondria in the oocyte along with their functions (e.g., energy production, scavenger activity) decline with age progression. Such multifaceted functions support several processes during oocyte maturation, ranging from energy supply to synthesis of the steroid hormones. Hence, it is hardly surprising that their impairment has been reported in both physiological and premature ovarian aging, wherein they are crucial players in the apoptotic processes that arise in aged ovaries. In any form, ovarian aging implies the progressive damage of the mitochondrial structure and activities as regards to ovarian germ and somatic cells. The imbalance in the circulating hormones and peptides (e.g., gonadotropins, estrogens, AMH, activins, and inhibins), active along the pituitary-ovarian axis, represents the biochemical sign of ovarian aging. Despite the progress accomplished in determining the key role of the mitochondria in preserving ovarian follicular number and health, their modulation by the hormonal signalling pathways involved in ovarian aging has been poorly and randomly explored. Yet characterizing this mechanism is pivotal to molecularly define the implication of mitochondrial dysfunction in physiological and premature ovarian aging, respectively. However, it is fairly difficult considering that the pathways associated with ovarian aging might affect mitochondria directly or by altering the activity, stability and localization of proteins controlling mitochondrial dynamics and functions, either unbalancing other cellular mediators, released by the mitochondria, such as non-coding RNAs (ncRNAs). We will focus on the mitochondrial ncRNAs (i.e., mitomiRs and mtlncRNAs), that retranslocate from the mitochondria to the nucleus, as active players in aging and describe their role in the nuclear-mitochondrial crosstalk and its modulation by the pituitary-ovarian hormone dependent pathways. In this review, we will illustrate mitochondria as targets of the signaling pathways dependent on hormones and peptides active along the pituitary/ovarian axis and as transducers, with a particular focus on the molecules retrieved in the mitochondria, mainly ncRNAs. Given their regulatory function in cellular activities we propose them as potential diagnostic markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
| | - Teresa Peluso
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Ilaria Falanga
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Istituto per l’ endocrinologia e l’oncologia “Gaetano Salvatore” (IEOS)-Centro Nazionale delle Ricerche (CNR), Naples, Italy
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
- Istituto per l’ endocrinologia e l’oncologia “Gaetano Salvatore” (IEOS)-Centro Nazionale delle Ricerche (CNR), Naples, Italy
- *Correspondence: Concetta Ambrosino,
| |
Collapse
|