1
|
Bacchelli E, Loi E, Cameli C, Moi L, Vega-Benedetti AF, Blois S, Fadda A, Bonora E, Mattu S, Fadda R, Chessa R, Maestrini E, Doneddu G, Zavattari P. Analysis of a Sardinian Multiplex Family with Autism Spectrum Disorder Points to Post-Synaptic Density Gene Variants and Identifies CAPG as a Functionally Relevant Candidate Gene. J Clin Med 2019; 8:E212. [PMID: 30736458 PMCID: PMC6406497 DOI: 10.3390/jcm8020212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with high heritability, although their underlying genetic factors are still largely unknown. Here we present a comprehensive genetic characterization of two ASD siblings from Sardinia by genome-wide copy number variation analysis and whole exome sequencing (WES), to identify novel genetic alterations associated with this disorder. Single nucleotide polymorphism (SNP) array data revealed a rare microdeletion involving CAPG, ELMOD3, and SH2D6 genes, in both siblings. CAPG encodes for a postsynaptic density (PSD) protein known to regulate spine morphogenesis and synaptic formation. The reduced CAPG mRNA and protein expression levels in ASD patients, in the presence of hemizygosity or a particular genetic and/or epigenetic background, highlighted the functional relevance of CAPG as a candidate gene for ASD. WES analysis led to the identification in both affected siblings of a rare frameshift mutation in VDAC3, a gene intolerant to loss of function mutation, encoding for a voltage-dependent anion channel localized on PSD. Moreover, four missense damaging variants were identified in genes intolerant to loss of function variation encoding for PSD proteins: PLXNA2, KCTD16, ARHGAP21, and SLC4A1. This study identifies CAPG and VDAC3 as candidate genes and provides additional support for genes encoding PSD proteins in ASD susceptibility.
Collapse
Affiliation(s)
- Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Loredana Moi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | | | - Sylvain Blois
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Antonio Fadda
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Sandra Mattu
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, 09124 Cagliari, Italy.
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy.
| | - Rita Chessa
- Center for Pervasive Developmental Disorders, AO Brotzu, 09134 Cagliari, Italy.
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Giuseppe Doneddu
- Center for Pervasive Developmental Disorders, AO Brotzu, 09134 Cagliari, Italy.
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| |
Collapse
|
2
|
Taguchi YH. Principal component analysis based unsupervised feature extraction applied to publicly available gene expression profiles provides new insights into the mechanisms of action of histone deacetylase inhibitors. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology 2015; 40:1037-51. [PMID: 25374096 PMCID: PMC4330519 DOI: 10.1038/npp.2014.297] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 01/06/2023]
Abstract
The discovery of functional cannabinoid receptors 2 (CB2Rs) in brain suggests a potential new therapeutic target for neurological and psychiatric disorders. However, recent findings in experimental animals appear controversial. Here we report that there are significant species differences in CB2R mRNA splicing and expression, protein sequences, and receptor responses to CB2R ligands in mice and rats. Systemic administration of JWH133, a highly selective CB2R agonist, significantly and dose-dependently inhibited intravenous cocaine self-administration under a fixed ratio (FR) schedule of reinforcement in mice, but not in rats. However, under a progressive ratio (PR) schedule of reinforcement, JWH133 significantly increased breakpoint for cocaine self-administration in rats, but decreased it in mice. To explore the possible reasons for these conflicting findings, we examined CB2R gene expression and receptor structure in the brain. We found novel rat-specific CB2C and CB2D mRNA isoforms in addition to CB2A and CB2B mRNA isoforms. In situ hybridization RNAscope assays found higher levels of CB2R mRNA in different brain regions and cell types in mice than in rats. By comparing CB2R-encoding regions, we observed a premature stop codon in the mouse CB2R gene that truncated 13 amino-acid residues including a functional autophosphorylation site in the intracellular C-terminus. These findings suggest that species differences in the splicing and expression of CB2R genes and receptor structures may in part explain the different effects of CB2R-selective ligands on cocaine self-administration in mice and rats.
Collapse
|
4
|
Brucato N, DeLisi LE, Fisher SE, Francks C. Hypomethylation of the paternally inherited LRRTM1 promoter linked to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:555-63. [PMID: 25111784 DOI: 10.1002/ajmg.b.32258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022]
Abstract
Epigenetic effects on psychiatric traits remain relatively under-studied, and it remains unclear what the sizes of individual epigenetic effects may be, or how they vary between different clinical populations. The gene LRRTM1 (chromosome 2p12) has previously been linked and associated with schizophrenia in a parent-of-origin manner in a set of affected siblings (LOD = 4.72), indirectly suggesting a disruption of paternal imprinting at this locus in these families. From the same set of siblings that originally showed strong linkage at this locus, we analyzed 99 individuals using 454-bisulfite sequencing, from whole blood DNA, to measure the level of DNA methylation in the promoter region of LRRTM1. We also assessed seven additional loci that would be informative to compare. Paternal identity-by-descent sharing at LRRTM1, within sibling pairs, was linked to their similarity of methylation at the gene's promoter. Reduced methylation at the promoter showed a significant association with schizophrenia. Sibling pairs concordant for schizophrenia showed more similar methylation levels at the LRRTM1 promoter than diagnostically discordant pairs. The alleles of common SNPs spanning the locus did not explain this epigenetic linkage, which can therefore be considered as largely independent of DNA sequence variation and would not be detected in standard genetic association analysis. Our data suggest that hypomethylation at the LRRTM1 promoter, particularly of the paternally inherited allele, was a risk factor for the development of schizophrenia in this set of siblings affected with familial schizophrenia, and that had previously showed linkage at this locus in an affected-sib-pair context.
Collapse
Affiliation(s)
- Nicolas Brucato
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|