1
|
Cevizoglu M, Erkal O, Turkkahraman D. Thyroglobulin (TG) gene variants in cases with congenital goiter. Endocr Res 2025:1-6. [PMID: 40346829 DOI: 10.1080/07435800.2025.2503735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/12/2025]
Abstract
OBJECTIVE To evaluate TG gene variants and their effects on the clinical course of the disease in children with congenital hypothyroidism (CH) who are suspected to have thyroglobulin synthesis defect. METHODS The study was carried out in patients who were suspected to have thyroglobulin synthesis defect due to low serum thyroglobulin level and goiter at the time of diagnosis of CH. Peripheral blood samples were taken and hypothyroidism gene panel including 344 genes was amplified by PCR and sequenced using next-generation DNA sequencing (NGS) method. RESULTS A total of four eligible cases were identified for genetic analysis, and variants were detected in all of them. In case 1, a previously reported homozygous c.638 + 5 G>A splice site variant was detected. In case 2, compound heterozygous variants including a previously reported nonsense variant c.7111 C>T, (p.Arg2371Ter) on the first allele and a novel nonsense variant c.5748 C>A, (p.Tyr1916Ter) on the second allele were detected. In case 3, a previously reported homozygous nonsense variant c.1888 C>T, (p.Gln630Ter) was detected. In case 4, a novel homozygous intronic variant c.6200-25T>G was detected. CONCLUSION The distinctive phenotypic features of TG gene variants, which are one of the rare causes of dyshormonogenesis, provide an advantage in diagnosis. Therefore, we recommend genetic analysis in cases with low thyroglobulin levels and goiter. Our findings support that TG variants show a heterogeneous distribution over the whole gene. Since the relationship between TG gene variants and thyroid cancer, we suggest that clarification of TG gene variants is important in terms of early diagnosis of thyroid nodule and malignancy.
Collapse
Affiliation(s)
- Mahir Cevizoglu
- Department of Pediatrics, Antalya Training and Research Hospital, Antalya, Turkey
| | - Ozgur Erkal
- Department of Clinical Genetics, Antalya Training and Research Hospital, Antalya, Turkey
| | - Doga Turkkahraman
- Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Science, Antalya, Turkey
| |
Collapse
|
2
|
Chen D, Lei T, Wang Y, Yu Z, Liu S, Ye L, Li W, Yang Q, Jin H, Liu F, Li Y. Isolation and Characterization of the Adamantinomatous Craniopharyngioma Primary Cells with Cancer-Associated Fibroblast Features. Biomedicines 2025; 13:912. [PMID: 40299526 PMCID: PMC12025058 DOI: 10.3390/biomedicines13040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Backgrounds: Adamantinomatous craniopharyngiomas (ACPs) are benign intracranial tumors that behave aggressively due to their location, infiltration of the surrounding nervous tissue and high capacity for recurrence. In this study, we aimed to construct ACP primary cell models for further investigation of tumorigenic and recurrent mechanisms. Methods: Primary cells were isolated from primary (one case) and recurrent (one case) ACP. Short tandem repeat (STR) analysis was used to clarify the identity of the ACP primary cells we isolated. Whole exome sequencing (WES), immunofluorescence (IF) and immunohistochemistry (IHC) were performed on primary cells and corresponding ACP tissues, to determine the mutational profile and to clarify the tissue origin and phenotypic of primary cells. Transcriptome RNA-seq was performed to obtain the gene expression characteristics of ACP primary cells. Subsequently, a heterotopic ACP xenograft mouse model was established to confirm the tumorigenesis capacity of ACP primary cells. Results: ACP primary cells were successfully cultured. The genetic variants were similar to the original tumor tissue, and they owned expression of cancer-associated fibroblast (CAF) markers (FSP1/S100A4, Vimentin) and nuclear translocation β-catenin. Meanwhile, they had an high level expression of extracellular matrix components (Fibronectin). The tumor formation ability of ACP primary cells was verified. The transcriptional signatures of ACP primary cells were also explored. Conclusions: We successfully isolated and characterized ACP primary cells that acquired multiple CAF features and demonstrated stable propagation through dozens of passages. These PDC models laid the foundation for further research on ACP.
Collapse
Affiliation(s)
- Dongting Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.)
| | - Ting Lei
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; (T.L.)
| | - Yulin Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.)
| | - Zaitao Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; (T.L.)
| | - Siqi Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.)
| | - Ling Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.)
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
| | - Qin Yang
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
| | - Fangjun Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; (T.L.)
| | - Yan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (D.C.)
| |
Collapse
|
3
|
Zheng H, Cheng C, He M, Zhou W, Li Y, Dai J, Zhang T, Xu K, Zhang X, Tian X, Liu Y. Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3. Mol Genet Genomic Med 2025; 13:e70036. [PMID: 39764684 PMCID: PMC11705539 DOI: 10.1002/mgg3.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/16/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge. METHODS Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD. Minigene assays were performed to evaluate the pathogenicity of variants. Transmission electron microscopy (TEM) and high-speed video analysis (HSVA) were conducted to analyze the function of cilia in respiratory epithelial cells. RESULTS We identified two variants of DNAAF3: c.557G>A, p.G186E in exon 5, and c.1364G>A, p.G455D at the terminal nucleotide of exon 10 in a 16-year-old male patient. Through a minigene assay, we demonstrated that the c.1364G>A variant led to a four-nucleotide skipping. The cilia in epithelial ciliary cells of the proband were almost immotile. The absence of outer dynein arms and inner dynein arms was also observed. CONCLUSIONS Our study identified two compound heterozygous variants of DNAAF3, a pathogenic gene for PCD, and proved that a novel missense variant c.1364G>A affects splicing. Our findings not only expanded the spectrum of mutations in the DNAAF3 gene but also highlighted the importance of investigating variants of uncertain significance (VUS) for comprehensive genetic diagnoses.
Collapse
Affiliation(s)
- Haixia Zheng
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical SciencesSchool of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Chongsheng Cheng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Miao He
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical SciencesSchool of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Wangji Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yixuan Li
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical SciencesSchool of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Jinrong Dai
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ting Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Kai‐Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xue Zhang
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical SciencesSchool of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yaping Liu
- The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci‐Tech Infrastructure for Translational MedicinePeking Union Medical College HospitalBeijingChina
| |
Collapse
|
4
|
Wang Y, Ye Z, Lou X, Xu J, Jing D, Zhou C, Qin Y, Chen J, Xu X, Yu X, Ji S. Comparison among different preclinical models derived from the same patient with a non-functional pancreatic neuroendocrine tumor. Hum Cell 2024; 37:1522-1534. [PMID: 39078546 DOI: 10.1007/s13577-024-01107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Pancreatic neuroendocrine tumors are the second most common tumors of the pancreas, and approximately half of patients are diagnosed with liver metastases. Currently, the improvement in the efficacy of relevant treatment methods is still limited. Therefore, there is an urgent need for in-depth research on the molecular biological mechanism of pancreatic neuroendocrine tumors. However, due to their relatively inert biology, preclinical models are extremely scarce. Here, the patient-derived organoid, and patient-derived xenograft were successfully constructed. These two models and the previously constructed cell line named SPNE1 all derived from the same patient with a grade 3 non-functional pancreatic neuroendocrine tumor, providing new tumor modeling platforms, and characterized using immunohistochemistry, whole-exome sequencing, and single-cell transcriptome sequencing. Combined with a tumor formation experiment in immunodeficient mice, we selected the model that most closely recapitulated the parental tumor. Overall, the patient-derived xenograft model most closely resembled human tumor tissue.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Head and Neck and Neuroendocrine Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Rojas Velazquez MN, Therkelsen S, Pandey AV. Exploring Novel Variants of the Cytochrome P450 Reductase Gene ( POR) from the Genome Aggregation Database by Integrating Bioinformatic Tools and Functional Assays. Biomolecules 2023; 13:1728. [PMID: 38136599 PMCID: PMC10741880 DOI: 10.3390/biom13121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency.
Collapse
Affiliation(s)
- Maria Natalia Rojas Velazquez
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Søren Therkelsen
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Drug Design and Pharmacology, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Amit V. Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
6
|
Zhang X, Young C, Liao XH, Refetoff S, Torres M, Tomer Y, Stefan-Lifshitz M, Zhang H, Larkin D, Fang D, Qi L, Arvan P. Perturbation of endoplasmic reticulum proteostasis triggers tissue injury in the thyroid gland. JCI Insight 2023; 8:e169937. [PMID: 37345654 PMCID: PMC10371246 DOI: 10.1172/jci.insight.169937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Defects in endoplasmic reticulum (ER) proteostasis have been linked to diseases in multiple organ systems. Here we examined the impact of perturbation of ER proteostasis in mice bearing thyrocyte-specific knockout of either HRD1 (to disable ER-associated protein degradation [ERAD]) or ATG7 (to disable autophagy) in the absence or presence of heterozygous expression of misfolded mutant thyroglobulin (the most highly expressed thyroid gene product, synthesized in the ER). Misfolding-inducing thyroglobulin mutations are common in humans but are said to yield only autosomal-recessive disease - perhaps because misfolded thyroglobulin protein might undergo disposal by ERAD or ER macroautophagy. We find that as single defects, neither ERAD, nor autophagy, nor heterozygous thyroglobulin misfolding altered circulating thyroxine levels, and neither defective ERAD nor defective autophagy caused any gross morphological change in an otherwise WT thyroid gland. However, heterozygous expression of misfolded thyroglobulin itself triggered significant ER stress and individual thyrocyte death while maintaining integrity of the surrounding thyroid epithelium. In this context, deficiency of ERAD (but not autophagy) resulted in patchy whole-follicle death with follicular collapse and degeneration, accompanied by infiltration of bone marrow-derived macrophages. Perturbation of thyrocyte ER proteostasis is thus a risk factor for both cell death and follicular demise.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes and
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes and
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samuel Refetoff
- Department of Medicine
- Department of Pediatrics, and Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, Illinois, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yaron Tomer
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Mihaela Stefan-Lifshitz
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Hao Zhang
- Division of Metabolism, Endocrinology & Diabetes and
| | - Dennis Larkin
- Division of Metabolism, Endocrinology & Diabetes and
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern Medicine, Chicago, Illinois, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes and
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Gomes Pio M, Adrover E, Miras MB, Sobrero G, Molina MF, Scheps KG, Rivolta CM, Targovnik HM. The p.Cys1281Tyr variant in the hinge module/flap region of thyroglobulin causes intracellular transport disorder and congenital hypothyroidism. Mol Cell Endocrinol 2023; 572:111948. [PMID: 37164149 DOI: 10.1016/j.mce.2023.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Congenital hypothyroidism (CH) due to thyroglobulin (TG) variants causes very low serum TG levels with normal or enlarged thyroid glands, depending on the severity of the defect, and with autosomal recessive inheritance. The purpose of this study was to functionally characterize p.Cys1281Tyr variant in the TG gene in order to increase our knowledge of the molecular mechanisms associated with CH. In order to find evidence that support the hypothesis that the p.Cys1281Tyr variant would affect the TG folding were performed amino acid prediction, 3D modeling and transient expression analysis in HEK293T cells. 18 of the 21″in silico" algorithms predict a deleterious effect of the p.Cys1281Tyr variant. The full-length 3D model p.Cys1281Tyr TG showed disulfide bond cleavage between the cysteines at positions 1249 and 1281 and rearrangement of the TG structure, while transient expression analysis indicated that p.Cys1281Tyr causes retention of the protein inside the cell. Consequently, these results show that this pathogenic variant makes it impossible for TG to fulfill its function in the biosynthesis process of thyroid hormones, causing CH. In conclusion, our results confirm the pathophysiological importance of misfolding of TG as a consequence of p.Cys1281Tyr variant located in the hinge module/flap region of TG.
Collapse
Affiliation(s)
- Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Maricel F Molina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Karen G Scheps
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Siffo S, Gomes Pio M, Martínez EB, Lachlan K, Walker J, Weill J, González-Sarmiento R, Rivolta CM, Targovnik HM. The p.Pro2232Leu variant in the ChEL domain of thyroglobulin gene causes intracellular transport disorder and congenital hypothyroidism. Endocrine 2023; 80:47-53. [PMID: 36547798 DOI: 10.1007/s12020-022-03284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Thyroglobulin (TG), the predominant glycoprotein of the thyroid gland, functions as matrix protein in thyroid hormonegenesis. TG deficiency results in thyroid dyshormonogenesis. These variants produce a heterogeneous spectrum of congenital goitre, with an autosomal recessive mode of inheritance. The purpose of this study was to identify and functionally characterize new variants in the TG gene in order to increase the understanding of the molecular mechanisms responsible for thyroid dyshormonogenesis. A total of four patients from two non-consanguineous families with marked alteration of TG synthesis were studied. The two families were previously analysed in our laboratory, only one deleterious allele, in each one, was detected after sequencing the TG gene (c.2359 C > T [p.Arg787*], c.5560 G > T [p.Glu1854*]). These findings were confirmed in the present studies by Next-Generation Sequencing. The single nucleotide coding variants of the TG gene were then analyzed to predict the possible variant causing the disease. The p.Pro2232Leu (c.6695 C > T), identified in both families, showing a low frequency population in gnomAD v2.1.1 database and protein homology, amino acid prediction, and 3D modeling analysis predict a potential pathogenic effect of this variant. We also transiently express p.Pro2232Leu in a full-length rat TG cDNA clone and confirmed that this point variant was sufficient to cause intracellular retention of mutant TG in HEK293T cells. Consequently, each family carried a compound heterozygous for p.Arg787*/p.Pro2232Leu or p.Glu1854*/p.Pro2232Leu variants. In conclusion, our results confirm the pathophysiological importance of altered TG folding as a consequence of missense variants located in the ChEL domain of TG.
Collapse
Affiliation(s)
- Sofia Siffo
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Elena Bueno Martínez
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL. Universidad de Salamanca-CSIC, Salamanca, España
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, SO16 5YA, Southampton, UK
| | - Joanna Walker
- Portsmouth Hospitals NHS Trust, Queen Alexandra Hospital, Cosham, PO6 3LY, Portsmouth, UK
| | - Jacques Weill
- Clinique de Pédiatrie, Hôpital Jeanne de Flandre, Centre Hospitalier Regional Universitaire de Lille, Lille, France
| | - Rogelio González-Sarmiento
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL. Universidad de Salamanca-CSIC, Salamanca, España
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Zhang X, Young C, Morishita Y, Kim K, Kabil OO, Clarke OB, Di Jeso B, Arvan P. Defective Thyroglobulin: Cell Biology of Disease. Int J Mol Sci 2022; 23:13605. [PMID: 36362390 PMCID: PMC9657758 DOI: 10.3390/ijms232113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Kookjoo Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Omer O. Kabil
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Natural Sciences, Lindenwood University, Saint Charles, MO 63301, USA
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bruno Di Jeso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
10
|
Zhang X, Malik B, Young C, Zhang H, Larkin D, Liao XH, Refetoff S, Liu M, Arvan P. Maintaining the thyroid gland in mutant thyroglobulin-induced hypothyroidism requires thyroid cell proliferation that must continue in adulthood. J Biol Chem 2022; 298:102066. [PMID: 35618019 PMCID: PMC9213252 DOI: 10.1016/j.jbc.2022.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress–mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR–CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bhoomanyu Malik
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Hao Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dennis Larkin
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Xiao-Hui Liao
- Departments of Medicine, Pediatrics, and Committee on Genetics, The University of Chicago, Chicago Illinois, USA
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics, and Committee on Genetics, The University of Chicago, Chicago Illinois, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| |
Collapse
|