1
|
Grigio V, Guerra LHA, Ruiz TFR, Taboga SR, Vilamaior PSL. Coconut oil reduces steroidogenic enzymes and imbalances estrogen receptors in the adrenal cortex of Mongolian gerbils. Food Chem Toxicol 2025; 196:115248. [PMID: 39793945 DOI: 10.1016/j.fct.2025.115248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study aims to verify the effects of prolonged ingestion of coconut oil on the adrenal glands of Mongolian gerbils. Mongolian gerbils were used as an experimental model due to the morphological similarity of the adrenal glands to those of primates. Male Mongolian gerbils, 3 months of age, were divided into three experimental groups (n = 12): an intact control group, which received no treatment, a gavage control group, which received 0.1 ml of water daily by gavage, and a coconut oil-treated group, which received 0.1 ml of coconut oil daily for 12 months. The results showed that prolonged consumption of coconut oil caused an increase in cell area and thickness of the zona reticularis and the accumulation of lipid droplets, as well as reducing the amount of steroidogenic enzymes, such as CYP17, 3BHSD, and 17BHSD. It was also observed that the oil increased the expression of estrogen receptor alpha and their isoforms. These alterations allow us to conclude that changes in the lipid diet can cause alterations in the morphophysiology of the adrenal gland and, consequently, impact its functionality.
Collapse
Affiliation(s)
- Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil; Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
2
|
Omar MH. Disruptions to protein kinase A localization in adrenal pathology. Biochem Soc Trans 2024; 52:2231-2241. [PMID: 39364716 DOI: 10.1042/bst20240444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Cell signaling fidelity requires specificity in protein-protein interactions and precise subcellular localization of signaling molecules. In the case of protein phosphorylation, many kinases and phosphatases exhibit promiscuous substrate pairing and therefore require targeting interactions to modify the appropriate substrates and avoid cross-talk among different pathways. In the past 10 years, researchers have discovered and investigated how loss of specific interactions and subcellular targeting for the protein kinase A catalytic subunit (PKAc) lead to cortisol-producing adenomas and the debilitating stress disorder adrenal Cushing's syndrome. This article reviews classical studies regarding PKA localization in glucocorticoid-producing adrenal cells and synthesizes recent evidence of disrupted PKA localization and selective regulatory interactions in adrenal pathology.
Collapse
Affiliation(s)
- Mitchell H Omar
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, U.S.A
| |
Collapse
|
3
|
Iwahashi N, Umakoshi H, Fujita M, Fukumoto T, Ogasawara T, Yokomoto-Umakoshi M, Kaneko H, Nakao H, Kawamura N, Uchida N, Matsuda Y, Sakamoto R, Seki M, Suzuki Y, Nakatani K, Izumi Y, Bamba T, Oda Y, Ogawa Y. Single-cell and spatial transcriptomics analysis of human adrenal aging. Mol Metab 2024; 84:101954. [PMID: 38718896 PMCID: PMC11101872 DOI: 10.1016/j.molmet.2024.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.
Collapse
Affiliation(s)
- Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuki Ogasawara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakao
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kohta Nakatani
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Augsburger P, Liimatta J, Flück CE. Update on Adrenarche-Still a Mystery. J Clin Endocrinol Metab 2024; 109:1403-1422. [PMID: 38181424 DOI: 10.1210/clinem/dgae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
CONTEXT Adrenarche marks the timepoint of human adrenal development when the cortex starts secreting androgens in increasing amounts, in healthy children at age 8-9 years, with premature adrenarche (PA) earlier. Because the molecular regulation and significance of adrenarche are unknown, this prepubertal event is characterized descriptively, and PA is a diagnosis by exclusion with unclear long-term consequences. EVIDENCE ACQUISITION We searched the literature of the past 5 years, including original articles, reviews, and meta-analyses from PubMed, ScienceDirect, Web of Science, Embase, and Scopus, using search terms adrenarche, pubarche, DHEAS, steroidogenesis, adrenal, and zona reticularis. EVIDENCE SYNTHESIS Numerous studies addressed different topics of adrenarche and PA. Although basic studies on human adrenal development, zonation, and zona reticularis function enhanced our knowledge, the exact mechanism leading to adrenarche remains unsolved. Many regulators seem involved. A promising marker of adrenarche (11-ketotestosterone) was found in the 11-oxy androgen pathway. By current definition, the prevalence of PA can be as high as 9% to 23% in girls and 2% to 10% in boys, but only a subset of these children might face related adverse health outcomes. CONCLUSION New criteria for defining adrenarche and PA are needed to identify children at risk for later disease and to spare children with a normal variation. Further research is therefore required to understand adrenarche. Prospective, long-term studies should characterize prenatal or early postnatal developmental pathways that modulate trajectories of birth size, early postnatal growth, childhood overweight/obesity, adrenarche and puberty onset, and lead to abnormal sexual maturation, fertility, and other adverse outcomes.
Collapse
Affiliation(s)
- Philipp Augsburger
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Jani Liimatta
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, 70029 Kuopio, Finland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
5
|
Wieczorek J, Pawlicki P, Zarzycka M, Pardyak L, Niedbala P, Duliban M, Yurdakok-Dikmen B, Kotula-Balak M. Elevated luteinizing hormone receptor signaling or selenium treatment leads to comparable changes in adrenal cortex histology and androgen-AR/ZIP9 signaling. PROTOPLASMA 2024; 261:487-496. [PMID: 38052957 PMCID: PMC11021298 DOI: 10.1007/s00709-023-01910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The importance and regulation of adrenal androgen production and signaling are not completely understood and are scarcely studied. In addition, there is still a search for appropriate animal models and experimental systems for the investigation of adrenal physiology and disease. Therefore, the main objective of the study was to evaluate the effect of luteinizing hormone (LH) signaling and selenium (Se2+) exposure on androgen adrenal signaling via canonical androgen receptor (AR), and membrane androgen receptor acting as zinc transporter (zinc- and iron-like protein 9; ZIP9). For herein evaluations, adrenals isolated from transgenic mice with elevated LH receptor signaling (KiLHRD582G) and adrenals obtained from rabbits used for ex vivo adenal cortex culture and exposure to Se2+ were utilized. Tissues were assessed for morphological, morphometric, and Western blot analyses and testosterone and zinc level measurements.Comparison of adrenal cortex histology and morphometric analysis in KiLHRD582G mice and Se2+-treated rabbits revealed cell hypertrophy. No changes in the expression of proliferating cell nuclear antigen (PCNA) were found. In addition, AR expression was decreased (p < 0.001) in both KiLHRD582G mouse and Se2+-treated rabbit adrenal cortex while expression of ZIP9 showed diverse changes. Its expression was increased (P < 0.001) in KiLHRD582G mice and decreased (P < 0.001) in Se2+-treated rabbits but only at the dose 10 ug/100 mg/ tissue. Moreover, increased testosterone levels (P < 0.05) and zinc levels were detected in the adrenal cortex of KiLHRD582G mice whereas in rabbit adrenal cortex treated with Se2+, the effect was the opposite (P < 0.001).
Collapse
Affiliation(s)
- Jaroslaw Wieczorek
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Piotr Pawlicki
- Department of Medical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Zarzycka
- Department of Medical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Kraków, 30-248, Krakow, Poland
| | - Piotr Niedbala
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Ankara University Faculty of Veterinary Medicine, Dışkapı, 06110, Ankara, Turkey
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
6
|
Wang Q, Han J, Liang Z, Geng X, Du Y, Zhou J, Yao W, Xu T. FSH Is Responsible for Androgen Deprivation Therapy-Associated Atherosclerosis in Mice by Exaggerating Endothelial Inflammation and Monocyte Adhesion. Arterioscler Thromb Vasc Biol 2024; 44:698-719. [PMID: 38205641 PMCID: PMC10880942 DOI: 10.1161/atvbaha.123.319426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases. METHODS We administered orchiectomy, GnRH agonist, or GnRH antagonist in male ApoE-/- mice fed with Western diet and manipulated FSH levels by testosterone and FSH supplementation or FSH antibody to investigate the role of FSH elevation on atherosclerosis. By combining lipidomics, in vitro study, and intraluminal FSHR (FSH receptor) inhibition, we delineated the effects of FSH on endothelium and monocytes and the underlying mechanisms. RESULTS Orchiectomy and GnRH agonist, but not GnRH antagonist, induced long- or short-term FSH elevation and significantly accelerated atherogenesis. In orchiectomized and testosterone-supplemented mice, FSH exposure increased atherosclerosis. In GnRH agonist-treated mice, blocking of short FSH surge by anti-FSHβ antibody greatly alleviated endothelial inflammation and delayed atherogenesis. In GnRH antagonist-treated mice, FSH supplementation aggravated atherogenesis. Mechanistically, FSH, synergizing with TNF-α (tumor necrosis factor alpha), exacerbated endothelial inflammation by elevating VCAM-1 (vascular cell adhesion protein 1) expression through the cAMP/PKA (protein kinase A)/CREB (cAMP response element-binding protein)/c-Jun and PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B)/GSK-3β (glycogen synthase kinase 3 beta)/GATA-6 (GATA-binding protein 6) pathways. In monocytes, FSH upregulated CD29 (cluster of differentiation 29) expression via the PI3K/AKT/GSK-3β/SP1 (specificity protein 1) pathway and promoted monocyte-endothelial adhesion both in vitro and in vivo. Importantly, FSHR knockdown by shRNA in endothelium of carotid arteries markedly reduced GnRH agonist-induced endothelial inflammation and atherosclerosis in mice. CONCLUSIONS FSH is responsible for ADT-associated atherosclerosis by exaggerating endothelial inflammation and promoting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
- Department of Urology, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu (Q.W.)
| | - Jingli Han
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Zhenhui Liang
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Xueyu Geng
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Yiqing Du
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (W.Y.)
| | - Tao Xu
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| |
Collapse
|
7
|
Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol (Lausanne) 2023; 14:1271521. [PMID: 38098868 PMCID: PMC10720671 DOI: 10.3389/fendo.2023.1271521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S.S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Warde KM, Smith LJ, Basham KJ. Age-related Changes in the Adrenal Cortex: Insights and Implications. J Endocr Soc 2023; 7:bvad097. [PMID: 37564884 PMCID: PMC10410302 DOI: 10.1210/jendso/bvad097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/12/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological function. This process affects all organs including the adrenal cortex, which normally functions to produce essential steroid hormones including mineralocorticoids, glucocorticoids, and androgens. With increasing age, features such as reduced adrenal cortex size, altered zonation, and increased myeloid immune cell infiltration substantially alter the structure and function of the adrenal cortex. Many of these hallmark features of adrenal cortex aging occur both in males and females, yet are more enhanced in males. Hormonally, a substantial reduction in adrenal androgens is a key feature of aging, which is accompanied by modest changes in aldosterone and cortisol. These hormonal changes are associated with various pathological consequences including impaired immune responses, decreased bone health, and accelerated age-related diseases. One of the most notable changes with adrenal aging is the increased incidence of adrenal tumors, which is sex dimorphic with a higher prevalence in females. Increased adrenal tumorigenesis with age is likely driven by both an increase in genetic mutations as well as remodeling of the tissue microenvironment. Novel antiaging strategies offer a promising avenue to mitigate adrenal aging and alleviate age-associated pathologies, including adrenal tumors.
Collapse
Affiliation(s)
- Kate M Warde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lorenzo J Smith
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Bauer MB, Currie KPM. Serotonin and the serotonin transporter in the adrenal gland. VITAMINS AND HORMONES 2023; 124:39-78. [PMID: 38408804 PMCID: PMC11217909 DOI: 10.1016/bs.vh.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal glands are key components of the mammalian endocrine system, helping maintain physiological homeostasis and the coordinated response to stress. Each adrenal gland has two morphologically and functionally distinct regions, the outer cortex and inner medulla. The cortex is organized into three concentric zones which secrete steroid hormones, including aldosterone and cortisol. Neural crest-derived chromaffin cells in the medulla are innervated by preganglionic sympathetic neurons and secrete catecholamines (epinephrine, norepinephrine) and neuropeptides into the bloodstream, thereby functioning as the neuroendocrine arm of the sympathetic nervous system. In this article we review serotonin (5-HT) and the serotonin transporter (SERT; SLC6A4) in the adrenal gland. In the adrenal cortex, 5-HT, primarily sourced from resident mast cells, acts as a paracrine signal to stimulate aldosterone and cortisol secretion through 5-HT4/5-HT7 receptors. Medullary chromaffin cells contain a small amount of 5-HT due to SERT-mediated uptake and express 5-HT1A receptors which inhibit secretion. The atypical mechanism of the 5-HT1A receptors and interaction with SERT fine tune this autocrine pathway to control stress-evoked catecholamine secretion. Receptor-independent signaling by SERT/intracellular 5-HT modulates the amount and kinetics of transmitter release from single vesicle fusion events. SERT might also influence stress-evoked upregulation of tyrosine hydroxylase transcription. Transient signaling via 5-HT3 receptors during embryonic development can limit the number of chromaffin cells found in the mature adrenal gland. Together, this emerging evidence suggests that the adrenal medulla is a peripheral hub for serotonergic control of the sympathoadrenal stress response.
Collapse
Affiliation(s)
- Mary Beth Bauer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States
| | - Kevin P M Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States.
| |
Collapse
|
10
|
Ruiz TFR, Vilamaior PSL, Grigio V, Colleta SJ, Zucão MI, de Campos SGP, Dos Santos FCA, Biancardi MF, Perez APS, Taboga SR, Leonel ECR. The Mongolian Gerbil as a Useful Experimental Model in Reproductive Biology. Reprod Sci 2023; 30:2092-2106. [PMID: 36696041 DOI: 10.1007/s43032-023-01171-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Ultimately, the Mongolian gerbils (Meriones unguiculatus) have acquired a relevant role in biological and biomedical experiments alongside other rodents. The use of gerbils in research has been mainly oriented to physiological and pharmacological studies, with special attention to nervous, digestive, and auditory systems as well as microbiology and parasitology. Ultimately, gerbils have also been applied for studying carcinogenesis in different organs and systems, since these animals show a natural propensity to develop spontaneous proliferative lesions, especially in steroid-responsive organs. This characteristic shed light on the reproductive aspects of this rodent model regarding morphological features in male and female individuals. This review of literature summarizes the significance of this model as an alternative to the use of inbred mice and rats in reproductive experimental research, highlighting recent findings. Gerbils have contributed to the expansion of knowledge in prostate biology in male and female individuals, providing studies related to prostatic morphogenesis and neoplasia. In the testes, spermiogenesis occurs in 15 steps, differently from other experimental models. Also, the complete maturation of the testis-epididymal complex occurs between the second and third months. Mammary gland alterations related to the estrous cycle and pregnancy were described, as well as its modulation under endogenous and exogenous estrogenic compounds. The ovaries frequently present ovarian cysts. Furthermore, this organ shows predominantly interstitial steroidogenic glands in the stroma, especially at aging. Adrenal gland shows a large size compared to other animals, presenting three distinct zones with a remarkable role in steroidogenesis.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Rua Cristóvão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
- Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia Simone Leite Vilamaior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Rua Cristóvão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
| | - Vitor Grigio
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Rua Cristóvão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Rua Cristóvão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
| | - Mariele Ilario Zucão
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Rua Cristóvão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Rua Cristóvão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
| | - Fernanda Cristina Alcântara Dos Santos
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, S/N, Câmpus Samambaia, Goiânia, Goiás, 74690-900, Brazil
| | - Manoel Francisco Biancardi
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, S/N, Câmpus Samambaia, Goiânia, Goiás, 74690-900, Brazil
| | - Ana Paula Silva Perez
- Academic Unit of Health Sciences, Medicine Course, Federal University of Jataí, BR 36, Km 195, Jataí, Goiás, 75801-615, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Rua Cristóvão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, SP, 15054-000, Brazil
| | - Ellen Cristina Rivas Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, S/N, Câmpus Samambaia, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
11
|
The Implication of Mechanistic Approaches and the Role of the Microbiome in Polycystic Ovary Syndrome (PCOS): A Review. Metabolites 2023; 13:metabo13010129. [PMID: 36677054 PMCID: PMC9863528 DOI: 10.3390/metabo13010129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
As a complex endocrine and metabolic condition, polycystic ovarian syndrome (PCOS) affects women's reproductive health. These common symptoms include hirsutism, hyperandrogenism, ovulatory dysfunction, irregular menstruation, and infertility. No one knows what causes it or how to stop it yet. Alterations in gut microbiota composition and disruptions in secondary bile acid production appear to play a causative role in developing PCOS. PCOS pathophysiology and phenotypes are tightly related to both enteric and vaginal bacteria. Patients with PCOS exhibit changed microbiome compositions and decreased microbial diversity. Intestinal microorganisms also alter PCOS patient phenotypes by upregulating or downregulating hormone release, gut-brain mediators, and metabolite synthesis. The human body's gut microbiota, also known as the "second genome," can interact with the environment to improve metabolic and immunological function. Inflammation is connected to PCOS and may be caused by dysbiosis in the gut microbiome. This review sheds light on the recently discovered connections between gut microbiota and insulin resistance (IR) and the potential mechanisms of PCOS. This study also describes metabolomic studies to obtain a clear view of PCOS and ways to tackle it.
Collapse
|
12
|
Graves LE, Torpy DJ, Coates PT, Alexander IE, Bornstein SR, Clarke B. Future directions for adrenal insufficiency: cellular transplantation and genetic therapies. J Clin Endocrinol Metab 2023; 108:1273-1289. [PMID: 36611246 DOI: 10.1210/clinem/dgac751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Primary adrenal insufficiency occurs in 1 in 5-7000 adults. Leading aetiologies are autoimmune adrenalitis in adults and congenital adrenal hyperplasia (CAH) in children. Oral replacement of cortisol is lifesaving, but poor quality of life, repeated adrenal crises and dosing uncertainty related to lack of a validated biomarker for glucocorticoid sufficiency, persists. Adrenocortical cell therapy and gene therapy may obviate many of the shortcomings of adrenal hormone replacement. Physiological cortisol secretion regulated by pituitary adrenocorticotropin, could be achieved through allogeneic adrenocortical cell transplantation, production of adrenal-like steroidogenic cells from either stem cells or lineage conversion of differentiated cells, or for CAH, gene therapy to replace or repair a defective gene. The adrenal cortex is a high turnover organ and thus failure to incorporate progenitor cells within a transplant will ultimately result in graft exhaustion. Identification of adrenocortical progenitor cells is equally important in gene therapy where new genetic material must be specifically integrated into the genome of progenitors to ensure a durable effect. Delivery of gene editing machinery and a donor template, allowing targeted correction of the 21-hydroxylase gene, has the potential to achieve this. This review describes advances in adrenal cell transplants and gene therapy that may allow physiological cortisol production for children and adults with primary adrenal insufficiency.
Collapse
Affiliation(s)
- Lara E Graves
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - P Toby Coates
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Stefan R Bornstein
- University Clinic Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Brigette Clarke
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
Gomes TF, Soares RO. Pediatric androgenetic alopecia: an updated review. J Dtsch Dermatol Ges 2023; 21:19-25. [PMID: 36688435 DOI: 10.1111/ddg.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Pediatric androgenetic alopecia is an underrecognized disorder. A clinical evaluation with trichoscopy should be made in children and adolescents with hair loss and/or reduced hair density. Diagnosis is usually clinical, by observation of the hair loss pattern and performance of trichoscopy. In some cases, hyperandrogenism should be excluded. Although there is no approved therapy for androgenetic alopecia in pediatric age, topical minoxidil, oral minoxidil and topical finasteride may be very useful. Hair transplant may be an option for girls in selected cases. This article is a review of the current state of evidence concerning pediatric androgenetic alopecia.
Collapse
|
14
|
Gomes TF, Soares RO. Aktuelle Übersicht zur androgenetischen Alopezie bei Kindern und Jugendlichen. J Dtsch Dermatol Ges 2023; 21:19-26. [PMID: 36721944 DOI: 10.1111/ddg.14940_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023]
|
15
|
Rosato E, Sciarra F, Anastasiadou E, Lenzi A, Venneri MA. Revisiting the physiological role of androgens in women. Expert Rev Endocrinol Metab 2022; 17:547-561. [PMID: 36352537 DOI: 10.1080/17446651.2022.2144834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Extensive research underlines the critical functions of androgens in females. Nevertheless, the precise mechanisms of their action are poorly understood. Here, we review the existing literature regarding the physiological role of androgens in women throughout life. AREAS COVERED Several studies show that androgen receptors (ARs) are broadly expressed in numerous female tissues. They are essential for many physiological processes, including reproductive, sexual, cardiovascular, bone, muscle, and brain health. They are also involved in adipose tissue and liver function. Androgen levels change with the menstrual cycle and decrease in the first decades of life, independently of menopause. EXPERT OPINION To date, studies are limited by including small numbers of women, the difficulty of dosing androgens, and their cyclical variations. In particular, whether androgens play any significant role in regulating the establishment of pregnancy is poorly understood. The neural functions of ARs have also been investigated less thoroughly, although it is expressed at high levels in brain structures. Moreover, the mechanism underlying the decline of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with age is unclear. Other factors, including estrogen's effect on adrenal androgen production, reciprocal regulation of ARs, and non-classical effects of androgens, remain to be determined.
Collapse
Affiliation(s)
- Elena Rosato
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
16
|
Martinez A, Schedl A. Dissecting a zonated organ - Special issue on adrenal biology. Mol Cell Endocrinol 2022; 539:111486. [PMID: 34626732 DOI: 10.1016/j.mce.2021.111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Antoine Martinez
- Institut Génétique, Reproduction et Développement (iGReD), CNRS, Inserm, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Andreas Schedl
- Institut de Biologie Valrose (iBV), Inserm, CNRS, Université Côte d'Azur, Nice, France.
| |
Collapse
|
17
|
Lee BY, Jo JB, Choi D, Lee SH, Cheon YP. A Chronic-Low-Dose Exposing of DEHP with OECD TG 443 Altered the
Histological Characteristics and Steroidogeic Gene Expression of Adrenal Gland
in Female Mice. Dev Reprod 2021; 25:257-268. [PMID: 35141451 PMCID: PMC8807134 DOI: 10.12717/dr.2021.25.4.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/13/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Bo Young Lee
- Division of Developmental Biology and
Physiology, Center for Development and Program Research, Department of
Biotechnology, Institute of Basic Sciences, Sungshin
University, Seoul 02844, Korea
| | - Jeong Bin Jo
- Division of Developmental Biology and
Physiology, Center for Development and Program Research, Department of
Biotechnology, Institute of Basic Sciences, Sungshin
University, Seoul 02844, Korea
| | - Donchan Choi
- Dept. of Life Science, College of
Environmental Sciences, Yong-In University, Yongin
17092, Korea
| | - Sung-Ho Lee
- Dept. of Biotechnology, Sangmyung
University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and
Physiology, Center for Development and Program Research, Department of
Biotechnology, Institute of Basic Sciences, Sungshin
University, Seoul 02844, Korea
- Corresponding author Yong-Pil Cheon,
Division of Developmental Biology and Physiology, Department of Biotechnology,
Institute of Basic Sciences, Sungshin University, Seoul 02844, Korea. Tel:
+82-2-920-7639, Fax: +82-2-920-2736,
E-mail:
| |
Collapse
|
18
|
Abstract
Adrenarche is the maturational increase in adrenal androgen production that normally begins in early childhood. It results from changes in the secretory response to adrenocorticotropin (ACTH) that are best indexed by dehydroepiandrosterone sulfate (DHEAS) rise. These changes are related to the development of the zona reticularis (ZR) and its unique gene/enzyme expression pattern of low 3ß-hydroxysteroid dehydrogenase type 2 with high cytochrome b5A, sulfotransferase 2A1, and 17ß-hydroxysteroid dehydrogenase type 5. Recently 11-ketotestosterone was identified as an important bioactive adrenarchal androgen. Birth weight, body growth, obesity, and prolactin are related to ZR development. Adrenarchal androgens normally contribute to the onset of sexual pubic hair (pubarche) and sebaceous and apocrine gland development. Premature adrenarche causes ≥90% of premature pubarche (PP). Its cause is unknown. Affected children have a significantly increased growth rate with proportionate bone age advancement that typically does not compromise growth potential. Serum DHEAS and testosterone levels increase to levels normal for early female puberty. It is associated with mildly increased risks for obesity, insulin resistance, and possibly mood disorder and polycystic ovary syndrome. Between 5% and 10% of PP is due to virilizing disorders, which are usually characterized by more rapid advancement of pubarche and compromise of adult height potential than premature adrenarche. Most cases are due to nonclassic congenital adrenal hyperplasia. Algorithms are presented for the differential diagnosis of PP. This review highlights recent advances in molecular genetic and developmental biologic understanding of ZR development and insights into adrenarche emanating from mass spectrometric steroid assays.
Collapse
Affiliation(s)
- Robert L Rosenfield
- University of Chicago Pritzker School of Medicine, Section of Adult and Pediatric Endocrinology, Metabolism, and Diabetes, Chicago, IL, USA.,Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|