1
|
Dalal S, Ramirez-Gomez J, Sharma B, Devara D, Kumar S. MicroRNAs and synapse turnover in Alzheimer's disease. Ageing Res Rev 2024; 99:102377. [PMID: 38871301 DOI: 10.1016/j.arr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and cognitive decline. Healthy synapses are the crucial for normal brain function, memory restoration and other neurophysiological function. Synapse loss and synaptic dysfunction are two primary events that occur during AD initiation. Synapse lifecycle and/or synapse turnover is divided into five key stages and several sub-stages such as synapse formation, synapse assembly, synapse maturation, synapse transmission and synapse termination. In normal state, the synapse turnover is regulated by various biological and molecular factors for a healthy neurotransmission. In AD, the different stages of synapse turnover are affected by AD-related toxic proteins. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and have been implicated in various neurological diseases, including AD. Deregulation of miRNAs modulate the synaptic proteins and affect the synapse turnover at different stages. In this review, we discussed the key milestones of synapse turnover and how they are affected in AD. Further, we discussed the involvement of miRNAs in synaptic turnover, focusing specifically on their role in AD pathogenesis. We also emphasized the regulatory mechanisms by which miRNAs modulate the synaptic turnover stages in AD. Current studies will help to understand the synaptic life-cycle and role of miRNAs in each stage that is deregulated in AD, further allowing for a better understanding of the pathogenesis of devastating disease.
Collapse
Affiliation(s)
- Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedicael Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
2
|
Kipper K, Mansour A, Pulk A. Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. J Mol Biol 2022; 434:167801. [PMID: 36038000 DOI: 10.1016/j.jmb.2022.167801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The polarized cell morphology of neurons dictates many neuronal processes, including the axodendridic transport of specific mRNAs and subsequent translation. mRNAs together with ribosomes and RNA-binding proteins form RNA granules that are targeted to axodendrites for localized translation in neurons. It has been established that localized protein synthesis in neurons is essential for long-term memory formation, synaptic plasticity, and neurodegeneration. We have used proteomics and electron microscopy to characterize neuronal RNA granules (nRNAg) isolated from rat brain tissues or human neuroblastoma. We show that ribosome containing RNA granules are morula-like structures when visualized by electron microscopy. Crosslinking-coupled mass-spectrometry identified potential G3BP2 binding site on the ribosome near the eIF3d-binding site on the 40S ribosomal subunit. We used cryo-EM to resolve the structure of the ribosome-component of nRNAg. The cryo-EM reveals that predominant particles in nRNAg are 80S ribosomes, resembling the pre-translocation state where tRNA's are in the hybrid A/P and P/E site. We also describe a new kind of principal motion of the ribosome, which we call the rocking motion.
Collapse
Affiliation(s)
- Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
3
|
Rozés-Salvador V, González-Billault C, Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front Cell Dev Biol 2020; 8:603794. [PMID: 33425908 PMCID: PMC7793921 DOI: 10.3389/fcell.2020.603794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
4
|
Goto T, Kasai N, Filip R, Sumitomo K, Nakashima H. Observation of intracellular protein localization area in a single neuron using gold nanoparticles with a scanning electron microscope. Micron 2019; 126:102740. [DOI: 10.1016/j.micron.2019.102740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 11/28/2022]
|
5
|
Atkins M, Gasmi L, Bercier V, Revenu C, Del Bene F, Hazan J, Fassier C. FIGNL1 associates with KIF1Bβ and BICD1 to restrict dynein transport velocity during axon navigation. J Cell Biol 2019; 218:3290-3306. [PMID: 31541015 PMCID: PMC6781435 DOI: 10.1083/jcb.201805128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Atkins et al. identify a new role for Fidgetin-like 1 in motor axon navigation via its regulation of bidirectional axonal transport. They show that Fidgetin-like 1 binds Kif1bβ and the opposed polarity-directed motor dynein/dynactin in a molecular complex and controls circuit wiring by reducing dynein velocity in developing motor axons. Neuronal connectivity relies on molecular motor-based axonal transport of diverse cargoes. Yet the precise players and regulatory mechanisms orchestrating such trafficking events remain largely unknown. We here report the ATPase Fignl1 as a novel regulator of bidirectional transport during axon navigation. Using a yeast two-hybrid screen and coimmunoprecipitation assays, we showed that Fignl1 binds the kinesin Kif1bβ and the dynein/dynactin adaptor Bicaudal D-1 (Bicd1) in a molecular complex including the dynactin subunit dynactin 1. Fignl1 colocalized with Kif1bβ and showed bidirectional mobility in zebrafish axons. Notably, Kif1bβ and Fignl1 loss of function similarly altered zebrafish motor axon pathfinding and increased dynein-based transport velocity of Rab3 vesicles in these navigating axons, pinpointing Fignl1/Kif1bβ as a dynein speed limiter complex. Accordingly, disrupting dynein/dynactin activity or Bicd1/Fignl1 interaction induced motor axon pathfinding defects characteristic of Fignl1 gain or loss of function, respectively. Finally, pharmacological inhibition of dynein activity partially rescued the axon pathfinding defects of Fignl1-depleted larvae. Together, our results identify Fignl1 as a key dynein regulator required for motor circuit wiring.
Collapse
Affiliation(s)
- Melody Atkins
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Valérie Bercier
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Filippo Del Bene
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Jamilé Hazan
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Coralie Fassier
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
6
|
Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol 2018; 78:898-925. [PMID: 29989351 DOI: 10.1002/dneu.22608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 02/02/2023]
Abstract
Injury to the brain and spinal cord has devastating consequences because adult central nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system (PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration over long distances. CNS axons have some regenerative capacity during development, but this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules have been well characterized, but less is known about the neuron-intrinsic mechanisms which prevent axon re-growth. Key signaling pathways and genetic/epigenetic factors have been identified which can enhance regenerative capacity, but the precise cellular mechanisms mediating their actions have not been characterized. Recent studies suggest that an important prerequisite for regeneration is an efficient supply of growth-promoting machinery to the axon; however, this appears to be lacking from non-regenerative axons in the adult CNS. In the first part of this review, we summarize the evidence linking axon transport to axon regeneration. We discuss the developmental decline in axon regeneration capacity in the CNS, and comment on how this is paralleled by a similar decline in the selective axonal transport of regeneration-associated receptors such as integrins and growth factor receptors. In the second part, we discuss the mechanisms regulating selective polarized transport within neurons, how these relate to the intrinsic control of axon regeneration, and whether they can be targeted to enhance regenerative capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Veselina Petrova
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| | - Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| |
Collapse
|
7
|
Subramanian BC, Moissoglu K, Parent CA. The LTB 4-BLT1 axis regulates the polarized trafficking of chemoattractant GPCRs during neutrophil chemotaxis. J Cell Sci 2018; 131:jcs.217422. [PMID: 30158177 DOI: 10.1242/jcs.217422] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023] Open
Abstract
Neutrophils sense and respond to diverse chemotactic cues through G-protein-coupled receptors (GPCRs). However, the precise trafficking dynamics of chemoattractant GPCRs during neutrophil activation and chemotaxis remain unclear. Here, by using small-molecule inhibitors and CRISPR-based knockouts, we establish that two primary chemoattractant GPCRs - formyl peptide receptor 1 (FPR1) and complement component 5a (C5a) receptor 1 (C5aR1) - internalize in a CDC42-actin-dependent manner. Through live-cell imaging, we demonstrate that, upon stimulation, FPR1 rapidly clusters and re-distributes along the plasma membrane to the trailing edge, where it internalizes and is directionally trafficked towards the front of migrating primary human neutrophils. In contrast to FPR1 and C5aR1, the leukotriene B4 (LTB4) receptor (BLT1, also known as LTB4R), which relays LTB4 signals in response to primary chemoattractants during neutrophil chemotaxis, fails to internalize upon physiological stimulation with LTB4, N-formyl-Met-Leu-Phe (fMLF) or C5a. Importantly, we report that blocking the LTB4-BLT1 axis or downstream myosin activation enhances the internalization of FPR1 and C5aR1, thus reducing downstream signaling and impairing chemotaxis to primary chemoattractants. The polarized trafficking of chemoattractant GPCRs and its regulation by the BLT1-mediated myosin activation therefore drives persistent chemotactic signaling in neutrophils.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA .,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Chang TY, Chen C, Lee M, Chang YC, Lu CH, Lu ST, Wang DY, Wang A, Guo CL, Cheng PL. Paxillin facilitates timely neurite initiation on soft-substrate environments by interacting with the endocytic machinery. eLife 2017; 6:31101. [PMID: 29271742 PMCID: PMC5768420 DOI: 10.7554/elife.31101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Neurite initiation is the first step in neuronal development and occurs spontaneously in soft tissue environments. Although the mechanisms regulating the morphology of migratory cells on rigid substrates in cell culture are widely known, how soft environments modulate neurite initiation remains elusive. Using hydrogel cultures, pharmacologic inhibition, and genetic approaches, we reveal that paxillin-linked endocytosis and adhesion are components of a bistable switch controlling neurite initiation in a substrate modulus-dependent manner. On soft substrates, most paxillin binds to endocytic factors and facilitates vesicle invagination, elevating neuritogenic Rac1 activity and expression of genes encoding the endocytic machinery. By contrast, on rigid substrates, cells develop extensive adhesions, increase RhoA activity and sequester paxillin from the endocytic machinery, thereby delaying neurite initiation. Our results highlight paxillin as a core molecule in substrate modulus-controlled morphogenesis and define a mechanism whereby neuronal cells respond to environments exhibiting varying mechanical properties.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Min Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Huan Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Tzu Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - De-Yao Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Davis, United States
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Post-endocytic sorting of Plexin-D1 controls signal transduction and development of axonal and vascular circuits. Nat Commun 2017; 8:14508. [PMID: 28224988 PMCID: PMC5322531 DOI: 10.1038/ncomms14508] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Local endocytic events involving receptors for axon guidance cues play a central role in controlling growth cone behaviour. Yet, little is known about the fate of internalized receptors, and whether the sorting events directing them to distinct endosomal pathways control guidance decisions. Here, we show that the receptor Plexin-D1 contains a sorting motif that interacts with the adaptor protein GIPC1 to facilitate transport to recycling endosomes. This sorting process promotes colocalization of Plexin-D1 with vesicular pools of active R-ras, leading to its inactivation. In the absence of interaction with GIPC1, missorting of Plexin-D1 results in loss of signalling activity. Consequently, Gipc1 mutant mice show specific defects in axonal projections, as well as vascular structures, that rely on Plexin-D1 signalling for their development. Thus, intracellular sorting steps that occur after receptor internalization by endocytosis provide a critical level of control of cellular responses to guidance signals. Molecular mechanisms controlling axonal growth cone behaviour are only partially understood. Here the authors reveal a role of an adaptor protein GIPC1 in Plexin-D1 receptor recycling, and show that this process is required for axon track formation and vascular patterning in mice.
Collapse
|
10
|
Takeuchi H, Higashiyama T. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 2016; 531:245-8. [DOI: 10.1038/nature17413] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/15/2016] [Indexed: 01/06/2023]
|
11
|
Membrane Trafficking in Neuronal Development: Ins and Outs of Neural Connectivity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:247-80. [PMID: 26940520 DOI: 10.1016/bs.ircmb.2015.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During development, neurons progress through rapid yet stereotypical shape changes to achieve proper neuronal connectivity. This morphological progression requires carefully orchestrated plasma membrane expansion, insertion of membrane components including receptors for extracellular cues into the plasma membrane and removal and trafficking of membrane materials and proteins to specific locations. This review outlines the cellular machinery of membrane trafficking that play an integral role in neuronal cell shape change and function from initial neurite formation to pathway navigation and synaptogenesis.
Collapse
|
12
|
Arias CI, Siri SO, Conde C. Involvement of SARA in Axon and Dendrite Growth. PLoS One 2015; 10:e0138792. [PMID: 26405814 PMCID: PMC4583221 DOI: 10.1371/journal.pone.0138792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
SARA (Smad Anchor for Receptor Activation) plays a crucial role in Rab5-mediated endocytosis in cell lines localizing to early endosomes where it regulates morphology and function. Here, we analyzed the role of SARA during neuronal development and tested whether it functions as a regulator of endocytic trafficking of selected axonal and membrane proteins. Suppression of SARA perturbs the appearance of juxtanuclear endocytic recycling compartments and the neurons show long axons with large growth cones. Furthermore, surface distribution of the cell adhesion molecule L1 in axons and the fusion of vesicles containing transferring receptor (TfR) in dendrites were increased in neurons where SARA was silenced. Conversely, SARA overexpression generated large early endosomes and reduced neurite outgrowth. Taken together, our findings suggest a significant contribution of SARA to key aspects of neuronal development, including neurite formation.
Collapse
Affiliation(s)
| | - Sebastián Omar Siri
- Laboratorio Neurobiología, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Cecilia Conde
- Laboratorio Neurobiología, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| |
Collapse
|
13
|
Piccini A, Perlini LE, Cancedda L, Benfenati F, Giovedì S. Phosphorylation by PKA and Cdk5 Mediates the Early Effects of Synapsin III in Neuronal Morphological Maturation. J Neurosci 2015; 35:13148-59. [PMID: 26400944 PMCID: PMC6605445 DOI: 10.1523/jneurosci.1379-15.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022] Open
Abstract
Synapsin III (SynIII) is a neuron-specific phosphoprotein that plays a unique role in neuronal development. SynIII is phosphorylated by cAMP-dependent protein kinase (PKA) at a highly conserved phosphorylation site and by cyclin-dependent kinase-5 (Cdk5) at a newly described site. Although SynIII is known to be involved in axon elongation in vitro, the role of its phosphorylation by PKA and Cdk5 in the modulation of this process is unknown. We expressed either wild-type (WT) or phosphorylation-site mutants of SynIII in primary SynIII knock-out (KO) mouse neurons at early stages of in vitro development. Whereas the neurite elongation phenotype of SynIII KO neurons was fully rescued by the expression of WT SynIII, the expression of nonphosphorylatable and pseudo-phosphorylated PKA mutants was ineffective. Also, the nonphosphorylatable Cdk5 mutant was unable to rescue the neurite elongation phenotype of SynIII KO neurons. By contrast, the pseudo-phosphorylated mutant rescued the delay in neuronal maturation and axonal elongation, revealing a Cdk5-dependent regulation of SynIII function. Interestingly, SynIII KO neurons also exhibited decreased survival that was fully rescued by the expression of WT SynIII, but not by its phosphorylation mutants, and was associated with increased activated caspase3 and altered tropomyosin receptor kinase B isoform expression. These results indicate that PKA and Cdk5 phosphorylation is required for the physiological action of SynIII on axon specification and neurite outgrowth and that the expression of a functional SynIII is crucial for cell survival. Significance statement: Synapsin III is an atypical member of the synapsin family of synaptic vesicle-associated phosphoproteins that is precociously expressed in neurons and is downregulated afterward. Although experimental evidence suggests a specific role for Synapsin III in neuronal development, the molecular mechanisms are still largely unknown. We found that Synapsin III plays a central role in early stages of neuronal development involving neuronal survival, polarization, and neuritic growth and that these effects are dependent on phosphorylation by cAMP-dependent protein kinase and cyclin-dependent protein kinase-5. These results explain the recently described neurodevelopmental defects in the migration and orientation of Synapsin III-depleted cortical neurons and support the potential association of Synapsin III with neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Alessandra Piccini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and
| | - Laura E Perlini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and
| |
Collapse
|
14
|
Chance RK, Bashaw GJ. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion. PLoS Genet 2015; 11:e1005402. [PMID: 26335920 PMCID: PMC4559387 DOI: 10.1371/journal.pgen.1005402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 01/07/2023] Open
Abstract
Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.
Collapse
Affiliation(s)
- Rebecca K. Chance
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ 2015; 57:291-304. [DOI: 10.1111/dgd.12218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
16
|
Perlini LE, Szczurkowska J, Ballif BA, Piccini A, Sacchetti S, Giovedì S, Benfenati F, Cancedda L. Synapsin III acts downstream of semaphorin 3A/CDK5 signaling to regulate radial migration and orientation of pyramidal neurons in vivo. Cell Rep 2015; 11:234-48. [PMID: 25843720 PMCID: PMC4405008 DOI: 10.1016/j.celrep.2015.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/13/2015] [Accepted: 03/06/2015] [Indexed: 11/04/2022] Open
Abstract
Synapsin III (SynIII) is a phosphoprotein that is highly expressed at early stages of neuronal development. Whereas in vitro evidence suggests a role for SynIII in neuronal differentiation, in vivo evidence is lacking. Here, we demonstrate that in vivo downregulation of SynIII expression affects neuronal migration and orientation. By contrast, SynIII overexpression affects neuronal migration, but not orientation. We identify a cyclin-dependent kinase-5 (CDK5) phosphorylation site on SynIII and use phosphomutant rescue experiments to demonstrate its role in SynIII function. Finally, we show that SynIII phosphorylation at the CDK5 site is induced by activation of the semaphorin-3A (Sema3A) pathway, which is implicated in migration and orientation of cortical pyramidal neurons (PNs) and is known to activate CDK5. Thus, fine-tuning of SynIII expression and phosphorylation by CDK5 activation through Sema3A activity is essential for proper neuronal migration and orientation. Precise regulation of SynIII expression is essential during brain development SynIII regulates neuronal migration, orientation, and morphological maturation SynIII acts downstream of the Sema3A pathway, which involves NP1 and kinase CDK5 Phosphorylation of SynIII by CDK5 on Ser404 is essential for SynIII function
Collapse
Affiliation(s)
- Laura E Perlini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy; Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - Joanna Szczurkowska
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405-0086, USA
| | - Alessandra Piccini
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - Silvio Sacchetti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy; Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
17
|
Treinys R, Kaselis A, Jover E, Bagnard D, Šatkauskas S. R-type calcium channels are crucial for semaphorin 3A-induced DRG axon growth cone collapse. PLoS One 2014; 9:e102357. [PMID: 25032951 PMCID: PMC4102519 DOI: 10.1371/journal.pone.0102357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels.
Collapse
Affiliation(s)
- Rimantas Treinys
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andrius Kaselis
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
| | - Emmanuel Jover
- INCI – UPR-CNRS 3212, Neurotransmission et sécrétion neuroendocrine, Strasbourg, France
| | - Dominique Bagnard
- INSERM U1109, MN3t lab, Labex Medalis, University of Strasbourg, Strasbourg, France
| | - Saulius Šatkauskas
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
- * E-mail:
| |
Collapse
|
18
|
Villarroel-Campos D, Gastaldi L, Conde C, Caceres A, Gonzalez-Billault C. Rab-mediated trafficking role in neurite formation. J Neurochem 2014; 129:240-8. [PMID: 24517494 DOI: 10.1111/jnc.12676] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 02/02/2014] [Indexed: 01/04/2023]
Abstract
Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans-Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP-ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross-talk with RabGTPases.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
19
|
Akiyama H, Kamiguchi H. Second messenger networks for accurate growth cone guidance. Dev Neurobiol 2013; 75:411-22. [PMID: 24285606 DOI: 10.1002/dneu.22157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
Growth cones are able to navigate over long distances to find their appropriate target by following guidance cues that are often presented to them in the form of an extracellular gradient. These external cues are converted into gradients of specific signaling molecules inside growth cones, while at the same time these internal signals are amplified. The amplified instruction is then used to generate asymmetric changes in the growth cone turning machinery so that one side of the growth cone migrates at a rate faster than the other side, and thus the growth cone turns toward or away from the external cue. This review examines how signal specification and amplification can be achieved inside the growth cone by multiple second messenger signaling pathways activated downstream of guidance cues. These include the calcium ion, cyclic nucleotide, and phosphatidylinositol signaling pathways.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
20
|
Abstract
Cell adhesion molecules of the immunoglobulin-super-family (IgSF-CAMs) do not only have a physical effect, mediating merely attachment between cell surfaces. For navigating axons, IgSF-CAMs also exert an instructive impact: Upon activation, they elicit intracellular signalling cascades in the tip of the axon, the growth cone, which regulate in a spatio-temporally concerted action both speed and direction of the axon. Density and distribution of IgSF-CAMs in the growth cone plasma membrane play important roles for the activation of IgSF-CAMs, their clustering, and the adhesive forces they acquire, as well as for the local restriction and effective propagation of their intracellular signals.
Collapse
|
21
|
Tojima T. Intracellular signaling and membrane trafficking control bidirectional growth cone guidance. Neurosci Res 2012; 73:269-74. [PMID: 22684022 DOI: 10.1016/j.neures.2012.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
The formation of precise neuronal networks is critically dependent on the motility of axonal growth cones. Extracellular gradients of guidance cues evoke localized Ca(2+) elevations to attract or repel the growth cone. Recent studies strongly suggest that the polarity of growth cone guidance, with respect to the localization of Ca(2+) signals, is determined by Ca(2+) release from the endoplasmic reticulum (ER) in the following manner: Ca(2+) signals containing ER Ca(2+) release cause growth cone attraction, while Ca(2+) signals without ER Ca(2+) release cause growth cone repulsion. Recent studies have also shown that exocytic and endocytic membrane trafficking can drive growth cone attraction and repulsion, respectively, downstream of Ca(2+) signals. Most likely, these two mechanisms underlie cue-induced axon guidance, in which a localized imbalance between exocytosis and endocytosis dictates bidirectional growth cone steering. In this Update Article, I summarize recent advances in growth cone research and propose that polarized membrane trafficking plays an instructive role to spatially localize steering machineries, such as cytoskeletal components and adhesion molecules.
Collapse
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
22
|
Abstract
Endocytosis and endosomal trafficking play a multitude of roles in cellular function beyond regulating entry of essential nutrients. In this review, we discuss the cell biological principles of endosomal trafficking, the neuronal adaptations to endosomal organization, and the role of endosomal trafficking in neural development. In particular, we consider how cell fate decisions, polarity, migration, and axon outgrowth and guidance are influenced by five endosomal tricks: dynamic modulation of receptor levels by endocytosis and recycling, cargo-specific responses via cargo-specific endocytic regulators, cell-type-specific endocytic regulation, ligand-specific endocytic regulation, and endosomal regulation of ligand processing and trafficking.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia, 409 Lane Road, Charlottesville, VA 22908, USA
| | | |
Collapse
|
23
|
Dai J, Dalal JS, Thakar S, Henkemeyer M, Lemmon VP, Harunaga JS, Schlatter MC, Buhusi M, Maness PF. EphB regulates L1 phosphorylation during retinocollicular mapping. Mol Cell Neurosci 2012; 50:201-10. [PMID: 22579729 DOI: 10.1016/j.mcn.2012.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/10/2012] [Accepted: 05/02/2012] [Indexed: 01/24/2023] Open
Abstract
Interaction of the cell adhesion molecule L1 with the cytoskeletal adaptor ankyrin is essential for topographic mapping of retinal ganglion cell (RGC) axons to synaptic targets in the superior colliculus (SC). Mice mutated in the L1 ankyrin-binding motif (FIGQY(1229)H) display abnormal mapping of RGC axons along the mediolateral axis of the SC, resembling mouse mutant phenotypes in EphB receptor tyrosine kinases. To investigate whether L1 functionally interacts with EphBs, we investigated the role of EphB kinases in phosphorylating L1 using a phospho-specific antibody to the tyrosine phosphorylated FIGQY(1229) motif. EphB2, but not an EphB2 kinase dead mutant, induced tyrosine phosphorylation of L1 at FIGQY(1229) and perturbed ankyrin recruitment to the membrane in L1-transfected HEK293 cells. Src family kinases mediated L1 phosphorylation at FIGQY(1229) by EphB2. Other EphB receptors that regulate medial-lateral retinocollicular mapping, EphB1 and EphB3, also mediated phosphorylation of L1 at FIGQY(1229). Tyrosine(1176) in the cytoplasmic domain of L1, which regulates AP2/clathrin-mediated endocytosis and axonal trafficking, was not phosphorylated by EphB2. Accordingly mutation of Tyr(1176) to Ala in L1-Y(1176)A knock-in mice resulted in normal retinocollicular mapping of ventral RGC axons. Immunostaining of the mouse SC during retinotopic mapping showed that L1 colocalized with phospho-FIGQY in RGC axons in retinorecipient layers. Immunoblotting of SC lysates confirmed that L1 was phosphorylated at FIGQY(1229) in wild type but not L1-FIGQY(1229)H (L1Y(1229)H) mutant SC, and that L1 phosphorylation was decreased in the EphB2/B3 mutant SC. Inhibition of ankyrin binding in L1Y(1229)H mutant RGCs resulted in increased neurite outgrowth compared to WT RGCs in retinal explant cultures, suggesting that L1-ankyrin binding serves to constrain RGC axon growth. These findings are consistent with a model in which EphB kinases phosphorylate L1 at FIGQY(1229) in retinal axons to modulate L1-ankyrin binding important for mediolateral retinocollicular topography.
Collapse
Affiliation(s)
- Jinxia Dai
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Steketee MB, Goldberg JL. Signaling endosomes and growth cone motility in axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:35-73. [PMID: 23211459 DOI: 10.1016/b978-0-12-407178-0.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and regeneration, growth cones guide neurites to their targets by altering their motility in response to extracellular guidance cues. One class of cues critical to nervous system development is the neurotrophins. Neurotrophin binding to their cognate receptors stimulates their endocytosis into signaling endosomes. Current data indicate that the spatiotemporal localization of signaling endosomes can direct diverse processes regulating cell motility, including membrane trafficking, cytoskeletal remodeling, adhesion dynamics, and local translation. Recent experiments manipulating signaling endosome localization in neuronal growth cones support these views and place the neurotrophin signaling endosome in a central role regulating growth cone motility during axon growth and regeneration.
Collapse
|
25
|
Eva R, Andrews MR, Franssen EHP, Fawcett JW. Intrinsic mechanisms regulating axon regeneration: an integrin perspective. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:75-104. [PMID: 23211460 DOI: 10.1016/b978-0-12-407178-0.00004-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult central nervous system (CNS) axons fail to regenerate after injury because of inhibitory factors in the surrounding environment and a low intrinsic regenerative capacity. Axons in the adult peripheral nervous system have a higher regenerative capacity, due in part to the presence of certain integrins-receptors for the extracellular matrix. Integrins are critical for axon growth during the development of the nervous system but are absent from some adult CNS axons. Here, we discuss the intrinsic mechanisms that regulate axon regeneration and examine the role of integrins. As correct localization is paramount to integrin function, we further discuss the mechanisms that regulate integrin traffic toward the axonal growth cone.
Collapse
Affiliation(s)
- Richard Eva
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
26
|
|
27
|
Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth. BMC Biol 2011; 9:82. [PMID: 22126462 PMCID: PMC3283487 DOI: 10.1186/1741-7007-9-82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/30/2011] [Indexed: 12/13/2022] Open
Abstract
Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG) triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF) positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block the negative remodeling and growth inhibitory effects of MAG. Such bidirectional remodeling may allow the growth cone to rapidly adjust adhesiveness to the extracellular matrix as a general mechanism for governing axon extension. Techniques for manipulating integrin internalization and activation state may be important for overcoming local inhibitory factors after traumatic injury or neurodegenerative disease to enhance regenerative nerve growth.
Collapse
|
28
|
Takeuchi H, Higashiyama T. Attraction of tip-growing pollen tubes by the female gametophyte. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:614-21. [PMID: 21855396 DOI: 10.1016/j.pbi.2011.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/22/2011] [Accepted: 07/24/2011] [Indexed: 05/08/2023]
Abstract
Pollen tube guidance is the mechanism whereby the direction of pollen tube growth is controlled by female cells of the pistil. Some key genes and molecules have recently been identified as being involved in pollen tube guidance. In this review article, we discuss the molecular basis of pollen tube guidance, especially in Arabidopsis thaliana, by summarizing recent progress in various plant species. Attractant molecules and receptors for gametophytic pollen tube guidance are the focus of this article.
Collapse
Affiliation(s)
- Hidenori Takeuchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | | |
Collapse
|