1
|
Kurnaz E, Türkyılmaz A, Yaralı O, Dönmez AS, Çayır A. Genetic Analyses in a Cohort of Pediatric Patients with Congenital Hypothyroidism Based on Congenital Hypothyroidism Consensus Guideline. Horm Res Paediatr 2024:1-15. [PMID: 39378853 DOI: 10.1159/000541898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Pathogenic variants in the genes involved in the formation of thyroid tissue and thyroid hormone secretion have been reported to cause congenital hypothyroidism (CH) in some cases. This study aimed to evaluate the clinical and genetic findings of CH cases thought to be due to genetic variants. METHODS The study included cases whose genetic analysis was performed in accordance with the Congenital Hypothyroidism: A 2020-2021 Consensus Guidelines Update Guidelines recommendations criteria and analyzed them using the next-generation sequencing panel. RESULTS Sixty one Turkish patients from 45 families were included in the study. The overall frequency of variant detection was 37.7% (out of 45 families, 17 had a positive mutation). Segregation was carried out for all families with positive variants. Variants in the TPO gene are the most frequently encountered, and this situation was identified in 10 families. Variants followed this in the TSHR gene in 7 families, variants in the DUOX2 gene in 5 families, and two variants in the TG and NKX2-1 genes in 2 families each, which are six novel variants. Furthermore, among the NKX2-1 cases, one had thyroid involvement only, while the other had chorea only. We did not find differences between cases with detected mutations and mutation-negative cases regarding gender, neonatal/perinatal parameters, initial thyroid function values, and thyroid morphology. CONCLUSION In the current investigation, rare new variations in genes known to be related to CH were discovered, adding to the molecular genetic spectrum. When we compare the overall variant detection frequency, the selection criterion for genetic analysis based on the current guidelines is quite rational, considering the benefits and costs, on the other hand, present in new genes awaiting discovery. Also, TSHR mutations are likely to be common and may account for more than 5% of thyroid dysgenesis cases if we include nonfamilial thyroid dysgenesis.
Collapse
Affiliation(s)
- Erdal Kurnaz
- Department of Pediatric Endocrinology, Etlik City Hospital, University of Health Sciences, Ankara, Turkey
| | - Ayberk Türkyılmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Oğuzhan Yaralı
- Department of Medical Genetics, Erzurum City Hospital, Erzurum, Turkey
| | - Ayşe Sena Dönmez
- Department of Pediatrics, Erzurum City Hospital, Erzurum, Turkey
| | - Atilla Çayır
- Department of Pediatric Endocrinology, Erzurum City Hospital, University of Health Sciences, Erzurum, Turkey
| |
Collapse
|
2
|
Shahzadi Z, Yousaf Z, Anjum I, Bilal M, Yasin H, Aftab A, Booker A, Ullah R, Bari A. Network pharmacology and molecular docking: combined computational approaches to explore the antihypertensive potential of Fabaceae species. BIORESOUR BIOPROCESS 2024; 11:53. [PMID: 38767701 PMCID: PMC11106056 DOI: 10.1186/s40643-024-00764-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Hypertension is a major global public health issue, affecting quarter of adults worldwide. Numerous synthetic drugs are available for treating hypertension; however, they often come with a higher risk of side effects and long-term therapy. Modern formulations with active phytoconstituents are gaining popularity, addressing some of these issues. This study aims to discover novel antihypertensive compounds in Cassia fistula, Senna alexandrina, and Cassia occidentalis from family Fabaceae and understand their interaction mechanism with hypertension targeted genes, using network pharmacology and molecular docking. Total 414 compounds were identified; initial screening was conducted based on their pharmacokinetic and ADMET properties, with a particular emphasis on adherence to Lipinski's rules. 6 compounds, namely Germichrysone, Benzeneacetic acid, Flavan-3-ol, 5,7,3',4'-Tetrahydroxy-6, 8-dimethoxyflavon, Dihydrokaempferol, and Epiafzelechin, were identified as effective agents. Most of the compounds found non-toxic against various indicators with greater bioactivity score. 161 common targets were obtained against these compounds and hypertension followed by compound-target network construction and protein-protein interaction, which showed their role in diverse biological system. Top hub genes identified were TLR4, MMP9, MAPK14, AKT1, VEGFA and HSP90AA1 with their respective associates. Higher binding affinities was found with three compounds Dihydrokaempferol, Flavan-3-ol and Germichrysone, -7.1, -9.0 and -8.0 kcal/mol, respectively. The MD simulation results validate the structural flexibility of two complexes Flavan-MMP9 and Germich-TLR4 based on no. of hydrogen bonds, root mean square deviations and interaction energies. This study concluded that C. fistula (Dihydrokaempferol, Flavan-3-ol) and C. occidentalis (Germichrysone) have potential therapeutic active constituents to treat hypertension and in future novel drug formulation.
Collapse
Affiliation(s)
- Zainab Shahzadi
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Lahore, Pakistan.
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Muhammad Bilal
- Centers for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamna Yasin
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Arusa Aftab
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
- Research Group 'Pharmacognosy and Phytotherapy', UCL School of Pharmacy, Univ. London, 29 - 39 Brunswick Sq., London, WC1N 1AX, UK.
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy King, Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy King, Saud University, Riyadh, Saudi Arabia
| |
Collapse
|