1
|
Carriço JN, Gonçalves CI, Aragüés JM, Lemos MC. Kallmann Syndrome: Functional Analysis of a CHD7 Missense Variant Shows Aberrant RNA Splicing. Int J Mol Sci 2024; 25:12061. [PMID: 39596130 PMCID: PMC11594180 DOI: 10.3390/ijms252212061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Kallmann syndrome is a rare disorder characterized by hypogonadotropic hypogonadism and an impaired sense of smell (anosmia or hyposmia) caused by congenital defects in the development of the gonadotropin-releasing hormone (GnRH) and olfactory neurons. Mutations in several genes have been associated with Kallmann syndrome. However, genetic testing of this disorder often reveals variants of uncertain significance (VUS) that remain uninterpreted without experimental validation. The aim of this study was to analyze the functional consequences of a heterozygous missense VUS in the CHD7 gene (c.4354G>T, p.Val1452Leu), in a patient with Kallmann syndrome with reversal of hypogonadism. The variant, located in the first nucleotide of exon 19, was analyzed using minigene assays to determine its effect on ribonucleic acid (RNA) splicing. These showed that the variant generates two different transcripts: a full-length transcript with the missense change (p.Val1452Leu), and an abnormally spliced transcript lacking exon 19. The latter results in an in-frame deletion (p.Val1452_Lys1511del) that disrupts the helicase C-terminal domain of the CHD7 protein. The variant was reclassified as likely pathogenic. These findings demonstrate that missense variants can exert more extensive effects beyond simple amino acid substitutions and underscore the critical role of functional analyses in VUS reclassification and genetic diagnosis.
Collapse
Affiliation(s)
- Josianne Nunes Carriço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Catarina Inês Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - José Maria Aragüés
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Manuel Carlos Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Carriço JN, Gonçalves CI, Al-Naama A, Syed N, Aragüés JM, Bastos M, Fonseca F, Borges T, Pereira BD, Pignatelli D, Carvalho D, Cunha F, Saavedra A, Rodrigues E, Saraiva J, Ruas L, Vicente N, Martin Martins J, De Sousa Lages A, Oliveira MJ, Castro-Correia C, Melo M, Martins RG, Couto J, Moreno C, Martins D, Oliveira P, Martins T, Martins SA, Marques O, Meireles C, Garrão A, Nogueira C, Baptista C, Gama-de-Sousa S, Amaral C, Martinho M, Limbert C, Barros L, Vieira IH, Sabino T, Saraiva LR, Lemos MC. Genetic architecture of congenital hypogonadotropic hypogonadism: insights from analysis of a Portuguese cohort. Hum Reprod Open 2024; 2024:hoae053. [PMID: 39308770 PMCID: PMC11415827 DOI: 10.1093/hropen/hoae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
STUDY QUESTION What is the contribution of genetic defects in Portuguese patients with congenital hypogonadotropic hypogonadism (CHH)? SUMMARY ANSWER Approximately one-third of patients with CHH were found to have a genetic cause for their disorder, with causal pathogenic and likely pathogenic germline variants distributed among 10 different genes; cases of oligogenic inheritance were also included. WHAT IS KNOWN ALREADY CHH is a rare and genetically heterogeneous disorder characterized by deficient production, secretion, or action of GnRH, LH, and FSH, resulting in delayed or absent puberty, and infertility. STUDY DESIGN SIZE DURATION Genetic screening was performed on a cohort of 81 Portuguese patients with CHH (36 with Kallmann syndrome and 45 with normosmic hypogonadotropic hypogonadism) and 263 unaffected controls. PARTICIPANTS/MATERIALS SETTING METHODS The genetic analysis was performed by whole-exome sequencing followed by the analysis of a virtual panel of 169 CHH-associated genes. The main outcome measures were non-synonymous rare sequence variants (population allele frequency <0.01) classified as pathogenic, likely pathogenic, and variants of uncertain significance (VUS). MAIN RESULTS AND THE ROLE OF CHANCE A genetic cause was identified in 29.6% of patients. Causal pathogenic and likely pathogenic variants were distributed among 10 of the analysed genes. The most frequently implicated genes were GNRHR, FGFR1, ANOS1, and CHD7. Oligogenicity for pathogenic and likely pathogenic variants was observed in 6.2% of patients. VUS and oligogenicity for VUS variants were observed in 85.2% and 54.3% of patients, respectively, but were not significantly different from that observed in controls. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The identification of a large number of VUS presents challenges in interpretation and these may require reclassification as more evidence becomes available. Non-coding and copy number variants were not studied. Functional studies of the variants were not undertaken. WIDER IMPLICATIONS OF THE FINDINGS This study highlights the genetic heterogeneity of CHH and identified several novel variants that expand the mutational spectrum of the disorder. A significant proportion of patients remained without a genetic diagnosis, suggesting the involvement of additional genetic, epigenetic, or environmental factors. The high frequency of VUS underscores the importance of cautious variant interpretation. These findings contribute to the understanding of the genetic architecture of CHH and emphasize the need for further studies to elucidate the underlying mechanisms and identify additional causes of CHH. STUDY FUNDING/COMPETING INTERESTS This research was funded by the Portuguese Foundation for Science and Technology (grant numbers PTDC/SAU-GMG/098419/2008, UIDB/00709/2020, CEECINST/00016/2021/CP2828/CT0002, and 2020.04924.BD) and by Sidra Medicine-a member of the Qatar Foundation (grant number SDR400038). The authors declare no competing interests.
Collapse
Affiliation(s)
- Josianne Nunes Carriço
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | - José Maria Aragüés
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Margarida Bastos
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Fonseca
- Serviço de Endocrinologia, Hospital de Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisboa, Portugal
| | - Teresa Borges
- Unidade de Endocrinologia Pediátrica, Serviço de Pediatria, Centro Materno Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | | | - Duarte Pignatelli
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Filipe Cunha
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ana Saavedra
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Elisabete Rodrigues
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Joana Saraiva
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Luisa Ruas
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Nuno Vicente
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - João Martin Martins
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Adriana De Sousa Lages
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Maria João Oliveira
- Unidade de Endocrinologia Pediátrica, Serviço de Pediatria, Centro Materno Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Cíntia Castro-Correia
- Unidade de Endocrinologia e Diabetologia Pediátrica, Departamento de Pediatria, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Miguel Melo
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Raquel Gomes Martins
- Serviço de Endocrinologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Joana Couto
- Serviço de Endocrinologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Carolina Moreno
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Diana Martins
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Patrícia Oliveira
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Teresa Martins
- Serviço de Endocrinologia, Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - Sofia Almeida Martins
- Unidade de Endocrinologia Pediátrica, Serviço de Pediatria, Hospital de Braga, Braga, Portugal
| | - Olinda Marques
- Serviço de Endocrinologia, Hospital de Braga, Braga, Portugal
| | - Carla Meireles
- Serviço de Pediatria, Hospital da Senhora da Oliveira Guimarães, Guimarães, Portugal
| | - António Garrão
- Departamento de Endocrinologia, Hospital da Luz Lisboa, Lisboa, Portugal
| | - Cláudia Nogueira
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Carla Baptista
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Susana Gama-de-Sousa
- Serviço de Pediatria, Centro Hospitalar do Médio Ave, Unidade de V. N. Famalicão, Vila Nova de Famalicão, Portugal
| | - Cláudia Amaral
- Serviço de Endocrinologia, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Mariana Martinho
- Serviço de Endocrinologia, Centro Hospitalar do Tâmega e Sousa, Guilhufe, Portugal
| | - Catarina Limbert
- Unidade de Endocrinologia Pediátrica, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Luisa Barros
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Inês Henriques Vieira
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Teresa Sabino
- Serviço de Endocrinologia, Hospital de Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisboa, Portugal
| | - Luís R Saraiva
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Manuel Carlos Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
3
|
Peranzoni F, De Castro R, Merlini E, Nguyen YL. 46 XX Ovotesticular Disorder of Sex Development with Gonadotropin-Releasing Hormone Receptor, Autosomal Recessive Heterozygous Missense Mutation and Autosomal Dominant Heterozygous Missense Mutation of the PROKR2 Gene: A Case Report. Glob Med Genet 2024; 11:220-224. [PMID: 38988852 PMCID: PMC11233268 DOI: 10.1055/s-0044-1788060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
True hermaphroditism is a disorder of sex development (DSD), accounting for less than 5% of all DSD cases, defined by the simultaneous presence of testicular tissue and ovarian tissue in the same individual. In the reported case, the patient presented two genetic mutations involved in the pathogenic pathway of the DSD condition associated with the clinical features of Kallmann syndrome (KS), a developmental disease that associates hypogonadotropic hypogonadism (HH), due to gonadotropin-releasing hormone deficiency, and anosmia, related to the absence or hypoplasia of the olfactory bulbs. Given the variable degree of hyposmia in KS, the distinction between KS and normosmic idiopathic HH is currently unclear, especially as HH patients do not always undergo detailed olfactory testing. This syndrome is very rare, with an estimated prevalence of 1:80,000 in males and 1:40,000 in females. This is the only case report concerning a patient with 46 XX true hermaphroditism affected by HH and digenic inheritance of Kallmann syndrome.
Collapse
Affiliation(s)
- Francesca Peranzoni
- Department of Pediatric Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Emilio Merlini
- Department of Pediatric Surgery, Hospital of Alexandria, Italy
| | - Yen Le Nguyen
- Department of Pediatric Urology, Vietnam National Hospital of Pediatric 2, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Poch A, Dougherty MP, Roman RA, Chorich L, Hawkins Z, Kim SH, Kim HG, Layman LC. Prevalence of pathogenic variants and digenic disease in patients diagnosed with normosmic hypogonadotropic hypogonadism/Kallmann Syndrome. Mol Cell Endocrinol 2024; 589:112224. [PMID: 38593951 DOI: 10.1016/j.mce.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Hypogonadotropic hypogonadism (HH) is due to impaired gonadotropin releasing hormone (GnRH) action resulting in absent puberty and infertility. At least 44 genes have been identified to possess genetic variants in 40-50% of nHH/KS, and 2-20% have presumed digenic disease, but not all variants have been characterized in vitro. HYPOTHESIS The prevalence of pathogenic (P)/likely pathogenic (LP) variants in monogenic and digenic nHH/KS is lower than reported. DESIGN Cross-sectional study. SETTING University Research Laboratory. SUBJECTS 158 patients with nHH/KS. METHODS Exome sequencing (ES) was performed and variants were filtered for 44 known genes using Varsome and confirmed by Sanger Sequencing. MAIN OUTCOME MEASURES P/LP variants in nHH/KS genes. RESULTS ES resulted in >370,000 variants, from which variants in 44 genes were filtered. Thirty-one confirmed P/LP variants in 10 genes (ANOS1, CHD7, DUSP6, FGFR1, HS6ST1, KISS1, PROKR2, SEMA3A, SEMA3E, TACR3), sufficient to cause disease, were identified in 30/158 (19%) patients. Only 2/158 (1.2%) patients had digenic variant combinations: a male with hemizygous ANOS1 and heterozygous TACR3 variants and a male with heterozygous SEMA3A and SEMA3E variants. Two patients (1.2%) had compound heterozygous GNRHR (autosomal recessive) variants-one P and one variant of uncertain significance (VUS). Five patients (3.2%) had heterozygous P/LP variants in either GNRHR or TACR3 (both autosomal recessive), but no second variant. CONCLUSION Our prevalence of P/LP variants in nHH/KS was 19%, and digenicity was observed in 1.2%. These findings are less than those previously reported, and probably represent a more accurate estimation since VUS are not included.
Collapse
Affiliation(s)
- Alexandra Poch
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Michael P Dougherty
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Robert A Roman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lynn Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zoe Hawkins
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Center, Hamad Bin Khalifa University, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Celik NB, Sezer A, Genel N, Savas-Erdeve S, Karaman İ, Cetinkaya S. Case report: An adolescent female with anosmic hypogonadotropic hypogonadism, intellectual disability, and papillary thyroid carcinoma: heterozygous deletion of TCF12. Front Endocrinol (Lausanne) 2024; 15:1426916. [PMID: 39036055 PMCID: PMC11257912 DOI: 10.3389/fendo.2024.1426916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Background Isolated hypogonadotropic hypogonadism is a heterogeneous clinical entity. There is a growing list of molecular defects that are associated with hypogonadotropic hypogonadism (HH). TCF12, a recently identified molecular defect, causes craniosynostosis and is suggested to be used as a biomarker for prognosis in various cancer types. Recently, TCF12 variants were shown in a cohort with HH. Case presentation A 15.3 years old female patient was referred to the endocrinology clinic for obesity. She had been gaining weight from mid-childhood. She had her first epileptic seizure at the age of 15.1 years and mildly elevated thyroid autoantibodies were detected during evaluation for etiology of seizures. She had not experienced menarche yet. She was operated for left strabismus at the age of 7 years. School performance was poor and she was receiving special education. Tanner stage of breast was 1 and pubic hair was 3. The endocrine workup revealed hypogonadotropic hypogonadism. Also, the Sniffin' Sticks test detected anosmia. Thyroid ultrasonography was performed due to the mildly elevated thyroid autoantibodies, and thyroid nodules with punctate calcifications were detected. Total thyroidectomy and central lymph node dissection were performed regarding the cytological findings of the nodules and multicentric papillary thyroid carcinoma with no lymph node metastasis was detected on pathology specimens. Regarding the phenotypic features of the patients, whole exome sequencing was performed and heterozygous deletion of exon 1 and exon 6-8 in TCF12 was detected. Conclusion Haploinsufficiency of TCF12 causes anosmic HH. Probably due to the incomplete penetrance and variable expressivity of the disease, patients could display variable phenotypic features such as intellectual disability, developmental delay, and craniosynostosis. Further description of new cases with TCF12 variations could enhance our understanding of craniosynostosis and its potential link to Kallmann syndrome associated with this gene.
Collapse
Affiliation(s)
- Nur Berna Celik
- Department of Pediatrics, Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - Abdullah Sezer
- Department of Genetics, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - Nebiyye Genel
- Department of Pathology, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - Senay Savas-Erdeve
- Department of Pediatrics, Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - İbrahim Karaman
- Department of Pediatric Surgery, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| | - Semra Cetinkaya
- Department of Pediatrics, Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Children’s Health and Disease, Health Implementation and Research Center, Ankara, Türkiye
| |
Collapse
|
6
|
Zhang J, Yang S, Zhang Y, Liu F, Hao L, Han L. Clinical phenotype of a Kallmann syndrome patient with IL17RD and CPEB4 variants. Front Endocrinol (Lausanne) 2024; 15:1343977. [PMID: 38628584 PMCID: PMC11019388 DOI: 10.3389/fendo.2024.1343977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Background This study aimed to characterize the clinical phenotype and genetic variations in patients with Kallmann syndrome (KS). Methods This study involved the collection and analysis of clinical data from an individual with sporadic KS. Following this, peripheral blood samples were obtained from the patient and his parents. Genomic deoxyribonucleic acid was extracted and subjected to whole-exome sequencing and genomic copy number variation (CNV) detection. Finally, Sanger sequencing was performed to validate the suspected pathogenic variants. Results Whole-exome sequencing confirmed that the child carried both the IL17RD variant (c.2101G>A, p.Gly701Ser) inherited from the mother and the new CPEB4 variant (c.1414C>T, p.Arg472*). No pathogenic CNVs were identified in CNV testing. Conclusion Bioinformatics analysis shows that the IL17RD protein undergoing Gly701Ser mutation and is speculated to be phosphorylated and modified, thereby disrupting fibroblast growth factor signaling. This study also suggested that the CPEB4 might play a crucial role in the key signaling process affecting olfactory bulb morphogenesis. Overall, the findings of this study broaden the gene expression profile of KS-related pathogenic genes. This offers a new avenue for exploring the pathogenic mechanism of KS and provides valuable insights for precise clinical diagnosis and treatment strategies for this condition.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Pediatric Endocrinology and Genetics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Suhong Yang
- Department of Pediatric Endocrinology and Genetics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Yan Zhang
- Department of Pediatric Endocrinology and Genetics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Pediatric Endocrinology and Genetics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Lili Hao
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Louden ED, Dougherty MP, Chorich LP, Eroglu A, Layman LC. Investigation of subfertility in the female Nsmf knockout mouse. F&S SCIENCE 2023; 4:286-293. [PMID: 37516276 DOI: 10.1016/j.xfss.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE To study if a pituitary or ovarian defect contributes to subfertility of the female Nsmf knockout (KO) mouse, an animal model of the hypogonadotropic hypogonadism gene NSMF. DESIGN Analysis of hypothalamic, pituitary and ovarian gene expression at baseline, serum gonadotropin levels before and after gonadotropin-releasing hormone (GnRH) stimulation, ovarian response and implantation after superovulation, gonadotropin effects after ovariectomy, and ovarian NSMF protein expression. SETTING University research laboratory. PATIENTS None; mice were used. INTERVENTIONS Gonadotropin-releasing hormone stimulation, superovulation, and ovariectomy in separate experiments. MAIN OUTCOME MEASURES Gene expression in the hypothalamus, pituitary, and ovary; ovarian response and implantation after superovulation; serum gonadotropins after GnRH stimulation and ovariectomy; Western blot to measure ovarian NSMF expression. RESULTS We found increased hypothalamic Kiss1, Gnrh1, and Jak2 mRNA expression in female Nsmf KO vs. wild type (WT) mice. However, pituitary gonadotropin, and GnRH receptor gene expression was not affected, and serum gonadotropin levels were normal. Gonadotropins increased after ovariectomy for both groups. Baseline Kiss1, Fshr, Prkaca, Prkar1a, and Gdf9 ovarian mRNA expression was increased and Cyp19a1 expression was decreased in Nsmf KO mice, while superovulated Nsmf KO mice had reduced ovarian Kiss1r, Prkar1a, and Fshr mRNA expression, 50% less oocytes, and normal implantation. Western blot demonstrated NSMF protein expression in the ovary of WT mice. CONCLUSIONS Altered hypothalamic and ovarian gene expression was demonstrated in female Nsmf KO mice. It is possible that increased hypothalamic Gnrh1 and Kiss1 mRNA expression could compensate for reduced NSMF enabling a normal pituitary gonadotropin response. Impaired superovulation response, altered ovarian gene expression, and decreased number of oocytes indicate ovarian dysfunction, but a uterine factor cannot be excluded. These findings provide an anatomic basis for future mechanistic studies of subfertility in female Nsmf KO mice.
Collapse
Affiliation(s)
- Erica D Louden
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology
| | - Michael P Dougherty
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology
| | - Ali Eroglu
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology; Department of Neuroscience and Regenerative Medicine
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology; Department of Neuroscience and Regenerative Medicine; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia.
| |
Collapse
|
8
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
9
|
Cho HJ, Gurbuz F, Stamou M, Kotan LD, Farmer SM, Can S, Tompkins MF, Mammadova J, Altincik SA, Gokce C, Catli G, Bugrul F, Bartlett K, Turan I, Balasubramanian R, Yuksel B, Seminara SB, Wray S, Topaloglu AK. POU6F2 mutation in humans with pubertal failure alters GnRH transcript expression. Front Endocrinol (Lausanne) 2023; 14:1203542. [PMID: 37600690 PMCID: PMC10436210 DOI: 10.3389/fendo.2023.1203542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is characterized by the absence of pubertal development and subsequent impaired fertility often due to gonadotropin-releasing hormone (GnRH) deficits. Exome sequencing of two independent cohorts of IHH patients identified 12 rare missense variants in POU6F2 in 15 patients. POU6F2 encodes two distinct isoforms. In the adult mouse, expression of both isoform1 and isoform2 was detected in the brain, pituitary, and gonads. However, only isoform1 was detected in mouse primary GnRH cells and three immortalized GnRH cell lines, two mouse and one human. To date, the function of isoform2 has been verified as a transcription factor, while the function of isoform1 has been unknown. In the present report, bioinformatics and cell assays on a human-derived GnRH cell line reveal a novel function for isoform1, demonstrating it can act as a transcriptional regulator, decreasing GNRH1 expression. In addition, the impact of the two most prevalent POU6F2 variants, identified in five IHH patients, that were located at/or close to the DNA-binding domain was examined. Notably, one of these mutations prevented the repression of GnRH transcripts by isoform1. Normally, GnRH transcription increases as GnRH cells mature as they near migrate into the brain. Augmentation earlier during development can disrupt normal GnRH cell migration, consistent with some POU6F2 variants contributing to the IHH pathogenesis.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Fatih Gurbuz
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Maria Stamou
- Harvard Reproductive Sciences Center, The Reproductive Endocrine Unit and The Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Leman Damla Kotan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Stephen Matthew Farmer
- Cellular and Developmental Neurobiology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sule Can
- Division of Pediatric Endocrinology, İzmir Tepecik Training and Research Hospital, Health Sciences University, İzmir, Türkiye
| | - Miranda Faith Tompkins
- Cellular and Developmental Neurobiology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jamala Mammadova
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| | - S. Ayca Altincik
- Division of Pediatric Endocrinology, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| | - Cumali Gokce
- Division of Endocrinology, Faculty of Medicine, Mustafa Kemal University, Hatay, Türkiye
| | - Gonul Catli
- Division of Pediatric Endocrinology, İzmir Tepecik Training and Research Hospital, Health Sciences University, İzmir, Türkiye
| | - Fuat Bugrul
- Division of Pediatric Endocrinology, Faculty of Medicine, Selcuk University, Konya, Türkiye
| | - Keenan Bartlett
- Cellular and Developmental Neurobiology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Ravikumar Balasubramanian
- Harvard Reproductive Sciences Center, The Reproductive Endocrine Unit and The Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Bilgin Yuksel
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Stephanie B. Seminara
- Harvard Reproductive Sciences Center, The Reproductive Endocrine Unit and The Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - A. Kemal Topaloglu
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Mississippi Medical Center, Jackson, MS, United States
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MS, United States
| |
Collapse
|
10
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chu G, Li P, Zhao Q, He R, Zhao Y. Mutation spectrum of Kallmann syndrome: identification of five novel mutations across ANOS1 and FGFR1. Reprod Biol Endocrinol 2023; 21:23. [PMID: 36859276 PMCID: PMC9976430 DOI: 10.1186/s12958-023-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Kallmann syndrome (KS) is a common type of idiopathic hypogonadotropic hypogonadism. To date, more than 30 genes including ANOS1 and FGFR1 have been identified in different genetic models of KS without affirmatory genotype-phenotype correlation, and novel mutations have been found. METHODS A total of 35 unrelated patients with clinical features of disorder of sex development were recruited. Custom-panel sequencing or whole-exome sequencing was performed to detect the pathogenic mutations. Sanger sequencing was performed to verify single-nucleotide variants. Copy number variation-sequencing (CNV-seq) was performed to determine CNVs. The pathogenicity of the identified variant was predicted in silico. mRNA transcript analysis and minigene reporter assay were performed to test the effect of the mutation on splicing. RESULTS ANOS1 gene c.709 T > A and c.711 G > T were evaluated as pathogenic by several commonly used software, and c.1063-2 A > T was verified by transcriptional splicing assay. The c.1063-2 A > T mutation activated a cryptic splice acceptor site downstream of the original splice acceptor site and resulted in an aberrant splicing of the 24-basepair at the 5' end of exon 8, yielding a new transcript with c.1063-1086 deletion. FRFR1 gene c.1835delA was assessed as pathogenic according to the ACMG guideline. The CNV of del(8)(p12p11.22)chr8:g.36140000_38460000del was judged as pathogenic according to the ACMG & ClinGen technical standards. CONCLUSIONS Herein, we identified three novel ANOS1 mutations and two novel FGFR1 variations in Chinese KS families. In silico prediction and functional experiment evaluated the pathogenesis of ANOS1 mutations. FRFR1 c.1835delA mutation and del(8)(p12p11.22)chr8:g.36140000_38460000del were assessed as pathogenic variations. Therefore, our study expands the spectrum of mutations associated with KS and provides diagnostic evidence for patients who carry the same mutation in the future.
Collapse
Affiliation(s)
- Guoming Chu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Qian Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
12
|
Brakta S, Hawkins ZA, Sahajpal N, Seman N, Kira D, Chorich LP, Kim HG, Xu H, Phillips JA, Kolhe R, Layman LC. Rare structural variants, aneuploidies, and mosaicism in individuals with Mullerian aplasia detected by optical genome mapping. Hum Genet 2023; 142:483-494. [PMID: 36797380 DOI: 10.1007/s00439-023-02522-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023]
Abstract
The molecular basis of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome remains largely unknown. Pathogenic variants in WNT4 and HNF1B have been confirmed in a small percent of individuals. A variety of copy number variants have been reported, but causal gene(s) remain to be identified. We hypothesized that rare structural variants (SVs) would be present in some individuals with MRKH, which could explain the genetic basis of the syndrome. Large molecular weight DNA was extracted from lymphoblastoid cells from 87 individuals with MRKH and available parents. Optical genome mapping (OGM) was performed to identify SVs, which were confirmed by another method (quantitative PCR, chromosomal microarray, karyotype, or fluorescent in situ hybridization) when possible. Thirty-four SVs that overlapped coding regions of genes with potential involvement in MRKH were identified, 14 of which were confirmed by a second method. These 14 SVs were present in 17/87 (19.5%) of probands with MRKH and included seven deletions, three duplications, one new translocation in 5/50 cells-t(7;14)(q32;q32), confirmation of a previously identified translocation-t(3;16)(p22.3;p13.3), and two aneuploidies. Of interest, three cases of mosaicism (3.4% of probands) were identified-25% mosaicism for trisomy 12, 45,X(75%)/46,XX (25%), and 10% mosaicism for a 7;14 translocation. Our study constitutes the first systematic investigation of SVs by OGM in individuals with MRKH. We propose that OGM is a promising method that enables a comprehensive investigation of a variety of SVs in a single assay including cryptic translocations and mosaic aneuploidies. These observations suggest that mosaicism could play a role in the genesis of MRKH.
Collapse
Affiliation(s)
- Soumia Brakta
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | - Zoe A Hawkins
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Nikhil Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Genetics, Greenwood Genetics Center, Greenwood, SC, USA
| | - Natalie Seman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Dina Kira
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia. .,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
13
|
Shi X, Zhuang Y, Chen Z, Xu M, Kuang J, Sun XL, Gao L, Kuang X, Zhang H, Li W, Wong SZH, Liu C, Liu L, Jiang D, Pei D, Lin Y, Wu QF. Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset. SCIENCE ADVANCES 2022; 8:eabq2987. [PMID: 36383654 PMCID: PMC9668310 DOI: 10.1126/sciadv.abq2987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 05/17/2023]
Abstract
The neuroendocrine system consists of a heterogeneous collection of neuropeptidergic neurons in the brain, among which hypothalamic KNDy neurons represent an indispensable cell subtype controlling puberty onset. Although neural progenitors and neuronal precursors along the cell lineage hierarchy adopt a cascade diversification strategy to generate hypothalamic neuronal heterogeneity, the cellular logic operating within the lineage to specify a subtype of neuroendocrine neurons remains unclear. As human genetic studies have recently established a link between TBX3 mutations and delayed puberty onset, we systematically studied Tbx3-derived neuronal lineage and Tbx3-dependent neuronal specification and found that Tbx3 hierarchically established and maintained the identity of KNDy neurons for triggering puberty. Apart from the well-established lineage-dependent fate determination, we uncovered rules of interlineage interaction and intralineage retention operating through neuronal differentiation in the absence of Tbx3. Moreover, we revealed that human TBX3 mutations disturbed the phase separation of encoded proteins and impaired transcriptional regulation of key neuropeptides, providing a pathological mechanism underlying TBX3-associated puberty disorders.
Collapse
Affiliation(s)
- Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua–Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Junqi Kuang
- University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lisen Gao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Kuang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huairen Zhang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Samuel Zheng Hao Wong
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chuanyu Liu
- BGI-ShenZhen, Shenzhen 518103, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Longqi Liu
- BGI-ShenZhen, Shenzhen 518103, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Danhua Jiang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua–Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Corresponding author. (Q.-F.W.); (Y.L.)
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- Corresponding author. (Q.-F.W.); (Y.L.)
| |
Collapse
|
14
|
Duittoz AH, Tillet Y, Geller S. The great migration: how glial cells could regulate GnRH neuron development and shape adult reproductive life. J Chem Neuroanat 2022; 125:102149. [PMID: 36058434 DOI: 10.1016/j.jchemneu.2022.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/31/2022]
Abstract
In mammals, reproductive function is under the control of hypothalamic neurons named Gonadotropin-Releasing Hormone (GnRH) neurons. These neurons migrate from the olfactory placode to the brain, during embryonic development. For the past 40 years, these neurons have been considered an example of tangential migration, i.e., dependent on the olfactory/vomeronasal/terminal nerves. Numerous studies have highlighted the factors involved in the migration of these neurons but thus far overlooked the cellular microenvironment that produces them. Many of these factors are dysregulated in hypogonadotropic hypogonadism, resulting in subfertility/infertility. Nevertheless, over the past ten years, several papers have reported the influence of glial cells (named olfactory ensheathing cells [OECs]) in the migration and differentiation of GnRH neurons. This review will describe the atypical origins, migration, and differentiation of these neurons, focusing on the latest discoveries. There will be a more specific discussion on the involvement of OECs in the development of GnRH neurons, during embryonic and perinatal life; as well as on their potential implication in the development of congenital or idiopathic hypogonadotropic hypogonadism (such as Kallmann syndrome).
Collapse
Affiliation(s)
- Anne H Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Sarah Geller
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
A Novel FGFR1 Missense Mutation in a Portuguese Family with Congenital Hypogonadotropic Hypogonadism. Int J Mol Sci 2022; 23:ijms23084423. [PMID: 35457241 PMCID: PMC9026826 DOI: 10.3390/ijms23084423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare reproductive endocrine disorder characterized by complete or partial failure of pubertal development and infertility due to deficiency of the gonadotropin-releasing hormone (GnRH). CHH has a significant clinical heterogeneity and can be caused by mutations in over 30 genes. The aim of this study was to investigate the genetic defect in two siblings with CHH. A woman with CHH associated with anosmia and her brother with normosmic CHH were investigated by whole exome sequencing. The genetic studies revealed a novel heterozygous missense mutation in the Fibroblast Growth Factor Receptor 1 (FGFR1) gene (NM_023110.3: c.242T>C, p.Ile81Thr) in the affected siblings and in their unaffected father. The mutation affected a conserved amino acid within the first Ig-like domain (D1) of the protein, was predicted to be pathogenic by structure and sequence-based prediction methods, and was absent in ethnically matched controls. These were consistent with a critical role for the identified missense mutation in the activity of the FGFR1 protein. In conclusion, our identification of a novel missense mutation of the FGFR1 gene associated with a variable expression and incomplete penetrance of CHH extends the known mutational spectrum of this gene and may contribute to the understanding of the pathogenesis of CHH.
Collapse
|
16
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|