1
|
Bao X, Yan D, Yang J, Zhang Z, Yuan B. Role of ERβ in the ovary and ovary related diseases. Gene 2024; 927:148678. [PMID: 38906392 DOI: 10.1016/j.gene.2024.148678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Estrogen and estrogen receptors (ERα and ERβ) regulate a multitude of complicated physiological and pathological processes. Jan-Ake Gustafsson's group discovered ERβ in 1996, this crucial finding gives us new insights into the understanding of estrogen signaling. ERβ is highly expressed in the ovary and particularly exists in granulosa cells (GCs). ERβ is a key transcription factor in the maintenance of ovarian granulosa cell growth, differentiation, and homeostasis, and the ovulation function of ovarian follicles and oocytes. Additionally, ERβ can modulate the steroidogenic transcriptional program through phosphorylation and regulate both gonadotropin response and FOXL2 expression within the ovary. In this review, we focus on the role of ERβ in regulating ovarian granulosa cell development and homeostasis, particularly its significance in ovarian cancer (OC), premature ovarian failure (POF), and polycystic ovary syndrome (PCOS). It also highlights the prospects of small molecule compounds targeting ERβ, providing a new strategy for the treatment of ovarian-related diseases.
Collapse
Affiliation(s)
- Xuewei Bao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Di Yan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China; Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Zhen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China.
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China.
| |
Collapse
|
2
|
VandeVoort CA, Chaffin CL, Schall PZ, Latham KE. Dynamic changes in gene expression of growing nonhuman primate antral follicles. Physiol Genomics 2024; 56:764-775. [PMID: 39311840 PMCID: PMC11637489 DOI: 10.1152/physiolgenomics.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The growth of the ovarian antral follicle is a complex process that is difficult to study, especially in human and nonhuman primates. Understanding the antral stage of development is key to new approaches to regulating reproduction. This study analyzed cohorts of three sizes of developing antral follicles obtained from adult rhesus macaque females using RNA sequencing of oocytes and cumulus and granulosa cells. The overall objective of this study was to identify key developmental changes in gene expression in oocytes, granulosa, and cumulus cells, as nonhuman primate antral stage follicles transition through progressively larger sizes in the absence of exogenous hormonal stimulation. Only a relatively small number of genes displayed altered mRNA expression levels in any of the three cell types during this period. Most of the identified differentially expressed genes (DEGs) decreased in the granulosa cells or increased in the cumulus cells. Although the number of DEGs observed was small, these DEGs indicate predicted effects on distinct upstream regulators in the cumulus and granulosa cells. This study is particularly important because it shows for the first time the gene expression changes during antral follicle growth in a medically relevant model.NEW & NOTEWORTHY Changes in gene expression in oocytes, granulosa, and cumulus cells were determined in nonhuman primate antral stage ovarian follicles transitioning through progressively larger sizes without exogenous hormonal stimulation. Only a small number of genes displayed altered mRNA expression levels in any of the three cell types. Most of the differentially expressed genes (DEGs) decreased in granulosa cells or increased in cumulus cells. These results identified upstream regulators of antral follicle development.
Collapse
Affiliation(s)
- Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, California, United States
| | - Charles L Chaffin
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Peter Z Schall
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, United States
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
- Department of Obstetrics, Gynecology, & Reproductive Biology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
3
|
Wang C, Yan H, Hao W, Li F, Liu T, Wang H. Transcriptome Sequencing Analysis of Genes Associated with Different Developmental Periods of the Ovarian Follicle in the Duolang Sheep. Genes (Basel) 2024; 15:1394. [PMID: 39596594 PMCID: PMC11594068 DOI: 10.3390/genes15111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The ovaries are crucial reproductive organs in female mammals, directly influencing the reproductive efficiency and productivity of these animals. The Duolang sheep, native to Xinjiang, is known for its rapid growth and high fertility. However, the mechanisms underlying ovarian follicle development and regulation in sheep remain unclear. METHODS Employing transcriptome sequencing technology, this study methodically analyzed ovaries from sheep across various estrous cycles to uncover key genes and signaling pathways that play a role in the development of ovarian follicles. RESULTS The results indicated that a total of 130, 183, and 175 differentially expressed genes were identified in the DTA/DTB, DTB/DTC, and DTA/DTC groups, respectively. Key genes like BAG3, GDF5, RHOB, RUNX2, LGALS3, and CDH1, along with pathways such as endoplasmic reticulum protein processing, the NOTCH signaling pathway, and the MAPK signaling pathway, were found to be involved. RT-qPCR confirmed the differential expression of BAG3, RHOB, and RUNX2. CONCLUSIONS This research provides insights into the molecular mechanisms of ovarian follicle development and a basis for enhancing the reproductive performance of Duolang sheep.
Collapse
Affiliation(s)
- Chengqian Wang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (C.W.); (H.Y.)
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Alar 843300, China
| | - Hang Yan
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (C.W.); (H.Y.)
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Alar 843300, China
| | - Wen Hao
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (C.W.); (H.Y.)
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Alar 843300, China
| | - Fugui Li
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (C.W.); (H.Y.)
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Alar 843300, China
| | - Tianci Liu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (C.W.); (H.Y.)
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Alar 843300, China
| | - Hui’e Wang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (C.W.); (H.Y.)
- Key Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural Affairs, Alar 843300, China
| |
Collapse
|
4
|
Berisha B, Thaqi G, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Effect of the gonadotropin surge on steroid receptor regulation in preovulatory follicles and newly formed corpora lutea in the cow. Domest Anim Endocrinol 2024; 89:106876. [PMID: 39047595 DOI: 10.1016/j.domaniend.2024.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The objective of the study was to characterize the mRNA expression patterns of specific steroid hormone receptors namely, estrogen receptors (ESRRA-estrogen related receptor alpha and ESRRB-estrogen related receptor beta) and progesterone receptors (PGR) in superovulation-induced bovine follicles during the periovulation and subsequent corpus luteum (CL) formation. The bovine ovaries (n = 5 cow / group), containing preovulatory follicles or early CL, were collected relative to injection of the gonadotropin-releasing hormone (GnRH) at (I) 0 h, (II) 4 h, (III) 10 h, (IV) 20 h, (V) 25 h (preovulatory follicles) and (VI) 60 h (CL, 2-3 days after induced ovulation). In this experiment, we analyzed the steroid receptor mRNA expression and their localization in the follicle and CL tissue. The high mRNA expression of ESRRA, ESRRB, and PGR analyzed in the follicles before ovulation is significantly reduced in the group of follicles during ovulation (25 h after GnRH), rising again significantly after ovulation in newly formed CL, only for ESRRA and PGR (P < 0.05). Immunohistochemically, the nuclei of antral follicles' granulosa cells showed a positive staining for ESRRA, followed by higher activity in the large luteal cells just after ovulation (early CL). In contrast, the lower PGR immunopresence in preovulatory follicles increased in both small and large luteal cell nuclei after follicle ovulation. Our results of steroid receptor mRNA expression in this experimentally induced gonadotropin surge provide insight into the molecular mechanisms of the effects of steroid hormones on follicular-luteal tissue in the period close to the ovulation and subsequent CL formation in the cow.
Collapse
Affiliation(s)
- Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany; Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo; Academy of Science of Albania, Tirana, Albania
| | - Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany.
| | - Dieter Schams
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| |
Collapse
|
5
|
Wadood AA, Xiquan Z. Unraveling the mysteries of chicken proteomics: Insights into follicle development and reproduction. J Proteomics 2024; 308:105281. [PMID: 39154802 DOI: 10.1016/j.jprot.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Chicken proteomics is a valuable method for comprehending the many mechanisms involved in follicle growth and reproduction in birds. This study offers a thorough summary of the latest progress in chicken proteomics research, specifically highlighting the knowledge obtained regarding follicle development and reproductive physiology. Proteomic studies have revealed essential proteins and pathways that play a role in follicle development, including those that control oocyte size, maturation, and ovulation. Proteomic investigations have provided insight into the molecular pathways that govern reproductive processes. By utilizing advanced proteomic technologies, including mass spectrometry and protein microarray analysis, we have been able to identify and measure many proteins in chicken follicles at their different developmental stages. The utilization of proteomic methods has enabled the identification of previously unknown biomarkers for reproductive efficiency that expedited the creation of innovative diagnostic instruments for monitoring reproductive health in chicken. Chicken proteomics not only offers insights into follicle growth and reproduction but also uncovers the effects of environmental influences on reproductive function. This provides new opportunities for exploring the molecular pathways that cause these effects. The integration of current data with upcoming proteomic technologies offers the potential for innovative strategies to enhance chicken reproduction.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Zhang Xiquan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Vo K, Sharma Y, Paul A, Mohamadi R, Mohamadi A, Fields PE, Rumi MAK. Importance of Transcript Variants in Transcriptome Analyses. Cells 2024; 13:1502. [PMID: 39273072 PMCID: PMC11394320 DOI: 10.3390/cells13171502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
RNA sequencing (RNA-Seq) has become a widely adopted technique for studying gene expression. However, conventional RNA-Seq analyses rely on gene expression (GE) values that aggregate all the transcripts produced under a single gene identifier, overlooking the complexity of transcript variants arising from different transcription start sites or alternative splicing. Transcript variants may encode proteins with diverse functional domains, or noncoding RNAs. This study explored the implications of neglecting transcript variants in RNA-Seq analyses. Among the 1334 transcription factor (TF) genes expressed in mouse embryonic stem (ES) or trophoblast stem (TS) cells, 652 were differentially expressed in TS cells based on GE values (365 upregulated and 287 downregulated, ≥absolute 2-fold changes, false discovery rate (FDR) p-value ≤ 0.05). The 365 upregulated genes expressed 883 transcript variants. Further transcript expression (TE) based analyses identified only 174 (<20%) of the 883 transcripts to be upregulated. The remaining 709 transcripts were either downregulated or showed no significant changes. Meanwhile, the 287 downregulated genes expressed 856 transcript variants and only 153 (<20%) of the 856 transcripts were downregulated. The other 703 transcripts were either upregulated or showed no significant change. Additionally, the 682 insignificant TF genes (GE values < absolute 2-fold changes and/or FDR p-values > 0.05) between ES and TS cells expressed 2215 transcript variants. These included 477 (>21%) differentially expressed transcripts (276 upregulated and 201 downregulated, ≥absolute 2-fold changes, FDR p-value ≤ 0.05). Hence, GE based RNA-Seq analyses do not represent accurate expression levels due to divergent transcripts expression from the same gene. Our findings show that by including transcript variants in RNA-Seq analyses, we can generate a precise understanding of a gene's functional and regulatory landscape; ignoring the variants may result in an erroneous interpretation.
Collapse
Affiliation(s)
- Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yashica Sharma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anohita Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amelia Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patrick E Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
7
|
Ma X, Xu R, Chen J, Wang S, Hu P, Wu Y, Que Y, Du W, Cai X, Chen H, Guo J, Li TC, Ruan YC. The epithelial Na + channel (ENaC) in ovarian granulosa cells modulates Ca 2+ mobilization and gonadotrophin signaling for estrogen homeostasis and female fertility. Cell Commun Signal 2024; 22:398. [PMID: 39143495 PMCID: PMC11323461 DOI: 10.1186/s12964-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
Ovarian granulosa cells are essential to gonadotrophin-regulated estrogen production, female cycle maintenance and fertility. The epithelial Na+ channel (ENaC) is associated with female fertility; however, whether and how it plays a role in ovarian cell function(s) remained unexplored. Here, we report patch-clamp and Na+ imaging detection of ENaC expression and channel activity in both human and mouse ovarian granulosa cells, which are promoted by pituitary gonadotrophins, follicle stimulating hormone (FSH) or luteinizing hormone (LH). Cre-recombinase- and CRISPR-Cas9-based granulosa-specific knockout of ENaC α subunit (Scnn1a) in mice resulted in failed estrogen elevation at early estrus, reduced number of corpus luteum, abnormally extended estrus phase, reduced litter size and subfertility in adult female mice. Further analysis using technologies including RNA sequencing and Ca2+ imaging revealed that pharmacological inhibition, shRNA-based knockdown or the knockout of ENaC diminished spontaneous or stimulated Ca2+ oscillations, lowered the capacity of intracellular Ca2+ stores and impaired FSH/LH-stimulated transcriptome changes for estrogen production in mouse and/or human granulosa cells. Together, these results have revealed a previously undefined role of ENaC in modulating gonadotrophin signaling in granulosa cells for estrogen homeostasis and thus female fertility.
Collapse
Affiliation(s)
- Xiyang Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ruiyao Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Junjiang Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Jinan University, Guangzhou, China
| | - Shan Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Peijie Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yong Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yanting Que
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wanting Du
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaojun Cai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hui Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China.
| |
Collapse
|
8
|
Nasta TZ, Tabandeh MR, Amini K, Abbasi A, Dayer D, Jalili C. The influence of indole propionic acid on molecular markers of steroidogenesis, ER stress, and apoptosis in rat granulosa cells exposed to high glucose conditions. J Steroid Biochem Mol Biol 2024; 240:106509. [PMID: 38508473 DOI: 10.1016/j.jsbmb.2024.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hyperglycemia is known as one of the main causes of infertility in human societies. Indole propionic acid (IPA) is produced by intestinal microbiota and has antioxidant and anti-inflammatory properties. This study aims to investigate the effects of IPA on molecular indices of steroidogenesis, ER stress, and apoptosis induced by high glucose (HG) in granulosa cells. Primary GCs, isolated from ovarian follicles of Rats were cultured in 5 mM (control) and 30 mM (HG) of glucose and in the presence of 10 and 20 µM of IPA for 24 h. The cell viability was assessed by MTT. The gene expression of P450SCC, 3βHSD, CYP19A, BAX, BCL2, and STAR was evaluated by Real-Time PCR. Protein expression of ATF6, PERK, GRP78, and CHOP determined by western blot. Progesterone, estradiol, IL-1β, and TNF-α were measured by ELISA. HG decreased the viability, and expression of P450SCC, 3βHSD, CYP19A, BCL2, STAR, and increased BAX. 10 and 20 µM of IPA increased cell viability, expression of P450SCC, 3βHSD, CYP19A, BCL2 and STAR and decreased BAX compared to the HG group. The expression of ATF6, PERK, GRP78, and CHOP proteins increased by HG and IPA decreased the expression of these proteins compared to the HG group. Also, HG decreased progesterone and estradiol levels and increased IL-1β and TNF-α. IPA significantly increased progesterone and estradiol and decreased IL-1β and TNF-α compared to the HG group. IPA can improve the side effects of HG in GCs of rats, as responsible cells for fertility, by improving steroidogenesis, regulation of ER-stress pathway, suppression of inflammation, and apoptosis.
Collapse
Affiliation(s)
- Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Komail Amini
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Chakravarthi VP, Dilower I, Ghosh S, Borosha S, Mohamadi R, Dahiya V, Vo K, Lee EB, Ratri A, Kumar V, Marsh CA, Fields PE, Rumi MAK. ERβ Regulation of Indian Hedgehog Expression in the First Wave of Ovarian Follicles. Cells 2024; 13:644. [PMID: 38607081 PMCID: PMC11011683 DOI: 10.3390/cells13070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Increased activation of ovarian primordial follicles in Erβ knockout (ErβKO) rats becomes evident as early as postnatal day 8.5. To identify the ERβ-regulated genes that may control ovarian primordial follicle activation, we analyzed the transcriptome profiles of ErβKO rat ovaries collected on postnatal days 4.5, 6.5, and 8.5. Compared to wildtype ovaries, ErβKO ovaries displayed dramatic downregulation of Indian hedgehog (Ihh) expression. IHH-regulated genes, including Hhip, Gli1, and Ptch1, were also downregulated in ErβKO ovaries. This was associated with a downregulation of steroidogenic enzymes Cyp11a1, Cyp19a1, and Hsd17b1. The expression of Ihh remained very low in ErβKO ovaries despite the high levels of Gdf9 and Bmp15, which are known upregulators of Ihh expression in the granulosa cells of activated ovarian follicles. Strikingly, the downregulation of the Ihh gene in ErβKO ovaries began to disappear on postnatal day 16.5 and recovered on postnatal day 21.5. In rat ovaries, the first wave of primordial follicles is rapidly activated after their formation, whereas the second wave of primordial follicles remains dormant in the ovarian cortex and slowly starts activating after postnatal day 12.5. We localized the expression of Ihh mRNA in postnatal day 8.5 wildtype rat ovaries but not in the age-matched ErβKO ovaries. In postnatal day 21.5 ErβKO rat ovaries, we detected Ihh mRNA mainly in the activated follicles in the ovaries' peripheral regions. Our findings indicate that the expression of Ihh in the granulosa cells of the activated first wave of ovarian follicles depends on ERβ.
Collapse
Affiliation(s)
- V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Vinesh Dahiya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Vishnu Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Courtney A. Marsh
- Obstetrics and Gynecology, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA;
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| |
Collapse
|
10
|
Lee EB, Chakravarthi VP, Mohamadi R, Dahiya V, Vo K, Ratri A, Fields PE, Marsh CA, Rumi MAK. Loss of ERβ Disrupts Gene Regulation in Primordial and Primary Follicles. Int J Mol Sci 2024; 25:3202. [PMID: 38542176 PMCID: PMC10970686 DOI: 10.3390/ijms25063202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 11/03/2024] Open
Abstract
Loss of ERβ increases primordial follicle growth activation (PFGA), leading to premature ovarian follicle reserve depletion. We determined the expression and gene regulatory functions of ERβ in dormant primordial follicles (PdFs) and activated primary follicles (PrFs) using mouse models. PdFs and PrFs were isolated from 3-week-old Erβ knockout (Erβnull) mouse ovaries, and their transcriptomes were compared with those of control Erβfl/fl mice. We observed a significant (≥2-fold change; FDR p-value ≤ 0.05) deregulation of approximately 5% of genes (866 out of 16,940 genes, TPM ≥ 5) in Erβnull PdFs; ~60% (521 out of 866) of the differentially expressed genes (DEGs) were upregulated, and 40% were downregulated, indicating that ERβ has both transcriptional enhancing as well as repressing roles in dormant PdFs. Such deregulation of genes may make the Erβnull PdFs more susceptible to increased PFGA. When the PdFs undergo PFGA and form PrFs, many new genes are activated. During PFGA of Erβfl/fl follicles, we detected a differential expression of ~24% genes (4909 out of 20,743; ≥2-fold change; FDR p-value ≤ 0.05; TPM ≥ 5); 56% upregulated and 44% downregulated, indicating the gene enhancing and repressing roles of Erβ-activated PrFs. In contrast, we detected a differential expression of only 824 genes in Erβnull follicles during PFGA (≥2-fold change; FDR p-value ≤ 0.05; TPM ≥ 5). Moreover, most (~93%; 770 out of 824) of these DEGs in activated Erβnull PrFs were downregulated. Such deregulation of genes in Erβnull activated follicles may impair their inhibitory role on PFGA. Notably, in both Erβnull PdFs and PrFs, we detected a significant number of epigenetic regulators and transcription factors to be differentially expressed, which suggests that lack of ERβ either directly or indirectly deregulates the gene expression in PdFs and PrFs, leading to increased PFGA.
Collapse
Affiliation(s)
- Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Vinesh Dahiya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| | - Courtney A. Marsh
- Department of Obstetrics and Gynecology, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA;
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.); (R.M.); (V.D.); (K.V.); (A.R.); (P.E.F.)
| |
Collapse
|
11
|
Sharma P, Kumar Singh A, Senapati S, Singh Kapoor H, Devi Goyal L, Kaur B, Kamra P, Khetarpal P. Genetic Variants of Steroidogenesis and Gonadotropin Pathways and Polycystic Ovary Syndrome Susceptibility: A Systematic Review and Meta-analysis. Metab Syndr Relat Disord 2024; 22:15-26. [PMID: 37878274 DOI: 10.1089/met.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Genetic variants are predisposing factors to polycystic ovary syndrome (PCOS), a multifactorial condition that often gets triggered due to various environmental factors. The study investigates the association of the variants of genes that are involved in the steroidogenesis pathway or gonadotropin pathway with the risk of PCOS. Appropriate keywords for predetermined genes were used to search in PubMed, Google Scholar, Science Direct, and Central Cochrane Library up to January 11, 2023. PROSPERO (CRD42022275425). Inclusion criteria: (a) case-control study; (b) genotype or allelic data. Exclusion criteria were: (a) duplicate studies; (b) clinical trials, systematic reviews, meta-analysis or conference abstract, case reports; (c) other than the English language; (d) having insufficient data; e) genetic variants for which meta-analysis has been reported recently and does not have a scope of the update. Various genetic models were applied as per data availability. Overall 12 variants of 7 genes were selected for the analysis. Relevant data were extracted from 47 studies which include 10,584 PCOS subjects and 16,150 healthy controls. Meta-analysis indicates a significant association between TOX3 rs4784165 [ORs = 1.08, 95% CI (1.00-1.16)], HMGA2 rs2272046 [ORs = 2.73, 95% CI (1.97-3.78)], YAP1 rs1894116 [OR = 1.22, 95% CI (1.13-1.33)] and increased risk of PCOS. Whereas FSHR rs2268361 [ORs = 0.84, 95% CI (0.78-0.89)] is associated with decreased PCOS risk. When sensitivity analysis was carried out, the association became significant for CYP19 rs700519 and FSHR rs6165 under an additive model. In addition, C9Orf3 rs3802457 became significantly associated with decreased PCOS risk with the removal of one study. Insignificant association was observed for CYP19A (rs2470152), FSHR (rs2349415, rs6166), C9Orf3 (rs4385527), GnRH1 (rs6185) and risk of PCOS. Our findings suggest association of CYP19A (rs700519), TOX3 (rs4784165), HMGA2 (rs2272046), FSHR (rs6165, rs2268361), C9orf3 (rs3802457), and YAP1 (rs1894116) with risk for PCOS.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhilash Kumar Singh
- Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, India
| | | | - Lajya Devi Goyal
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, India
| | - Balpreet Kaur
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, India
| | - Pooja Kamra
- Department of Obstetrics and Gynaecology, Kamra Hospital, Malout, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
12
|
Birgersson M, Indukuri R, Lindquist L, Stepanauskaite L, Luo Q, Deng Q, Archer A, Williams C. Ovarian ERβ cistrome and transcriptome reveal chromatin interaction with LRH-1. BMC Biol 2023; 21:277. [PMID: 38031019 PMCID: PMC10688478 DOI: 10.1186/s12915-023-01773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Estrogen receptor beta (ERβ, Esr2) plays a pivotal role in folliculogenesis and ovulation, yet its exact mechanism of action is mainly uncharacterized. RESULTS We here performed ERβ ChIP-sequencing of mouse ovaries followed by complementary RNA-sequencing of wild-type and ERβ knockout ovaries. By integrating the ERβ cistrome and transcriptome, we identified its direct target genes and enriched biological functions in the ovary. This demonstrated its strong impact on genes regulating organism development, cell migration, lipid metabolism, response to hypoxia, and response to estrogen. Cell-type deconvolution analysis of the bulk RNA-seq data revealed a decrease in luteal cells and an increased proportion of theca cells and a specific type of cumulus cells upon ERβ loss. Moreover, we identified a significant overlap with the gene regulatory network of liver receptor homolog 1 (LRH-1, Nr5a2) and showed that ERβ and LRH-1 extensively bound to the same chromatin locations in granulosa cells. Using ChIP-reChIP, we corroborated simultaneous ERβ and LRH-1 co-binding at the ERβ-repressed gene Greb1 but not at the ERβ-upregulated genes Cyp11a1 and Fkbp5. Transactivation assay experimentation further showed that ERβ and LRH-1 can inhibit their respective transcriptional activity at classical response elements. CONCLUSIONS By characterizing the genome-wide endogenous ERβ chromatin binding, gene regulations, and extensive crosstalk between ERβ and LRH-1, along with experimental corroborations, our data offer genome-wide mechanistic underpinnings of ovarian physiology and fertility.
Collapse
Affiliation(s)
- Madeleine Birgersson
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Rajitha Indukuri
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
| | - Linnéa Lindquist
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Lina Stepanauskaite
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Qing Luo
- Department of Physiology and Pharmacology, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Amena Archer
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Cecilia Williams
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
13
|
Zhu Q, Li Y, Ma J, Ma H, Liang X. Potential factors result in diminished ovarian reserve: a comprehensive review. J Ovarian Res 2023; 16:208. [PMID: 37880734 PMCID: PMC10598941 DOI: 10.1186/s13048-023-01296-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The ovarian reserve is defined as the quantity of oocytes stored in the ovary or the number of oocytes that can be recruited. Ovarian reserve can be affected by many factors, including hormones, metabolites, initial ovarian reserve, environmental problems, diseases, and medications, among others. With the trend of postponing of pregnancy in modern society, diminished ovarian reserve (DOR) has become one of the most common challenges in current clinical reproductive medicine. Attributed to its unclear mechanism and complex clinical features, it is difficult for physicians to administer targeted treatment. This review focuses on the factors associated with ovarian reserve and discusses the potential influences and pathogenic factors that may explain the possible mechanisms of DOR, which can be improved or built upon by subsequent researchers to verify, replicate, and establish further study findings, as well as for scientists to find new treatments.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, 730000, Lanzhou, China.
| |
Collapse
|
14
|
Chakravarthi VP, Hung WT, Yellapu NK, Gunewardena S, Christenson LK. LH/hCG Regulation of Circular RNA in Mural Granulosa Cells during the Periovulatory Period in Mice. Int J Mol Sci 2023; 24:13078. [PMID: 37685885 PMCID: PMC10488058 DOI: 10.3390/ijms241713078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Ovarian follicles undergo a series of dynamic changes following the ovulatory surge of luteinizing hormone including cumulus expansion, oocyte maturation, ovulation, and luteinization. Post-transcriptional gene regulatory events are critical for mediating LH follicular responses, and among all RNA isoforms, circular RNA (circRNA) is one of the most abundant forms present in cells, yet they remain the least studied. Functionally, circRNA can act as miRNA sponges, protein sponges/decoys, and regulators of transcription and translation. In the context of ovarian follicular development, the identity and roles of circRNA are relatively unknown. In the present study, high throughput RNA sequencing of granulosa cells immediately prior to and 4-h after the LH/hCG surge identified 42,381 circRNA originating from 7712 genes. A total of 54 circRNA were identified as differentially expressed between 0-h and 4-h time points (Fold Change ± 1.5, FDR ≤ 0.1), among them 42 circRNA were upregulated and 12 circRNA were downregulated. All differentially expressed circRNA between the 0-h and 4-h groups were subjected to circinteractome analysis and identified networks of circRNA-protein and circRNA-miRNA were further subjected to "micro-RNA target filter analysis" in Ingenuity Pathway Analyses, which resulted in the identification of miRNA targeted mRNAs. A comparison of these circRNA target mRNAs with LH-induced mRNAs identified Runx2, Egfr, Areg, Sult1el, Cyp19a1, Cyp11a1, and Hsd17b1 as targets of circKif2, circVcan, circMast4, and circMIIt10. These newly identified LH/hCG-induced circRNA, their target miRNA and protein networks provide new insights into the complex interactions associated with periovulatory follicular development.
Collapse
Affiliation(s)
- V. Praveen Chakravarthi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Wei-Ting Hung
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| | - Lane K. Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (V.P.C.); (W.-T.H.); (S.G.)
| |
Collapse
|
15
|
Li W, Liu J, Wu W, Yao T, Weng X, Yue X, Li F. Effect of corn straw or corncobs in total mixed ration during peri-puberty on testis development in Hu lambs. Theriogenology 2023; 201:106-115. [PMID: 36868048 DOI: 10.1016/j.theriogenology.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Corn straw and corncobs contain large amounts of crude fibers and are widely used in mutton sheep husbandry in northwest China. The aim of this study was to determine whether feeding with corn straw or corncobs affects lamb testis development. A total of 50 healthy Hu lamb at two-month-old (average body weight of 22.3 ± 0.1 kg) were randomly and equally divided into two groups, and the lambs were equally allocated to five pens in each group. The corn straw group (CS) received a diet containing 20% corn straw, whereas the corncobs group (CC) received a diet containing 20% corncobs. After a 77-day feeding trial, the lambs, except the heaviest and lightest in each pen, were humanely slaughtered and investigated. Results revealed no differences in body weight (40.38 ± 0.45 kg vs. 39.08 ± 0.52 kg) between the CS and CC groups. Feeding diet containing corn straw significantly (P < 0.05) increased testis weight (243.24 ± 18.78 g vs. 167.00 ± 15.20 g), testis index (0.60 ± 0.05 vs. 0.43 ± 0.04), testis volume (247.08 ± 19.99 mL vs. 162.31 ± 14.15 mL), diameter of seminiferous tubule (213.90 ± 4.91 μm vs. 173.11 ± 5.93 μm), and the number of sperm in the epididymis (49.91 ± 13.53 × 108/g vs. 19.34 ± 6.79 × 108/g) compared with those in the CC group. The RNA sequencing results showed 286 differentially expressed genes, and 116 upregulated and 170 downregulated genes were found in the CS group compared with the CC group. The genes affecting immune functions and fertility were screened out. Corn straw decreased the mtDNA relative copy number in the testis (P < 0.05). These results suggest that compared with corncobs, feeding corn straw in the early reproductive development stage of lambs increased the testis weight, diameter of seminiferous tubule and the number of cauda sperm.
Collapse
Affiliation(s)
- Wanhong Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Jiamei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Weiwei Wu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep & Cashmere Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Ting Yao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiuxiu Weng
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangpeng Yue
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Gansu Runmu Biological Engineering Co., Ltd., Yongchang, 737200, China
| |
Collapse
|
16
|
Masumi S, Lee EB, Dilower I, Upadhyaya S, Chakravarthi VP, Fields PE, Rumi MAK. The role of Kisspeptin signaling in Oocyte maturation. Front Endocrinol (Lausanne) 2022; 13:917464. [PMID: 36072937 PMCID: PMC9441556 DOI: 10.3389/fendo.2022.917464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Kisspeptins (KPs) secreted from the hypothalamic KP neurons act on KP receptors (KPRs) in gonadotropin (GPN) releasing hormone (GnRH) neurons to produce GnRH. GnRH acts on pituitary gonadotrophs to induce secretion of GPNs, namely follicle stimulating hormone (FSH) and luteinizing hormone (LH), which are essential for ovarian follicle development, oocyte maturation and ovulation. Thus, hypothalamic KPs regulate oocyte maturation indirectly through GPNs. KPs and KPRs are also expressed in the ovarian follicles across species. Recent studies demonstrated that intraovarian KPs also act directly on the KPRs expressed in oocytes to promote oocyte maturation and ovulation. In this review article, we have summarized published reports on the role of hypothalamic and ovarian KP-signaling in oocyte maturation. Gonadal steroid hormones regulate KP secretion from hypothalamic KP neurons, which in turn induces GPN secretion from the hypothalamic-pituitary (HP) axis. On the other hand, GPNs secreted from the HP axis act on the granulosa cells (GCs) and upregulate the expression of ovarian KPs. While KPs are expressed predominantly in the GCs, the KPRs are in the oocytes. Expression of KPs in the ovaries increases with the progression of the estrous cycle and peaks during the preovulatory GPN surge. Intrafollicular KP levels in the ovaries rise with the advancement of developmental stages. Moreover, loss of KPRs in oocytes in mice leads to failure of oocyte maturation and ovulation similar to that of premature ovarian insufficiency (POI). These findings suggest that GC-derived KPs may act on the KPRs in oocytes during their preovulatory maturation. In addition to the intraovarian role of KP-signaling in oocyte maturation, in vivo, a direct role of KP has been identified during in vitro maturation of sheep, porcine, and rat oocytes. KP-stimulation of rat oocytes, in vitro, resulted in Ca2+ release and activation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1 and 2. In vitro treatment of rat or porcine oocytes with KPs upregulated messenger RNA levels of the factors that favor oocyte maturation. In clinical trials, human KP-54 has also been administered successfully to patients undergoing assisted reproductive technologies (ARTs) for increasing oocyte maturation. Exogenous KPs can induce GPN secretion from hypothalamus; however, the possibility of direct KP action on the oocytes cannot be excluded. Understanding the direct in vivo and in vitro roles of KP-signaling in oocyte maturation will help in developing novel KP-based ARTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
17
|
Dinh DT, Russell DL. Nuclear Receptors in Ovarian Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:41-58. [DOI: 10.1007/978-3-031-11836-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Khoubai FZ, Grosset CF. DUSP9, a Dual-Specificity Phosphatase with a Key Role in Cell Biology and Human Diseases. Int J Mol Sci 2021; 22:ijms222111538. [PMID: 34768967 PMCID: PMC8583968 DOI: 10.3390/ijms222111538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are essential for proper cell functioning as they regulate many molecular effectors. Careful regulation of MAPKs is therefore required to avoid MAPK pathway dysfunctions and pathologies. The mammalian genome encodes about 200 phosphatases, many of which dephosphorylate the MAPKs and bring them back to an inactive state. In this review, we focus on the normal and pathological functions of dual-specificity phosphatase 9 (DUSP9)/MAP kinase phosphatases-4 (MKP-4). This cytoplasmic phosphatase, which belongs to the threonine/tyrosine dual-specific phosphatase family and was first described in 1997, is known to dephosphorylate ERK1/2, p38, JNK and ASK1, and thereby to control various MAPK pathway cascades. As a consequence, DUSP9 plays a major role in human pathologies and more specifically in cardiac dysfunction, liver metabolic syndromes, diabetes, obesity and cancer including drug response and cell stemness. Here, we recapitulate the mechanism of action of DUSP9 in the cell, its levels of regulation and its roles in the most frequent human diseases, and discuss its potential as a therapeutic target.
Collapse
|
19
|
Lee EB, Chakravarthi VP, Wolfe MW, Rumi MAK. ERβ Regulation of Gonadotropin Responses during Folliculogenesis. Int J Mol Sci 2021; 22:ijms221910348. [PMID: 34638689 PMCID: PMC8508937 DOI: 10.3390/ijms221910348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Gonadotropins are essential for regulating ovarian development, steroidogenesis, and gametogenesis. While follicle stimulating hormone (FSH) promotes the development of ovarian follicles, luteinizing hormone (LH) regulates preovulatory maturation of oocytes, ovulation, and formation of corpus luteum. Cognate receptors of FSH and LH are G-protein coupled receptors that predominantly signal through cAMP-dependent and cAMP-independent mechanisms that activate protein kinases. Subsequent vital steps in response to gonadotropins are mediated through activation or inhibition of transcription factors required for follicular gene expression. Estrogen receptors, classical ligand-activated transcriptional regulators, play crucial roles in regulating gonadotropin secretion from the hypothalamic-pituitary axis as well as gonadotropin function in the target organs. In this review, we discuss the role of estrogen receptor β (ERβ) regulating gonadotropin response during folliculogenesis. Ovarian follicles in Erβ knockout (ErβKO) mutant female mice and rats cannot develop beyond the antral state, lack oocyte maturation, and fail to ovulate. Theca cells (TCs) in ovarian follicles express LH receptor, whereas granulosa cells (GCs) express both FSH receptor (FSHR) and LH receptor (LHCGR). As oocytes do not express the gonadotropin receptors, the somatic cells play a crucial role during gonadotropin induced oocyte maturation. Somatic cells also express high levels of estrogen receptors; while TCs express ERα and are involved in steroidogenesis, GCs express ERβ and are involved in both steroidogenesis and folliculogenesis. GCs are the primary site of ERβ-regulated gene expression. We observed that a subset of gonadotropin-induced genes in GCs, which are essential for ovarian follicle development, oocyte maturation and ovulation, are dependent on ERβ. Thus, ERβ plays a vital role in regulating the gonadotropin responses in ovary.
Collapse
Affiliation(s)
- Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-913-588-8059
| |
Collapse
|
20
|
Wołodko K, Castillo-Fernandez J, Kelsey G, Galvão A. Revisiting the Impact of Local Leptin Signaling in Folliculogenesis and Oocyte Maturation in Obese Mothers. Int J Mol Sci 2021; 22:4270. [PMID: 33924072 PMCID: PMC8074257 DOI: 10.3390/ijms22084270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The complex nature of folliculogenesis regulation accounts for its susceptibility to maternal physiological fitness. In obese mothers, progressive expansion of adipose tissue culminates with severe hyperestrogenism and hyperleptinemia with detrimental effects for ovarian performance. Indeed, maternal obesity is associated with the establishment of ovarian leptin resistance. This review summarizes current knowledge on potential effects of impaired leptin signaling throughout folliculogenesis and oocyte developmental competence in mice and women.
Collapse
Affiliation(s)
- Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
| | | | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|