1
|
Li ZY, Yang X, Wang JK, Yan XX, Liu F, Zuo YC. MFGE8 promotes adult hippocampal neurogenesis in rats following experimental subarachnoid hemorrhage via modifying the integrin β3/Akt signaling pathway. Cell Death Discov 2024; 10:359. [PMID: 39128910 PMCID: PMC11317487 DOI: 10.1038/s41420-024-02132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the most severe type of cerebral strokes, which can cause multiple cellular changes in the brain leading to neuronal injury and neurological deficits. Specifically, SAH can impair adult neurogenesis in the hippocampal dentate gyrus, thus may affecting poststroke neurological and cognitive recovery. Here, we identified a non-canonical role of milk fat globule epidermal growth factor 8 (MFGE8) in rat brain after experimental SAH, involving a stimulation on adult hippocampal neurogenesis(AHN). Experimental SAH was induced in Sprague-Dawley rats via endovascular perforation, with the in vivo effect of MFGE8 evaluated via the application of recombinant human MFGE8 (rhMFGE8) along with pharmacological interventions, as determined by hemorrhagic grading, neurobehavioral test, and histological and biochemical analyses of neurogenesis related markers. Results: Levels of the endogenous hippocampal MFGE8 protein, integrin-β3 and protein kinase B (p-Akt) were elevated in the SAH relative to control groups, while that of hippocalcin (HPCA) and cyclin D1 showed the opposite change. Intraventricular rhMGFE8 infusion reversed the decrease in doublecortin (DCX) immature neurons in the DG after SAH, along with improved the short/long term neurobehavioral scores. rhMGFE8 treatment elevated the levels of phosphatidylinositol 3-kinase (PI3K), p-Akt, mammalian target of rapamycin (mTOR), CyclinD1, HPCA and DCX in hippocampal lysates, but not that of integrin β3 and Akt, at 24 hr after SAH. Treatment of integrin β3 siRNA, the PI3K selective inhibitor ly294002 or Akt selective inhibitor MK2206 abolished the effects of rhMGFE8 after SAH. In conclusion, MFGE8 is upregulated in the hippocampus in adult rats with reduced granule cell genesis. rhMFGE8 administration can rescue this impaired adult neurogenesis and improve neurobehavioral recovery. Mechanistically, the effect of MFGE8 on hippocampal adult neurogenesis is mediated by the activation of integrin β3/Akt pathway. These findings suggest that exogenous MFGE8 may be of potential therapeutic value in SAH management. Graphical abstract and proposed pathway of rhMFGE8 administration attenuate hippocampal injury by improving neurogenesis in SAH models. SAH caused hippocampal injury and neurogenesis interruption. Administered exogenous MFGE8, recombinant human MFGE8(rhMFGE8), could ameliorate hippocampal injury and improve neurological functions after SAH. Mechanistically, MFGE8 bind to the receptor integrin β3, which activated the PI3K/Akt pathway to increase the mTOR expression, and further promote the expression of cyclin D1, HPCA and DCX. rhMFGE8 could attenuated hippocampal injury by improving neurogenesis after SAH, however, know down integrin β3 or pharmacological inhibited PI3K/Akt by ly294002 or MK2206 reversed the neuro-protective effect of rhMFGE8.
Collapse
Affiliation(s)
- Zhen-Yan Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xian Yang
- Department of Dermatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Ji-Kai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Villard J, Chareyron LJ, Piguet O, Lambercy P, Lonchampt G, Lavenex PB, Amaral DG, Lavenex P. Structural plasticity in the entorhinal and perirhinal cortices following hippocampal lesions in rhesus monkeys. Hippocampus 2023; 33:1094-1112. [PMID: 37337377 PMCID: PMC10543642 DOI: 10.1002/hipo.23567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Immature neurons expressing the Bcl2 protein are present in various regions of the mammalian brain, including the amygdala and the entorhinal and perirhinal cortices. Their functional role is unknown but we have previously shown that neonatal and adult hippocampal lesions increase their differentiation in the monkey amygdala. Here, we assessed whether hippocampal lesions similarly affect immature neurons in the entorhinal and perirhinal cortices. Since Bcl2-positive cells were found mainly in areas Eo, Er, and Elr of the entorhinal cortex and in layer II of the perirhinal cortex, we also used Nissl-stained sections to determine the number and soma size of immature and mature neurons in layer III of area Er and layer II of area 36 of the perirhinal cortex. We found different structural changes in these regions following hippocampal lesions, which were influenced by the time of the lesion. In neonate-lesioned monkeys, the number of immature neurons in the entorhinal and perirhinal cortices was generally higher than in controls. The number of mature neurons was also higher in layer III of area Er of neonate-lesioned monkeys but no differences were found in layer II of area 36. In adult-lesioned monkeys, the number of immature neurons in the entorhinal cortex was lower than in controls but did not differ from controls in the perirhinal cortex. The number of mature neurons in layer III of area Er did not differ from controls, but the number of small, mature neurons in layer II of area 36 was lower than in controls. In sum, hippocampal lesions impacted populations of mature and immature neurons in discrete regions and layers of the entorhinal and perirhinal cortices, which are interconnected with the amygdala and provide major cortical inputs to the hippocampus. These structural changes may contribute to some functional recovery following hippocampal injury in an age-dependent manner.
Collapse
Affiliation(s)
- Justine Villard
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Loïc J. Chareyron
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Olivia Piguet
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Pauline Lambercy
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Gianni Lonchampt
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
- Faculty of Psychology, UniDistance Suisse, Switzerland
| | - David G. Amaral
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California at Davis
- California National Primate Research Center, University of California at Davis
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| |
Collapse
|
3
|
Li YN, Hu DD, Cai XL, Wang Y, Yang C, Jiang J, Zhang QL, Tu T, Wang XS, Wang H, Tu E, Wang XP, Pan A, Yan XX, Wan L. Doublecortin-Expressing Neurons in Human Cerebral Cortex Layer II and Amygdala from Infancy to 100 Years Old. Mol Neurobiol 2023; 60:3464-3485. [PMID: 36879137 DOI: 10.1007/s12035-023-03261-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/04/2023] [Indexed: 03/08/2023]
Abstract
A cohort of morphologically heterogenous doublecortin immunoreactive (DCX +) "immature neurons" has been identified in the cerebral cortex largely around layer II and the amygdala largely in the paralaminar nucleus (PLN) among various mammals. To gain a wide spatiotemporal view on these neurons in humans, we examined layer II and amygdalar DCX + neurons in the brains of infants to 100-year-old individuals. Layer II DCX + neurons occurred throughout the cerebrum in the infants/toddlers, mainly in the temporal lobe in the adolescents and adults, and only in the temporal cortex surrounding the amygdala in the elderly. Amygdalar DCX + neurons occurred in all age groups, localized primarily to the PLN, and reduced in number with age. The small-sized DCX + neurons were unipolar or bipolar, and formed migratory chains extending tangentially, obliquely, and inwardly in layers I-III in the cortex, and from the PLN to other nuclei in the amygdala. Morphologically mature-looking neurons had a relatively larger soma and weaker DCX reactivity. In contrast to the above, DCX + neurons in the hippocampal dentate gyrus were only detected in the infant cases in parallelly processed cerebral sections. The present study reveals a broader regional distribution of the cortical layer II DCX + neurons than previously documented in human cerebrum, especially during childhood and adolescence, while both layer II and amygdalar DCX + neurons persist in the temporal lobe lifelong. Layer II and amygdalar DCX + neurons may serve as an essential immature neuronal system to support functional network plasticity in human cerebrum in an age/region-dependent manner.
Collapse
Affiliation(s)
- Ya-Nan Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Dan-Dan Hu
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Sheng Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, 410007, Hunan, China
| | - Xiao-Ping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410031, Hunan, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China.
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Wan L, Huang RJ, Yang C, Ai JQ, Zhou Q, Gong JE, Li J, Zhang Y, Luo ZH, Tu E, Pan A, Xiao B, Yan XX. Extracranial 125I Seed Implantation Allows Non-invasive Stereotactic Radioablation of Hippocampal Adult Neurogenesis in Guinea Pigs. Front Neurosci 2021; 15:756658. [PMID: 34916901 PMCID: PMC8670234 DOI: 10.3389/fnins.2021.756658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) is important for multiple cognitive functions. We sort to establish a minimal or non-invasive radiation approach to ablate AHN using guinea pigs as an animal model. 125I seeds with different radiation dosages (1.0, 0.8, 0.6, 0.3 mCi) were implanted unilaterally between the scalp and skull above the temporal lobe for 30 and 60 days, with the radiation effect on proliferating cells, immature neurons, and mature neurons in the hippocampal formation determined by assessment of immunolabeled (+) cells for Ki67, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), as well as Nissl stain cells. Spatially, the ablation effect of radiation occurred across the entire rostrocaudal and largely the dorsoventral dimensions of the hippocampus, evidenced by a loss of DCX+ cells in the subgranular zone (SGZ) of dentate gyrus (DG) in the ipsilateral relative to contralateral hemispheres in reference to the 125I seed implant. Quantitatively, Ki67+ and DCX+ cells at the SGZ in the dorsal hippocampus were reduced in all dosage groups at the two surviving time points, more significant in the ipsilateral than contralateral sides, relative to sham controls. NeuN+ neurons and Nissl-stained cells were reduced in the granule cell layer of DG and the stratum pyramidale of CA1 in the groups with 0.6-mCi radiation for 60 days and 1.0 mCi for 30 and 60 days. Minimal cranial trauma was observed in the groups with 0.3– 1.0-mCi radiation at 60 days. These results suggest that extracranial radiation with 125I seed implantation can be used to deplete HAN in a radioactivity-, duration-, and space-controllable manner, with a “non-invasive” stereotactic ablation achievable by using 125I seeds with relatively low radioactivity dosages.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qian Zhou
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiao-E Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Zhang
- Department of Anesthesiology, The 2nd Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
5
|
Ai JQ, Luo R, Tu T, Yang C, Jiang J, Zhang B, Bi R, Tu E, Yao YG, Yan XX. Doublecortin-Expressing Neurons in Chinese Tree Shrew Forebrain Exhibit Mixed Rodent and Primate-Like Topographic Characteristics. Front Neuroanat 2021; 15:727883. [PMID: 34602987 PMCID: PMC8481370 DOI: 10.3389/fnana.2021.727883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Doublecortin (DCX) is transiently expressed in new-born neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) related to adult neurogenesis in the olfactory bulb (OB) and hippocampal formation. DCX immunoreactive (DCX+) immature neurons also occur in the cerebral cortex primarily over layer II and the amygdala around the paralaminar nucleus (PLN) in various mammals, with interspecies differences pointing to phylogenic variation. The tree shrews (Tupaia belangeri) are phylogenetically closer to primates than to rodents. Little is known about DCX+ neurons in the brain of this species. In the present study, we characterized DCX immunoreactivity (IR) in the forebrain of Chinese tree shrews aged from 2 months- to 6 years-old (n = 18). DCX+ cells were present in the OB, SVZ, SGZ, the piriform cortex over layer II, and the amygdala around the PLN. The numerical densities of DCX+ neurons were reduced in all above neuroanatomical regions with age, particularly dramatic in the DG in the 5–6 years-old animals. Thus, DCX+ neurons are present in the two established neurogenic sites (SVZ and SGZ) in the Chinese tree shrew as seen in other mammals. DCX+ cortical neurons in this animal exhibit a topographic pattern comparable to that in mice and rats, while these immature neurons are also present in the amygdala, concentrating around the PLN as seen in primates and some nonprimate mammals.
Collapse
Affiliation(s)
- Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Bo Zhang
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,CSA Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
6
|
van Groen T, Kadish I, Popović N, Caballero Bleda M, Baño-Otalora B, Rol MA, Madrid JA, Popović M. Widespread Doublecortin Expression in the Cerebral Cortex of the Octodon degus. Front Neuroanat 2021; 15:656882. [PMID: 33994960 PMCID: PMC8116662 DOI: 10.3389/fnana.2021.656882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that in adulthood rodents show newly born neurons in the subgranular layer (SGL) of the dentate gyrus (DG), and in the subventricular zone (SVZ). The neurons generated in the SVZ migrate through the rostral migratory stream (RMS) to the olfactory bulb. One of the markers of newly generated neurons is doublecortin (DCX). The degu similarly shows significant numbers of DCX-labeled neurons in the SGL, SVZ, and RMS. Further, most of the nuclei of these DCX-expressing neurons are also labeled by proliferating nuclear antigen (PCNA) and Ki67. Finally, whereas in rats and mice DCX-labeled neurons are predominantly present in the SGL and SVZ, with only a few DCX neurons present in piriform cortex, the degu also shows significant numbers of DCX expressing neurons in areas outside of SVZ, DG, and PC. Many areas of neocortex in degu demonstrate DCX-labeled neurons in layer II, and most of these neurons are found in the limbic cortices. The DCX-labeled cells do not stain with NeuN, indicating they are immature neurons.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Inga Kadish
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Natalija Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - María Caballero Bleda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| | - Beatriz Baño-Otalora
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - María Angeles Rol
- Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain.,Chronobiology Laboratory, Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Juan Antonio Madrid
- Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain.,Chronobiology Laboratory, Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,CEIR Campus Mare Nostrum (CMN), University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Static Magnetic Field Exposure In Vivo Enhances the Generation of New Doublecortin-expressing Cells in the Sub-ventricular Zone and Neocortex of Adult Rats. Neuroscience 2019; 425:217-234. [PMID: 31809729 DOI: 10.1016/j.neuroscience.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/28/2023]
Abstract
Static magnetic field (SMF) is gaining interest as a potential technique for modulating CNS neuronal activity. Previous studies have shown a pro-neurogenic effect of short periods of extremely low frequency pulsatile magnetic fields (PMF) in vivo and pro-survival effect of low intensity SMF in cultured neurons in vitro, but little is known about the in vivo effects of low to moderate intensity SMF on brain functions. We investigated the effect of continuously-applied SMF on subventricular zone (SVZ) neurogenesis and immature doublecortin (DCX)-expressing cells in the neocortex of young adult rats and in primary cultures of cortical neurons in vitro. A small (3 mm diameter) magnetic disc was implanted on the skull of rats at bregma, producing an average field strength of 4.3 mT at SVZ and 12.9 mT at inner neocortex. Levels of proliferation of SVZ stem cells were determined by 5-ethynyl-2'-deoxyuridine (EdU) labelling, and early neuronal phenotype development was determined by expression of doublecortin (DCX). To determine the effect of SMF on neurogenesis in vitro, permanent magnets were placed beneath the culture dishes. We found that low intensity SMF exposure enhances cell proliferation in SVZ and new DCX-expressing cells in neocortical regions of young adult rats. In primary cortical neuronal cultures, SMF exposure increased the expression of newly generated cells co-labelled with EdU and DCX or the mature neuronal marker NeuN, while activating a set of pro neuronal bHLH genes. SMF exposure has potential for treatment of neurodegenerative disease and conditions such as CNS trauma and affective disorders in which increased neurogenesis is desirable.
Collapse
|
8
|
Rotheneichner P, Belles M, Benedetti B, König R, Dannehl D, Kreutzer C, Zaunmair P, Engelhardt M, Aigner L, Nacher J, Couillard-Despres S. Cellular Plasticity in the Adult Murine Piriform Cortex: Continuous Maturation of Dormant Precursors Into Excitatory Neurons. Cereb Cortex 2019; 28:2610-2621. [PMID: 29688272 PMCID: PMC5998952 DOI: 10.1093/cercor/bhy087] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 11/14/2022] Open
Abstract
Neurogenesis in the healthy adult murine brain is based on proliferation and integration of stem/progenitor cells and is thought to be restricted to 2 neurogenic niches: the subventricular zone and the dentate gyrus. Intriguingly, cells expressing the immature neuronal marker doublecortin (DCX) and the polysialylated-neural cell adhesion molecule reside in layer II of the piriform cortex. Apparently, these cells progressively disappear along the course of ageing, while their fate and function remain unclear. Using DCX-CreERT2/Flox-EGFP transgenic mice, we demonstrate that these immature neurons located in the murine piriform cortex do not vanish in the course of aging, but progressively resume their maturation into glutamatergic (TBR1+, CaMKII+) neurons. We provide evidence for a putative functional integration of these newly differentiated neurons as indicated by the increase in perisomatic puncta expressing synaptic markers, the development of complex apical dendrites decorated with numerous spines and the appearance of an axonal initial segment. Since immature neurons found in layer II of the piriform cortex are generated prenatally and devoid of proliferative capacity in the postnatal cortex, the gradual maturation and integration of these cells outside of the canonical neurogenic niches implies that they represent a valuable, but nonrenewable reservoir for cortical plasticity.
Collapse
Affiliation(s)
- Peter Rotheneichner
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maria Belles
- Neurobiology Unit, BIOTECMED, Universitat de València, Spanish Network for Mental Health Research CIBERSAM, INCLIVA, Valencia, Spain
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Richard König
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Dominik Dannehl
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Institute of Neuroanatomy, Center for Biomedicine and Medical Technology (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maren Engelhardt
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Juan Nacher
- Neurobiology Unit, BIOTECMED, Universitat de València, Spanish Network for Mental Health Research CIBERSAM, INCLIVA, Valencia, Spain
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity? ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11515-016-1403-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Zhang XM, Cai Y, Wang F, Wu J, Mo L, Zhang F, Patrylo PR, Pan A, Ma C, Fu J, Yan XX. Sp8 expression in putative neural progenitor cells in guinea pig and human cerebrum. Dev Neurobiol 2015; 76:939-55. [PMID: 26585436 DOI: 10.1002/dneu.22367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022]
Abstract
Neural stem/progenitor cells have been characterized at neurogenic sites in adult mammalian brain with various molecular markers. Here it has been demonstrated that Sp8, a transcription factor typically expressed among mature GABAergic interneurons, also labels putative neural precursors in adult guinea pig and human cerebrum. In guinea pigs, Sp8 immunoreactive (Sp8+) cells were localized largely in the superficial layers of the cortex including layer I, as well as the subventricular zone (SVZ) and subgranular zone (SGZ). Sp8+ cells at the SGZ showed little colocalization with mature and immature neuronal markers, but co-expressed neural stem cell markers including Sox2. Some layer I Sp8+ cells also co-expressed Sox2. The amount of Sp8+ cells in the dentate gyrus was maintained 2 weeks after X-ray irradiation, while that of doublecortin (DCX+) cells was greatly reduced. Mild ischemic insult caused a transient increase of Sp8+ cells in the SGZ and layer I, with the subgranular Sp8+ cells exhibited an increased colabeling for the mitotic marker Ki67 and pulse-chased bromodeoxyuridine (BrdU). Sp8+ cells in the dentate gyrus showed an age-related decline in guinea pigs, in parallel with the loss of DCX+ cells in the same region. In adult humans, Sp8+ cells exhibited comparable morphological features as seen in guinea pigs, with those at the SGZ and some in cortical layer I co-expressed Sox2. Together, these results suggested that Sp8 may label putative neural progenitors in guinea pig and human cerebrum, with the labeled cells in the SGZ appeared largely not mitotically active under normal conditions. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 939-955, 2016.
Collapse
Affiliation(s)
- Xue-Mei Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China
| | - Fang Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Wu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Mo
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peter R Patrylo
- Southern Illinois University School of Medicine, Center for Integrated Research in Cognitive and Neural Sciences, Carbondale, Illinois
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China
| | - Chao Ma
- Department of Human Anatomy, Histology & Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| |
Collapse
|
11
|
Yang Y, Xie MX, Li JM, Hu X, Patrylo PR, Luo XG, Cai Y, Li Z, Yan XX. Prenatal genesis of layer II doublecortin expressing neurons in neonatal and young adult guinea pig cerebral cortex. Front Neuroanat 2015; 9:109. [PMID: 26321922 PMCID: PMC4530311 DOI: 10.3389/fnana.2015.00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022] Open
Abstract
Cells expressing doublecortin (DCX+) occur at cortical layer II, predominantly over the paleocortex in mice/rats, but also across the neocortex among larger mammals. Here, we explored the time of origin of these cells in neonatal and 2-month-old guinea pigs following prenatal BrdU pulse-chasing. In the neocortex, BrdU+ cells birth-dated at embryonic day 21 (E21), E28, and E35 laminated over the cortical plate with an inside-out order. In the piriform cortex, cells generated at E21 and E28 occurred with a greater density in layer II than III. Many cells were generated at later time points until birth, occurring in the cortex without a laminar preference. DCX+ cells in the neocortex and piriform cortex partially co-colocalized with BrdU (up to 7.5%) in the newborns after pulse-chasing from E21 to E49 and in the 2 month-old animals after pulse-chasing from E28 to E60/61, with higher rates seen among the E21-E35 groups. Together, layer II DCX+ cells in neonatal and young adult guinea pigs may be produced over a wide prenatal time window, but mainly during the early phases of corticogenesis. Our data also show an earlier establishment of the basic lamination in the piriform relative to neocortical areas in guinea pigs.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine Changsha, China ; Department of Nursing in Internal Medicine, Xiangtan Vocational and Technical College Xiangtan, China
| | - Mi-Xin Xie
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine Changsha, China
| | - Jian-Ming Li
- Neuroscience Research Center, Changsha Medical University Changsha, China
| | - Xia Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine Changsha, China
| | - Peter R Patrylo
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University School of Medicine Carbondale, IL, USA
| | - Xue-Gang Luo
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine Changsha, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine Changsha, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine Changsha, China
| |
Collapse
|
12
|
Liu C, Yang Y, Hu X, Li JM, Zhang XM, Cai Y, Li Z, Yan XX. Ontogenesis of NADPH-diaphorase positive neurons in guinea pig neocortex. Front Neuroanat 2015; 9:11. [PMID: 25762900 PMCID: PMC4329812 DOI: 10.3389/fnana.2015.00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/23/2015] [Indexed: 01/29/2023] Open
Abstract
In mammalian cerebrum there exist two distinct types of interneurons expressing nitric oxide synthase (NOS). Type I neurons are large in size and exhibit heavy nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemical reaction, while type II cells are small with light NADPH-d reactivity. The time of origin of these cortical neurons relative to corticogenesis remains largely unclear among mammals. Here we explored this issue in guinea pigs using cell birth-dating and double-labeling methods. Bromodeoxyuridine (BrdU) pulse-chasing (2 doses at 50 mg/kg, 12 h apart) was given to time-pregnant mothers, followed by quantification of NADPH-d/BrdU colocalization in the parietal and temporal neocortex in offspring at postnatal day 0 (P0), P30 and P60. Type I neurons were partially colabeled with BrdU at P0, P30 and P60 following pulse-chasing at embryonic day 21 (E21), E28 and E35, varied from 2–11.3% of total population of these neurons for the three time groups. Type II neurons were partially colabeled for BrdU following pulse-chasing at E21, E28, E35 and E42 at P0 (8.6%–16.5% of total population for individual time groups). At P60, type II neurons were found to co-express BrdU (4.8–11.3% of total population for individual time groups) following pulse-chasing at E21, E28, E35, E42, E49, E56 and E60/61. These results indicate that in guinea pigs type I neurons are generated during early corticogenesis, whereas type II cells are produced over a wide prenatal time window persisting until birth. The data also suggest that type II nitrinergic neurons may undergo a period of development/differentiation, for over 1 month, before being NADPH-d reactive.
Collapse
Affiliation(s)
- Chao Liu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science Changsha, China ; Department of Neurology, The First Hospital of Changsha Changsha, China
| | - Yan Yang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science Changsha, China ; School of Nursing, Xiangtan Vocational and Technical College Xiangtan, China
| | - Xia Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science Changsha, China
| | - Jian-Ming Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science Changsha, China
| | - Xue-Mei Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University Harbin, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science Changsha, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science Changsha, China
| |
Collapse
|
13
|
Fan C, Zhang M, Shang L, Cynthia NA, Li Z, Yang Z, Chen D, Huang J, Xiong K. Short-term environmental enrichment exposure induces proliferation and maturation of doublecortin-positive cells in the prefrontal cortex. Neural Regen Res 2014; 9:318-28. [PMID: 25206818 PMCID: PMC4146142 DOI: 10.4103/1673-5374.128231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2013] [Indexed: 11/04/2022] Open
Abstract
Previous studies have demonstrated that doublecortin-positive immature neurons exist predominantly in the superficial layer of the cerebral cortex of adult mammals such as guinea pigs, and these neurons exhibit very weak properties of self-proliferation during adulthood under physiological conditions. To verify whether environmental enrichment has an impact on the proliferation and maturation of these immature neurons in the prefrontal cortex of adult guinea pigs, healthy adult guinea pigs were subjected to short-term environmental enrichment. Animals were allowed to play with various cognitive and physical stimulating objects over a period of 2 weeks, twice per day, for 60 minutes each. Immunofluorescence staining results indicated that the number of doublecortin-positive cells in layer II of the prefrontal cortex was significantly increased after short-term environmental enrichment exposure. In addition, these doublecortin-positive cells co-expressed 5-bromo-2-deoxyuridine (a marker of cell proliferation), c-Fos (a marker of cell viability) and NeuN (a marker of mature neurons). Experimental findings showed that short-term environmental enrichment can induce proliferation, activation and maturation of doublecortin-positive cells in layer II of the prefrontal cortex of adult guinea pigs.
Collapse
Affiliation(s)
- Chunling Fan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| | - Mengqi Zhang
- Grade 2006, Eight-year Medicine Doctor Program, Central South University Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Lei Shang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| | - Ngobe Akume Cynthia
- Grade 2011, Six-year Medicine Program of International Student, Central South University Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Zhi Li
- Grade 2008, Eight-year Medicine Doctor Program, Central South University Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Zhenyu Yang
- Grade 2008, Eight-year Medicine Doctor Program, Central South University Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| |
Collapse
|
14
|
He X, Zhang XM, Wu J, Fu J, Mou L, Lu DH, Cai Y, Luo XG, Pan A, Yan XX. Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex. Neuroscience 2013; 259:101-12. [PMID: 24316472 DOI: 10.1016/j.neuroscience.2013.11.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Immature neurons expressing doublecortin (DCX+) are present around cortical layer II in various mammals including guinea pigs and humans, especially enriched in the paleocortex. However, little is known whether and how functional experience affects the development of this population of neurons. We attempted to explore a modulation by experience to layer II DCX+ cells in the primary olfactory cortex in postnatal and adult guinea pigs. Neonatal and 1-year-old guinea pigs were subjected to unilateral naris-occlusion, followed 1 and 2months later by morphometry of DCX+ cells in the piriform cortex. DCX+ somata and processes were reduced in the deprived relative to the non-deprived piriform cortex in both age groups at the two surviving time points. The number of DCX+ cells was decreased in the deprived side relative to internal control at 1 and 2months in the youths and at 2months in the adults post-occlusion. The mean somal area of DCX+ cells showed a trend of decrease in the deprived side relative to the internal control in the youths. In addition, DCX+ cells in the deprived side exhibited a lower frequency of colocalization with the neuron-specific nuclear antigen (NeuN) relative to counterparts. These results suggest that normal olfactory experience is required for the maintenance and development of DCX+ immature neurons in postnatal and adult guinea pig piriform cortex.
Collapse
Affiliation(s)
- X He
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - X-M Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - J Wu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - J Fu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - L Mou
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China; Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - D-H Lu
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Y Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - X-G Luo
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - A Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - X-X Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China.
| |
Collapse
|
15
|
Pan A, Li M, Gao JY, Xue ZQ, Li Z, Yuan XY, Luo DW, Luo XG, Yan XX. Experimental epidural hematoma causes cerebral infarction and activates neocortical glial and neuronal genesis in adult guinea pigs. J Neurosci Res 2012; 91:249-61. [DOI: 10.1002/jnr.23148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/26/2012] [Accepted: 09/02/2012] [Indexed: 12/16/2022]
|
16
|
Chronic lead exposure reduces doublecortin-expressing immature neurons in young adult guinea pig cerebral cortex. BMC Neurosci 2012; 13:82. [PMID: 22812564 PMCID: PMC3444321 DOI: 10.1186/1471-2202-13-82] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 07/06/2012] [Indexed: 01/08/2023] Open
Abstract
Background Chronic lead (Pb) poisoning remains an environmental risk especially for the pediatric population, and it may affect brain development. Immature neurons expressing doublecortin (DCX+) exist around cortical layer II in various mammals, including adult guinea pigs and humans. Using young adult guinea pigs as an experimental model, the present study explored if chronic Pb exposure affects cortical DCX + immature neurons and those around the subventricular and subgranular zones (SVZ, SGZ). Results Two month-old guinea pigs were treated with 0.2% lead acetate in drinking water for 2, 4 and 6 months. Blood Pb levels in these animals reached 10.27 ± 0.62, 16.25 ± 0.78 and 19.03 ± 0.86 μg/dL at the above time points, respectively, relative to ~3 μg/dL in vehicle controls. The density of DCX + neurons was significantly reduced around cortical layer II, SVZ and SGZ in Pb-treated animals surviving 4 and 6 months relative to controls. Bromodeoxyuridine (BrdU) pulse-chasing studies failed to find cellular colocalization of this DNA synthesis indicator in DCX + cells around layer II in Pb-treated and control animals. These cortical immature neurons were not found to coexist with active caspase-3 or Fluoro-Jade C labeling. Conclusion Chronic Pb exposure can lead to significant reduction in the number of the immature neurons around cortical layer II and in the conventional neurogenic sites in young adult guinea pigs. No direct evidence could be identified to link the reduced cortical DCX expression with alteration in local neurogenesis or neuronal death.
Collapse
|
17
|
Bonfanti L, Nacher J. New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 2012; 98:1-15. [PMID: 22609484 DOI: 10.1016/j.pneurobio.2012.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/25/2012] [Accepted: 05/08/2012] [Indexed: 11/20/2022]
Abstract
The mammalian central nervous system, due to its interaction with the environment, must be endowed with plasticity. Conversely, the nervous tissue must be substantially static to ensure connectional invariability. Structural plasticity can be viewed as a compromise between these requirements. In adult mammals, brain structural plasticity is strongly reduced with respect to other animal groups in the phylogenetic tree. It persists under different forms, which mainly consist of remodeling of neuronal shape and connectivity, and, to a lesser extent, the production of new neurons. Adult neurogenesis is mainly restricted within two neurogenic niches, yet some gliogenic and neurogenic processes also occur in the so-called non-neurogenic tissue, starting from parenchymal progenitors. In this review we focus on a population of immature, non-newly generated neurons in layer II of the cerebral cortex, which were previously thought to be newly generated since they heavily express the polysialylated form of the neural cell adhesion molecule and doublecortin. These unusual neurons exhibit characteristics defining an additional type of structural plasticity, different from either synaptic plasticity or adult neurogenesis. Evidences concerning their morphology, antigenic features, ultrastructure, phenotype, origin, fate, and reaction to different kind of stimulations are gathered and analyzed. Their possible role is discussed in the context of an enriched complexity and heterogeneity of mammalian brain structural plasticity.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano (TO), and Department of Veterinary Morphophysiology, University of Turin, Turin, Italy.
| | | |
Collapse
|
18
|
Yoo DY, Yoo KY, Choi JW, Kim W, Lee CH, Choi JH, Park JH, Won MH, Hwang IK. Time course of postnatal distribution of doublecortin immunoreactive developing/maturing neurons in the somatosensory cortex and hippocampal CA1 region of C57BL/6 mice. Cell Mol Neurobiol 2011; 31:729-36. [PMID: 21360195 DOI: 10.1007/s10571-011-9670-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/18/2011] [Indexed: 11/25/2022]
Abstract
In this study, we observed neuroblast differentiation in the somatosensory cortex (SSC) and hippocampal CA1 region (CA1), which is vulnerable to oxidative stress, of the mouse at various early postnatal days (P) 1, 7, 14, and 21 using doublecortin (DCX, a marker for neuroblasts). Cresyl violet and NeuN (Neuronal Nuclei) staining showed development of layers as well as neurons in the SSC and CA1. At P1, DCX-positive neuroblasts expressed strong DCX immunoreactivity in both the SSC and CA1. Thereafter, DCX immunoreactivity was decreased with time. At P7, many DCX-immunoreactive neuroblasts were well detected in the SSC and CA1. At P14, some DCX-positive neuroblasts were found in the SSC and CA1: The immunoreactivity was weak. At P21, DCX immunoreactivity was hardly found in cells in the SSC and CA1. These results suggest that DCX-positive neuroblasts were significantly decreased in the mouse SSC and CA1 from P14.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Varea E, Belles M, Vidueira S, Blasco-Ibáñez JM, Crespo C, Pastor AM, Nacher J. PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II. Front Neurosci 2011; 5:17. [PMID: 21415912 PMCID: PMC3042688 DOI: 10.3389/fnins.2011.00017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 01/31/2011] [Indexed: 12/17/2022] Open
Abstract
Neuronal production persists during adulthood in the dentate gyrus and the olfactory bulb, where substantial numbers of immature neurons can be found. These cells can also be found in the paleocortex layer II of adult rodents, but in this case most of them have been generated during embryogenesis. Recent reports have described the presence of similar cells, with a wider distribution, in the cerebral cortex of adult cats and primates and have suggested that they may develop into interneurons. The objective of this study is to verify this hypothesis and to explore the origin of these immature neurons in adult cats. We have analyzed their distribution using immunohistochemical analysis of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) and their phenotype using markers of mature neurons and different interneuronal populations. Additionally, we have explored the origin of these cells administering 5′bromodeoxyuridine (5′BrdU) during adulthood. Immature neurons were widely dispersed in the cerebral cortex layers II and upper III, being specially abundant in the piriform and entorhinal cortices, in the ventral portions of the frontal and temporoparietal lobes, but relatively scarce in dorsal regions, such as the primary visual areas. Only a small fraction of PSA-NCAM expressing cells in layer II expressed the mature neuronal marker NeuN and virtually none of them expressed calcium binding proteins or neuropeptides. By contrast, most, if not all of these cells expressed the transcription factor Tbr-1, specifically expressed by pallium-derived principal neurons, but not CAMKII, a marker of mature excitatory neurons. Absence of PSA-NCAM/5′BrdU colocalization suggests that, as in rats, these cells were not generated during adulthood. Together, these results indicate that immature neurons in the adult cat cerebral cortex layer II are not recently generated and that they may differentiate into principal neurons.
Collapse
Affiliation(s)
- Emilio Varea
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Department of Cell Biology, Universitat de València València, Spain
| | | | | | | | | | | | | |
Collapse
|