1
|
Saleem HM, Al-Hetty HRAK, Ahmed AT, Awad MM, Al-Ani MQ, Al-Darraji MN, Salman DA, Ali LH. Effect of curcumin on lipid mediators, glycemic index, and oxidative stress and inflammation biomarkers in polycystic ovary syndrome: Future directions and current knowledge - A systematic review. Prostaglandins Other Lipid Mediat 2025; 177:106947. [PMID: 39814167 DOI: 10.1016/j.prostaglandins.2024.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common and important polygenic endocrine disorders among women of reproductive-aged. Current treatments are mostly used only to control the signs and symptoms of the disease, while not being able to completely prevent complications. Curcumin is one of the active compounds in turmeric, which is commonly used for a wide range of metabolic and inflammatory diseases. Therefore, this systematic review was performed to evaluate the effect of curcumin supplementation on PCOS. The current systematic review was performed according to the guidelines of the 2015 PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statements. We searched ProQuest, PubMed, Google Scholar electronic, Scopus, and Cochrane, Embase, and Science Direct databases and on articles published up until November 2024. All of the animal studies (seven studies) and clinical trials (five studies) included in this systematic review that assessed the effect of curcumin on, reproductive hormones and metabolic risk markers in PCOS were published in English-language journals. Most studies supported the beneficial effects of curcumin on folliculogenesis, ovarian histomorphology, and luteinization processes. The effects of curcumin on decreasing the levels of luteinizing insulin resistance luteinizing hormone (LH), Follicle-stimulating hormone (FSH)and testosterone, were also reported. Curcumin also improved dyslipidemia, but no significant effect on weight loss has been reported. It is suggested that the effect of curcumin in PCOS is more related to the antioxidant and anti-inflammatory properties of curcumin than to the effects of weight loss. Therefore, this study provides evidence that curcumin can be considered an effective factor in reducing the complications of PCOS. However, due to the low number of human studies in this field, further clinical trials are warranted to verify these outcomes.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Biology, College of Science, University of Anbar, Ramadi, Iraq.
| | | | | | - Muthanna M Awad
- Department of Biology, College of Education For Pure Sciences, University of Anbar, Ramadi, Anbar 31001, Iraq
| | | | | | - Dina Akeel Salman
- Department of Obstetrics and Gynecology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Loay H Ali
- Department of Biology, College of Education For Pure Sciences, University of Anbar, Ramadi, Anbar 31001, Iraq
| |
Collapse
|
2
|
Tong X, Hu Z, Zhou H, Zhang Y, Zhang YL, Zhang S, Jin J. Testosterone-Induced H3K27 Deacetylation Participates in Granulosa Cell Proliferation Suppression and Pathogenesis of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2326-2340. [PMID: 39243944 DOI: 10.1016/j.ajpath.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/19/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the leading cause of infertility in reproductive-age women. Hyperandrogenism, polycystic ovaries, and chronic anovulation are its typical clinical features. However, the correlation between hyperandrogenism and ovarian follicle growth aberrations remains poorly understood. To advance our understanding of the molecular alterations in ovarian granulosa cells (GCs) with excessive androgen, epigenetic changes and affected gene expression in human granulosa-lutein cells and immortalized human GCs were evaluated. A PCOS mouse model induced by dihydrotestosterone was also established. This study found that excessive testosterone significantly decreased the acetylation of lysine 27 on histone H3 (H3K27Ac). H3K27Ac chromatin immunoprecipitation-sequencing data showed down-regulated expression of cell cycle-related genes CCND1, CCND3, and PCNA, which was confirmed by real-time quantitative PCR and Western blot analysis. Testosterone application impeding cell proliferation was also shown by Ki-67 immunofluorescence and flow-cytometric analysis. Moreover, testosterone influenced casein kinase 2 alpha (CK2α) nuclear translocation, which increased the phosphorylation level of histone deacetylase 2 (HDAC2). Inhibition of CK2α nuclear translocation or silenced HDAC2 expression efficiently retarded H3K27 acetylation. PCOS mouse model experiments also demonstrated decreased H3K27Ac and enhanced HDAC2 phosphorylation in GCs. Cell proliferation-related genes were also down-regulated in PCOS mouse GCs. In conclusion, hyperandrogenism in human and mouse GCs caused H3K27Ac aberrations, which are associated with CK2α nuclear translocation and HDAC2 phosphorylation, participating in abnormal follicle development in patients with PCOS.
Collapse
Affiliation(s)
- Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Zhanhong Hu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China.
| |
Collapse
|
3
|
Zhang Q, Zheng X, Zhang X, Zheng L. Protective effect of afamin protein against oxidative stress related injury in human ovarian granulosa cells. J Ovarian Res 2024; 17:189. [PMID: 39342320 PMCID: PMC11437624 DOI: 10.1186/s13048-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Ovarian granulosa cells (GCs) play crucial roles in follicular growth and development. Their normal function is influenced by various factors, including oxidative stress, which is a significant factor. Afamin protein is a vitamin E-specific binding protein that acts as a vitamin E carrier in follicular fluid. Although the mechanism of the protective effect of afamin on human ovarian GCs is still unclear, there is evidence it has an antioxidant effect in neuronal cells. METHODS In this study, we investigated the protective effects of afamin proteins on testosterone propionate (TP)-induced ovarian GCs using a human ovarian tumor granulosa cell line (KGN). RESULTS The results showed that afamin reduced TP-induced oxidative stress in KGN cells by decreasing the levels of oxidative damage markers, enhancing the activity of antioxidant enzymes, and exerting a protective effect on GCs. Supplementation with afamin repaired mitochondrial dysfunction by improving mitochondrial membrane potential damage and ATP levels. It counteracted TP-induced apoptosis by decreasing the activity of Caspase-3 and upregulating the expression of the anti-apoptotic gene (BCL-2) while downregulating the expression of the pro-apoptotic gene BCL-2-associated X protein (BAX). In addition, afamin regulated the expression of genes related to ovarian steroid hormone synthesis, ameliorating the endocrine dysfunction observed in TP-induced KGN cells. CONCLUSION Therefore, Afamin proteins may serve as important complementary factors that protect GCs from other types of damage, such as oxidative stress, and may help improve ovarian follicle quality and female reproductive function.
Collapse
Affiliation(s)
- Qiang Zhang
- Reproductive Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130022, China
| | - Xiaoyu Zheng
- Department of Gynecology, Dongguan Songshan Lake Tungwah Hospital, NO.1 Songshan Lake Science Development Seven Road, DongGuan, 523822, China
| | - Xueying Zhang
- Reproductive Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130022, China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130022, China.
| |
Collapse
|
4
|
Jin R, Chen A, Ye Y, Ren Y, Lu J, Xuan F, Zhou W. Effect of berberine combined with metformin on autophagy in polycystic ovary syndrome by regulating AMPK/AKT/mTOR pathway. Mol Reprod Dev 2024; 91:e23768. [PMID: 39155689 DOI: 10.1002/mrd.23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
The pathologic mechanism of polycystic ovary syndrome (PCOS) is related to increased autophagy of granulosa cells. Both berberine and metformin have been shown to improve PCOS, but whether the combination of berberine and metformin can better improve PCOS by inhibiting autophagy remains unclear. PCOS models were constructed by injecting dehydroepiandrosterone into rats, and berberine, metformin or berberine combined with metformin was administered to rats after modeling. Rats' body weight and ovarian weight were measured before and after modeling. Histopathological examination of ovarian tissue and estrous cycle analysis of rats were performed. Insulin resistance, hormone levels, oxidative stress, and lipid metabolism in PCOS rats were assessed. Expression of the AMPK/AKT/mTOR pathway and autophagy-related proteins was analyzed by Western blot assays. Granulosa cells were isolated from rat ovarian tissue and identified by immunofluorescence staining followed by transmission electron microscopy analysis. Berberine combined with metformin reduced the body weight and ovarian weight of PCOS rats, increased the number of primordial and primary follicles, decreased the number of secondary and atretic follicles, normalized the estrous cycle, and improved insulin resistance, androgen biosynthesis, oxidative stress and lipid metabolism disorders, and increased estrogen production. In addition, berberine combined with metformin reduced the number of autophagosomes in granulosa cells, which may be related to AMPK/AKT/mTOR pathway activation, decreased Beclin1 and LC3II/LC3I levels, and increased p62 expression. Berberine combined with metformin could inhibit autophagy by activating the AMPK/AKT/mTOR pathway in PCOS, indicating that berberine combined with metformin is a potential treatment strategy for PCOS.
Collapse
Affiliation(s)
- Ruiying Jin
- Department of Gynecology, Jiaojiang Maternal and Child Health Hospital, Taizhou City, China
| | - Aixue Chen
- Department of Gynecology, Changxing People's Hospital of Chongming District, Shanghai, China
| | - Yongju Ye
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Yuefang Ren
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Jiali Lu
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Feilan Xuan
- Department of Obstetrics and Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou City, China
| | - Weimei Zhou
- Department of Ultrasound, Jiaojiang Maternal and Child Health Hospital, Taizhou City, China
| |
Collapse
|
5
|
Ma J, Liu L, Yang H, Wan Y, Zhang Y, Wang F. Melatonin regulates the antioxidant capacity of sheep granulosa cells through a novel uORF-Nrf2aa mediated Nrf2/KEAP1 pathway. Life Sci 2024; 349:122693. [PMID: 38710277 DOI: 10.1016/j.lfs.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Ovarian dysfunction stands as a prevalent contributor to female infertility, with its etiology intertwined with genetic, autoimmune, and environmental factors. Within the ovarian follicles, granulosa cells (GCs) represent the predominant cell population. Alterations in GCs, notably oxidative stress (OS) and the consequential surge in reactive oxygen species (ROS), play pivotal roles in the orchestration of ovarian function. Nrf2aa, a newly identified upstream open reading frame (uORF), is situated within the 5' untranslated region (5'UTR) of sheep Nrf2 mRNA and is regulated by melatonin, a crucial intrafollicular antioxidant. In this study, we have noted that Nrf2aa has the capacity to encode a peptide and exerts a negative regulatory effect on the translation efficiency (TE) of the Nrf2 CDs region. Further in vitro experiments, we observed that interfering with Nrf2aa can enhance the cellular functionality of GCs under 3-np-induced oxidative stress, while overexpressing Nrf2aa has the opposite effect. Furthermore, overexpression of Nrf2aa counteracts the rescuing effect of melatonin on the cellular functions of GCs under oxidative stress conditions, including estrogen secretion, proliferation, apoptosis, and many more. Finally, we confirmed that Nrf2aa, by regulating the expression of key proteins in the Nrf2/KEAP1 signaling pathway, further modulates the antioxidant levels in GCs.
Collapse
Affiliation(s)
- Jianyu Ma
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Liang Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Hua Yang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Liu H, Tu M, Yin Z, Zhang D, Ma J, He F. Unraveling the complexity of polycystic ovary syndrome with animal models. J Genet Genomics 2024; 51:144-158. [PMID: 37777062 DOI: 10.1016/j.jgg.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatment of PCOS is currently hindered by the complexity of its clinical manifestations and incomplete knowledge of its etiopathogenesis. Various animal models, including experimentally induced, naturally occurring, and spontaneously arising ones, have been established to emulate a wide range of phenotypical and pathological traits of human PCOS. These studies have led to a paradigm shift in understanding the genetic, developmental, and evolutionary origins of this disorder. Furthermore, emerging evidence suggests that animal models are useful in evaluating state-of-the-art drugs and treatments for PCOS. This review aims to provide a comprehensive summary of recent studies of PCOS in animal models, highlighting the power of these disease models in understanding the biology of PCOS and aiding high-throughput approaches.
Collapse
Affiliation(s)
- Huanju Liu
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mixue Tu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyong Yin
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | - Jun Ma
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| | - Feng He
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Chang H, Ge H, Wu Q, Li J, Zhang Y, Zhu M, Luo X, Han Y, Wang Y, Wang CC, Wu X. Is elevated baseline SHBG associated with increased ovulation? Gynecol Endocrinol 2023; 39:2263085. [PMID: 37913814 DOI: 10.1080/09513590.2023.2263085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
Sexual hormone binding globulin (SHBG) is associated with the endocrine and reproductive systems. We aimed to investigate the role of SHBG in the reproductive process. Therefore, we conducted a secondary analysis of the PCOSAct (Polycystic Ovary Syndrome and Acupuncture Clinical Trial) study, which involved 21 sites in China and a total of 1000 women with PCOS. Out of these, 954 women with SHBG were included in the analysis. Through multivariate analysis of ovulation predictors, we found that age, BMI, estradiol, testosterone, and SHBG all showed a positive predictive value for ovulation (p = 0.0211, 0.0011, 0.0211, 0.0029, 0.0434, respectively). However, the LH to FSH ratio had a negative predictive value (p = 0.0539). Higher quartiles of SHBG were associated with a higher rate of ovulation, and per quartile increased was statistically significant (HR = 1.138, 95%CI [1.054,1.229]). The association remained significant even after adjusting for testosterone (HR = 1.263, 95%CI [1.059, 1.507]). On the other hand, quartiles of testosterone and estradiol did not exhibit any significant tendency toward ovulation. SHBG demonstrated predictive ability for ovulation, conception, pregnancy, and live birth (p < 0.05), and this correlation remained significant after adjusting intervention. Kaplan-Meier curves illustrated that increased levels of SHBG were a factor in high rates of ovulation, conception, and pregnancy. In comparison to other sexual hormones, a higher baseline level of SHBG was related to increased ovulation.
Collapse
Affiliation(s)
- Hui Chang
- Department of Gynecology I, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hang Ge
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Wu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong kong, China
| | - Jian Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yanli Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengyi Zhu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi Luo
- Department of Obstetrics and Gynecology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Han
- Department of Gynecology I, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong kong, China
| | - Xiaoke Wu
- Department of Gynecology I, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Centre for Reproductive Medicine, Heilongjiang Provincial Hospital, Harbin,China
| |
Collapse
|
9
|
Snider AP, Gomes RS, Summers AF, Tenley SC, Abedal-Majed MA, McFee RM, Wood JR, Davis JS, Cupp AS. Identification of Lipids and Cytokines in Plasma and Follicular Fluid before and after Follicle-Stimulating Hormone Stimulation as Potential Markers for Follicular Maturation in Cattle. Animals (Basel) 2023; 13:3289. [PMID: 37894013 PMCID: PMC10603728 DOI: 10.3390/ani13203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The process of follicle maturation leading to ovulation is a key milestone in female fertility. It is known that circulating lipids and cytokines play a role in the follicle's ability to go through follicular maturation and the ovulatory processes. However, the specific mechanisms are not well understood. We posit that dysregulation of granulosa cells influences the ovarian environment, which tries to adapt by changing released lipids and cytokines to achieve follicular maturation. Eleven non-lactating adult females underwent estrus synchronization with two injections of PGF2α 14 days apart. Daily blood samples were collected for 28 days to monitor steroid hormone production after the second injection. To understand the potential impacts of lipids and cytokines during ovulation, a low-dose FSH stimulation (FSHLow) was performed after resynchronization of cows, and daily blood samples were collected for 14 days to monitor steroid hormone production until ovariectomies. The lipidomic analysis demonstrated increased circulating diacylglycerides and triacylglycerides during the mid-luteal phase and after FSHLow treatment. Cholesteryl esters decreased in circulation but increased in follicular fluid (FF) after FSHLow. Increased circulating concentrations of TNFα and reduced CXCL9 were observed in response to FSHLow. Therefore, specific circulating lipids and cytokines may serve as markers of normal follicle maturation.
Collapse
Affiliation(s)
- Alexandria P. Snider
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Renata S. Gomes
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | | | - Sarah C. Tenley
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - Mohamed A. Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Renee M. McFee
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jennifer R. Wood
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - John S. Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198, USA;
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| |
Collapse
|
10
|
Liu S, Jia Y, Meng S, Luo Y, Yang Q, Pan Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int J Mol Sci 2023; 24:ijms24119205. [PMID: 37298157 DOI: 10.3390/ijms24119205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Granulosa cells are essential for follicle initiation and development, and their abnormal function or apoptosis is a crucial factor leading to follicular atresia. A state of oxidative stress occurs when the balance between the production of reactive oxygen species and the regulation of the antioxidant system is disturbed. Oxidative stress is one of the most important causes of the abnormal function and apoptosis of granulosa cells. Oxidative stress in granulosa cells causes female reproductive system diseases, such as polycystic ovary syndrome and premature ovarian failure. In recent years, studies have confirmed that the mechanism of oxidative stress in granulosa cells is closely linked to the PI3K-AKT signaling pathway, MAPK signaling pathway, FOXO axis, Nrf2 pathway, NF-κB signaling pathway, and mitophagy. It has been found that drugs such as sulforaphane, Periplaneta americana peptide, and resveratrol can mitigate the functional damage caused by oxidative stress on granulosa cells. This paper reviews some of the mechanisms involved in oxidative stress in granulosa cells and describes the mechanisms underlying the pharmacological treatment of oxidative stress in granulosa cells.
Collapse
Affiliation(s)
- Siheng Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yunbing Jia
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shirui Meng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiran Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Yang
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zezheng Pan
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
11
|
Zhang P, Pan Y, Wu S, He Y, Wang J, Chen L, Zhang S, Zhang H, Zhao Y, Niu L, Gan M, Wang Y, Shen L, Zhu L. n-3 PUFA Promotes Ferroptosis in PCOS GCs by Inhibiting YAP1 through Activation of the Hippo Pathway. Nutrients 2023; 15:nu15081927. [PMID: 37111146 PMCID: PMC10145554 DOI: 10.3390/nu15081927] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by hyperandrogenemia with multiple suspended sinus follicles, thickened cortical tissue, and excessive proliferation of ovarian granulosa cells that severely affects the fertility and quality of life of women. The addition of n-3 PUFA to the diet may slightly reduce body weight and greatly alleviate disturbed blood hormone levels in PCOS mice. We treated KGN as a cell model for n-3 PUFA addition and showed that n-3 PUFA inhibited the proliferation of GCs and promoted ferroptosis in ovarian granulosa cells. We used CCK-8, fluorescence quantitative transmission electron microscopy experiments and ferroptosis marker gene detection and other methods. Furthermore, n-3 PUFA was found to promote YAP1 exocytosis by activating Hippo and weakening the cross-talk between YAP1 and Nrf2 by activating the Hippo signaling pathway. In this study, we found that n-3 PUFA inhibited the over proliferation of granulosa cells in ovarian follicles by activating Hippo, promoting YAP1 exocytosis, weakening the cross-talk between YAP1 and Nrf2, and ultimately activating the ferroptosis sensitivity of ovarian granulosa cells. We demonstrate that n-3 PUFA can alleviate the hormonal and estrous cycle disorder with PCOS by inhibiting the YAP1-Nrf2 crosstalk that suppresses over proliferating ovarian granulosa cells and promotes iron death in GCs. These findings reveal the molecular mechanisms by which n-3 PUFA attenuates PCOS and identify YAP1-Nrf2 as a potential therapeutic target for regulation granulosa cells in PCOS.
Collapse
Affiliation(s)
- Peiwen Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Pan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Zhang
- Sichaun Center for Animal Disease Control, Chengdu 610041, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Xue T, Zhao S, Zhang H, Tang T, Zheng L, Jing J, Ge X, Ma R, Ma J, Ren X, Jueraitetibaike K, Guo Z, Chen L, Yao B. PPT1 regulation of HSP90α depalmitoylation participates in the pathogenesis of hyperandrogenism. iScience 2023; 26:106131. [PMID: 36879822 PMCID: PMC9984558 DOI: 10.1016/j.isci.2023.106131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian granulosa cells (GCs) in the follicle are the important mediator of steroidogenesis and foster oocyte maturation. Evidences suggested that the function of GCs could be regulated by S-palmitoylation. However, the role of S-palmitoylation of GCs in ovarian hyperandrogenism remains elusive. Here, we demonstrated that the protein from GCs in ovarian hyperandrogenism phenotype mouse group exhibits lower palmitoylation level compared with that in the control group. Using S-palmitoylation-enriched quantitative proteomics, we identified heat shock protein isoform α (HSP90α) with lower S-palmitoylation levels in ovarian hyperandrogenism phenotype group. Mechanistically, S-palmitoylation of HSP90α modulates the conversion of androgen to estrogens via the androgen receptor (AR) signalling pathway, and its level is regulated by PPT1. Targeting AR signaling by using dipyridamole attenuated ovarian hyperandrogenism symptoms. Our data help elucidate ovarian hyperandrogenism from perspective of protein modification and provide new evidence showing that HSP90α S-palmitoylation modification might be a potential pharmacological target for ovarian hyperandrogenism treatment.
Collapse
Affiliation(s)
- Tongmin Xue
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China.,Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital), Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Hong Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ting Tang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Lu Zheng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jun Jing
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| | - Xie Ge
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaoyan Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kadiliya Jueraitetibaike
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Li Chen
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| | - Bing Yao
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| |
Collapse
|
14
|
Abedal-Majed MA, Abuajamieh M, Al-Qaisi M, Sargent KM, Titi HH, Alnimer MA, Abdelqader A, Shamoun AI, Cupp AS. Sheep with ovarian androgen excess have fibrosis and follicular arrest with increased mRNA abundance for steroidogenic enzymes and gonadotropin receptors. J Anim Sci 2023; 101:skad082. [PMID: 37061806 PMCID: PMC10184696 DOI: 10.1093/jas/skad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 04/17/2023] Open
Abstract
An androgen excess ovarian micro-environment may limit follicle progression in sheep. Two populations of ewes with divergent follicular fluid androstenedione (A4) were identified in a flock in Jordan: High A4; (A4) ≥ 30 ng/mL, (N = 12) or Control A4 (Control); A4 ≤ 15 ng/mL; (N = 12). We hypothesized High A4 ewes would have increased steroidogenic enzyme mRNA abundance, inflammation, and follicular arrest. Messenger RNA abundance for steroidogenic enzymes StAR, CYP17A1, CYP11A1, and HSD3B1 were increased in theca cells while CYP17A1, CYP19A1, and HSD3B1 were increased in granulosa cells in High A4 ewes compared to Control. Gonadotropin receptor mRNA expression for LHCGR was increased in theca and FSHR in granulosa in High A4 ewes. Messenger RNA expression of FOS when reduced, increases expression of CYP17A1 which was observed in High A4 granulosa cells compared to Control. Furthermore, High A4 ewes had greater numbers of primordial follicles (P < 0.001) and fewer developing follicles compared to Control before, and after 7 d of culture, indicating follicular arrest was not alleviated by cortex culture. Increased fibrosis in the ovarian cortex was detected in High A4 ewes relative to Control (P < 0.001) suggesting increased inflammation and altered extracellular matrix deposition. Thus, this High A4 ewes population has similar characteristics to High A4 cows and women with polycystic ovary syndrome suggesting that naturally occurring androgen excess occurs in multiple species and may be a causative factor in follicular arrest and subsequent female sub- or infertility.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mohannad Abuajamieh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Kevin M Sargent
- Department of Agriculture, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Hosam H Titi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mufeed A Alnimer
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Ahmad I Shamoun
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln (UNL), Nebraska 68583, USA
| |
Collapse
|
15
|
Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabò N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, Stuppia L, Gatta V, Barboni B. High-Fat Diet and Female Fertility across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022; 14:nu14204341. [PMID: 36297035 PMCID: PMC9610022 DOI: 10.3390/nu14204341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alex Zappacosta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Francesca Gonnella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fani Konstantinidou
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
16
|
Abedal-Majed MA, Springman SA, Jafar HD, Bell BE, Kurz SG, Wilson KE, Cupp AS. Naturally occurring androgen excess cows are present in dairy and beef herds and have similar characteristics to women with PCOS. J Anim Sci 2022; 100:6596684. [PMID: 35648128 DOI: 10.1093/jas/skac151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Beef cows with excess androstenedione (A4; High A4) in follicular fluid (FF) and secreted by the ovarian cortex have been reported from the University of Nebraska-Lincoln physiology herd displaying characteristics reminiscent of polycystic ovary syndrome (PCOS). Thus, we hypothesized that naturally occurring High A4 cows were present in other dairy and beef herds. Fourteen Jordan (Amman, Jordon) dairy heifers and 16 U.S. Meat Animal Research Center beef heifers were classified by FF (High A4: A4 > 40 ng/mL and Control: A4 < 20 ng/mL) and/or cortex culture media (High A4 > 1 ng/mL/d or Control < 1 ng/mL/d). High A4 dairy heifers (n = 6) had greater A4 concentrations (7.6-fold) in FF and (98-fold) greater in ovarian cortex culture media with greater numbers of primordial and fewer later-stage follicles than Controls (n = 8) even after 7 d of culture. Also, the ovarian cortex had greater staining for Picro Sirius red in High A4 dairy heifers compared with Controls indicating increased fibrosis. Thecal cells from High A4 dairy heifers had greater STAR, LHCGR, CYP17A, CD68, and PECAM mRNA expression with increased mRNA abundance of CYP17A1 and CD68 in the ovarian cortex cultures compared with Control dairy heifers. Similarly, cortex culture media from High A4 beef heifers (n = 10) had increased A4 (290-fold; P ≤ 0.001), testosterone (1,427-fold; P ≤ 0.001), and progesterone (9-fold; P ≤ 0.01) compared with Control heifers with increased primordial follicles and decreased later-stage follicles even after 7 d of culture, indicating abnormal follicular development. High A4 ovarian cortex cultures from beef heifers also had increased fibrosis markers and greater expression of PECAM (P = 0.01) with a tendency for increased vascular endothelial cadherin compared with Controls (n = 6). These two trials support our hypothesis that naturally occurring androgen excess cows are present in other dairy and beef herds. The ability to identify these females that have excess A4 ovarian microenvironments may allow for their use in understanding factors causing abnormal follicle development linked to androgen excess and inflammation.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Shelby A Springman
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Hanan D Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Brooke E Bell
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Scott G Kurz
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kyle E Wilson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
17
|
Abedal-Majed MA, Springman SA, Sutton CM, Snider AP, Bell BE, Hart M, Kurz SG, Bergman J, Summers AF, McFee RM, Davis JS, Wood JR, Cupp AS. VEGFA165 can rescue excess steroid secretion, inflammatory markers, and follicle arrest in the ovarian cortex of High A4 cows†. Biol Reprod 2022; 106:118-131. [PMID: 34726240 PMCID: PMC9630404 DOI: 10.1093/biolre/ioab201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A population of cows with excess androstenedione (A4; High A4) in follicular fluid, with follicular arrest, granulosa cell dysfunction, and a 17% reduction in calving rate was previously identified. We hypothesized that excess A4 in the ovarian microenvironment caused the follicular arrest in High A4 cows and that vascular endothelial growth factor A would rescue the High A4 phenotype. In trial 1, prior to culture, High A4 ovarian cortex (n = 9) had greater numbers of early stage follicles (primordial) and fewer later-stage follicles compared to controls (n = 11). Culture for 7 days did not relieve this follicular arrest; instead, High A4 ovarian cortex had increased indicators of inflammation, anti-Mullerian hormone, and A4 secretion compared to controls. In trial 2, we tested if vascular endothelial growth factor A isoforms could rescue the High A4 phenotype. High A4 (n = 5) and control (n = 5) ovarian cortex was cultured with (1) PBS, (2) VEGFA165 (50 ng/mL), (3) VEGFA165B (50 ng/mL), or (4) VEGFA165 + VEGFA165B (50 ng/mL each) for 7 days. Follicular progression increased with VEGFA165 in High A4 cows with greater early primary, primary, and secondary follicles than controls. Similar to trial 1, High A4 ovarian cortex secreted greater concentrations of A4 and other steroids and had greater indicators of inflammation compared to controls. However, VEGFA165 rescued steroidogenesis, oxidative stress, and fibrosis. The VEGFA165 and VEGFA165b both reduced IL-13, INFα, and INFβ secretion in High A4 cows to control levels. Thus, VEGFA165 may be a potential therapeutic to restore the ovarian steroidogenic microenvironment and may promote folliculogenesis.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, University of Jordan, Amman-Jordan, Jordan
| | - Shelby A Springman
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Courtney M Sutton
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexandria P Snider
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brooke E Bell
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Scott G Kurz
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeff Bergman
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Adam F Summers
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Renee M McFee
- School of Veterinary and Biomedical Sciences, Veterinary Medicine and Biomedical Sciences Hall (VBS), University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
18
|
Liu Y, Li Z, Wang Y, Cai Q, Liu H, Xu C, Zhang F. IL-15 Participates in the Pathogenesis of Polycystic Ovary Syndrome by Affecting the Activity of Granulosa Cells. Front Endocrinol (Lausanne) 2022; 13:787876. [PMID: 35250857 PMCID: PMC8894602 DOI: 10.3389/fendo.2022.787876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Low-grade chronic inflammation may contribute to the pathogenesis of polycystic ovary syndrome (PCOS). Interleukin-15 (IL-15) is a proinflammatory cytokine involved in the development of chronic inflammation leading to obesity-associated metabolic syndrome. However, the concentration of IL-15 in follicular fluid of patients with PCOS has yet been evaluated. OBJECTIVES The aim of this study is to evaluate the expression level of IL-15 in both patients with PCOS and PCOS mice model and investigate the functional effect of IL-15 on ovarian granulosa cells. METHODS The level of IL-15 in follicular fluid (FF) was measured using cytokine array and enzyme linked immunosorbent assay (ELISA) in two cohorts from 23 PCOS patients and 18 normo-ovulatory controls. PCOS mice model was induced by subcutaneously implanted with letrozole pellet for 21 days. The expression level of IL-15 in serum, ovarian, and subcutaneous adipose tissue in PCOS mice model was measured by ELISA, real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and immunofluorescence. The effect of IL-15 on the proliferation and apoptosis of the KGN cells and mouse ovarian granulosa cells (GCs) were detected by CCK-8 assay and flow cytometry, respectively. Transcript expression of 17α-hydroxylase17,20-lyase (CYP17A1), cytochrome P450 family 19 subfamily A member 1(CYP19A1), FSH receptor (FSHR), steroidogenic acute regulatory protein (StAR), and proinflammatory cytokine were quantified using RT-PCR. The protein level and phosphorylation level of p38 MAPK and JNK are detected by Western blot. Concentration of dehydroepiandrosterone sulfate (DHEAS) and progesterone (P)were measured by ELISA. RESULTS IL-15 expression in follicular fluid of patients with PCOS was significantly elevated compared with the control group, and similar results were observed in the ovarian and subcutaneous adipose tissue of PCOS mice models. Furthermore, the elevated FF IL-15 levels have a positive correlation with the serum testosterone levels. FSHR co-localized with IL-15 indicating that IL-15 production originate from ovarian granulose cells. IL-15 treatment inhibited proliferation and promoted apoptosis of KGN cells and mouse GCs. Moreover, IL-15 upregulated the transcription levels of CYP17A1, IL-1b and Ifng KGN cells. Similar results were observed in mouse GCs except concentration of DHEAS was higher in IL-15 treatment. IL-15 promoted p38 MAPK and JNK phosphorylation in KGN cells, treating KGN cells with p38 MAPK inhibitor SP600125 and JNK inhibitor SB203580 could reverse the effect of IL-15 on the proliferation and function of KGN cells. CONCLUSION The results indicate that IL-15 is involved in the pathogenesis of PCOS potentially by affecting survival, the inflammation state and steroidogenesis of granulosa cells. The practical significance of this association between IL-15 and the pathogenesis of PCOS needs further investigation.
Collapse
Affiliation(s)
- Yan Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zhi Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qingqing Cai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiou Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Feifei Zhang, ; Congjian Xu,
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Feifei Zhang, ; Congjian Xu,
| |
Collapse
|
19
|
Snider AP, Romereim SM, McFee RM, Summers AF, Pohlmeier WE, Kurz SG, Davis JS, Wood JR, Cupp AS. Transcriptomic data of bovine ovarian granulosa cells of control and High A4 cows. Data Brief 2021; 37:107217. [PMID: 34189206 PMCID: PMC8220326 DOI: 10.1016/j.dib.2021.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Microarray analysis using Affymetrix Bovine GeneChip 1.0 ST Array to determine RNA expression analysis was performed on somatic granulosa cells from two different groups of cows classified based on androstenedione concentration within the follicular fluid (Control vs High A4) of estrogen-active dominant follicles. The normalized linear microarray data was deposited to the NCBI GEO repository (GSE97017 - RNA Expression Data from Bovine Ovarian Granulosa Cells from High or Low Androgen-Content Follicles). Subsequent ANOVA determined genes that were enriched (≥ 1.5 fold more) or decreased (≤ 1.5 fold less) in the High A4 granulosa cells compared to Control granulosa cells and analyzed filtered datasets of these differentially expressed genes are presented as tables. MicroRNAs that are differentially expressed in Control and High A4 granulosa cells are also reported in tables. The standard deviation of the analyzed array data in relation to the log of the expression values are shown as a figure. Ingenuity Pathway Analysis determined upstream regulators of differently expressed genes as presented in a table. These data have been further analyzed and interpreted in the companion article "A High-Androgen Microenvironment Inhibits Granulosa Cell Proliferation and Alters Cell Identity" (McFee et. al., 2021 [1].
Collapse
Affiliation(s)
- Alexandria P. Snider
- Animal Science, University of Nebraska–Lincoln, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA
- Animal and Range Sciences, New Mexico State University, Knox Hall Room 202; MSC 3-I Las Cruces, NM 88003, USA
| | - Sarah M. Romereim
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583-0905, USA
- Animal and Range Sciences, New Mexico State University, Knox Hall Room 202; MSC 3-I Las Cruces, NM 88003, USA
| | - Renee M. McFee
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583-0905, USA
- Olson Center for Women's Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Adam F. Summers
- Animal and Range Sciences, New Mexico State University, Knox Hall Room 202; MSC 3-I Las Cruces, NM 88003, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - William E. Pohlmeier
- Animal and Range Sciences, New Mexico State University, Knox Hall Room 202; MSC 3-I Las Cruces, NM 88003, USA
| | - Scott G. Kurz
- Animal Science, University of Nebraska–Lincoln, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA
- Animal and Range Sciences, New Mexico State University, Knox Hall Room 202; MSC 3-I Las Cruces, NM 88003, USA
| | - John S. Davis
- Olson Center for Women's Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jennifer R. Wood
- Animal Science, University of Nebraska–Lincoln, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA
- Animal and Range Sciences, New Mexico State University, Knox Hall Room 202; MSC 3-I Las Cruces, NM 88003, USA
| | - Andrea S. Cupp
- Animal Science, University of Nebraska–Lincoln, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA
- Animal and Range Sciences, New Mexico State University, Knox Hall Room 202; MSC 3-I Las Cruces, NM 88003, USA
| |
Collapse
|