1
|
Fu P, Zhao Y, Dong C, Cai Z, Li R, Yung KKL. An integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world PM 2.5 exposure. J Environ Sci (China) 2022; 122:25-40. [PMID: 35717088 DOI: 10.1016/j.jes.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is associated with increased risks of Alzheimer's disease (AD), yet the toxicological mechanisms of PM2.5 promoting AD remain unclear. In this study, wild-type and APP/PS1 transgenic mice (AD mice) were exposed to either filtered air (FA) or PM2.5 for eight weeks with a real-world exposure system in Taiyuan, China (mean PM2.5 concentration in the cage was 61 µg/m3). We found that PM2.5 exposure could remarkably aggravate AD mice's ethological and brain ultrastructural damage, along with the elevation of the pro-inflammatory cytokines (IL-6 and TNF-α), Aβ-42 and AChE levels and the decline of ChAT levels in the brains. Based on high-throughput sequencing results, some differentially expressed (DE) mRNAs and DE miRNAs in the brains of AD mice after PM2.5 exposure were screened. Using RT-qPCR, seven DE miRNAs (mmu-miR-193b-5p, 122b-5p, 466h-3p, 10b-5p, 1895, 384-5p, and 6412) and six genes (Pcdhgb8, Unc13b, Robo3, Prph, Pter, and Tbata) were evidenced the and verified. Two miRNA-target gene pairs (miR-125b-Pcdhgb8 pair and miR-466h-3p-IL-17Rα/TGF-βR2/Aβ-42/AChE pairs) were demonstrated that they were more related to PM2.5-induced brain injury. Results of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways predicted that synaptic and postsynaptic regulation, axon guidance, Wnt, MAPK, and mTOR pathways might be the possible regulatory mechanisms associated with pathological response. These revealed that PM2.5-elevated pro-inflammatory cytokine levels and PM2.5-altered neurotransmitter levels in AD mice could be the important causes of brain damage and proposed the promising miRNA and mRNA biomarkers and potential miRNA-mRNA interaction networks of PM2.5-promoted AD.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Florentinus-Mefailoski A, Bowden P, Scheltens P, Killestein J, Teunissen C, Marshall JG. The plasma peptides of Alzheimer's disease. Clin Proteomics 2021; 18:17. [PMID: 34182925 PMCID: PMC8240224 DOI: 10.1186/s12014-021-09320-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background A practical strategy to discover proteins specific to Alzheimer’s dementia (AD) may be to compare the plasma peptides and proteins from patients with dementia to normal controls and patients with neurological conditions like multiple sclerosis or other diseases. The aim was a proof of principle for a method to discover proteins and/or peptides of plasma that show greater observation frequency and/or precursor intensity in AD. The endogenous tryptic peptides of Alzheimer’s were compared to normals, multiple sclerosis, ovarian cancer, breast cancer, female normal, sepsis, ICU Control, heart attack, along with their institution-matched controls, and normal samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from blinded, individual AD and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins identified using the X!TANDEM algorithm. Observation frequency of the identified proteins was counted using SEQUEST algorithm. The proteins with apparently increased observation frequency in AD versus AD Control were revealed graphically and subsequently tested by Chi Square analysis. The proteins specific to AD plasma by Chi Square with FDR correction were analyzed by the STRING algorithm. The average protein or peptide log10 precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as complement C2, C7, and C1QBP among others showed increased observation frequency by Chi Square and/or precursor intensity in AD. Cellular gene symbols with large Chi Square values (χ2 ≥ 25, p ≤ 0.001) from tryptic peptides included KIF12, DISC1, OR8B12, ZC3H12A, TNF, TBC1D8B, GALNT3, EME2, CD1B, BAG1, CPSF2, MMP15, DNAJC2, PHACTR4, OR8B3, GCK, EXOSC7, HMGA1 and NT5C3A among others. Similarly, increased frequency of tryptic phosphopeptides were observed from MOK, SMIM19, NXNL1, SLC24A2, Nbla10317, AHRR, C10orf90, MAEA, SRSF8, TBATA, TNIK, UBE2G1, PDE4C, PCGF2, KIR3DP1, TJP2, CPNE8, and NGF amongst others. STRING analysis showed an increase in cytoplasmic proteins and proteins associated with alternate splicing, exocytosis of luminal proteins, and proteins involved in the regulation of the cell cycle, mitochondrial functions or metabolism and apoptosis. Increases in mean precursor intensity of peptides from common plasma proteins such as DISC1, EXOSC5, UBE2G1, SMIM19, NXNL1, PANO, EIF4G1, KIR3DP1, MED25, MGRN1, OR8B3, MGC24039, POLR1A, SYTL4, RNF111, IREB2, ANKMY2, SGKL, SLC25A5, CHMP3 among others were associated with AD. Tryptic peptides from the highly conserved C-terminus of DISC1 within the sequence MPGGGPQGAPAAAGGGGVSHRAGSRDCLPPAACFR and ARQCGLDSR showed a higher frequency and highest intensity in AD compared to all other disease and controls. Conclusion Proteins apparently expressed in the brain that were directly related to Alzheimer’s including Nerve Growth Factor (NFG), Sphingomyelin Phosphodiesterase, Disrupted in Schizophrenia 1 (DISC1), the cell death regulator retinitis pigmentosa (NXNl1) that governs the loss of nerve cells in the retina and the cell death regulator ZC3H12A showed much higher observation frequency in AD plasma vs the matched control. There was a striking agreement between the proteins known to be mutated or dis-regulated in the brains of AD patients with the proteins observed in the plasma of AD patients from endogenous peptides including NBN, BAG1, NOX1, PDCD5, SGK3, UBE2G1, SMPD3 neuronal proteins associated with synapse function such as KSYTL4, VTI1B and brain specific proteins such as TBATA. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09320-2.
Collapse
Affiliation(s)
- Angelique Florentinus-Mefailoski
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Peter Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Philip Scheltens
- Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry Lab and Biobank, Dept of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada. .,International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (Formerly CRP Sante Luxembourg), Strassen, Luxembourg.
| |
Collapse
|
4
|
Gui H, Schriemer D, Cheng WW, Chauhan RK, Antiňolo G, Berrios C, Bleda M, Brooks AS, Brouwer RWW, Burns AJ, Cherny SS, Dopazo J, Eggen BJL, Griseri P, Jalloh B, Le TL, Lui VCH, Luzón-Toro B, Matera I, Ngan ESW, Pelet A, Ruiz-Ferrer M, Sham PC, Shepherd IT, So MT, Sribudiani Y, Tang CSM, van den Hout MCGN, van der Linde HC, van Ham TJ, van IJcken WFJ, Verheij JBGM, Amiel J, Borrego S, Ceccherini I, Chakravarti A, Lyonnet S, Tam PKH, Garcia-Barceló MM, Hofstra RMW. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol 2017; 18:48. [PMID: 28274275 PMCID: PMC5343413 DOI: 10.1186/s13059-017-1174-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
Background Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. Results We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. Conclusions Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1174-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongsheng Gui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Duco Schriemer
- Department of Neuroscience, section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - William W Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Rajendra K Chauhan
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Guillermo Antiňolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Courtney Berrios
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.,Department of Medicine, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Rutger W W Brouwer
- Erasmus Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Stacey S Cherny
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Joaquin Dopazo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Bart J L Eggen
- Department of Neuroscience, section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Binta Jalloh
- Department of Biology, Emory University, Atlanta, USA
| | - Thuy-Linh Le
- Laboratory of embryology and genetics of human malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Department of Genetics, Paris Descartes-Sorbonne Paris Cité University, Hôpital Necker-Enfants Malades (APHP), Paris, France
| | - Vincent C H Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Ivana Matera
- UOC Genetica Medica, Istituto Gaslini, Genoa, Italy
| | - Elly S W Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Anna Pelet
- Laboratory of embryology and genetics of human malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Department of Genetics, Paris Descartes-Sorbonne Paris Cité University, Hôpital Necker-Enfants Malades (APHP), Paris, France
| | - Macarena Ruiz-Ferrer
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Pak C Sham
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | | - Man-Ting So
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Yunia Sribudiani
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | | | - Joke B G M Verheij
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeanne Amiel
- Laboratory of embryology and genetics of human malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Department of Genetics, Paris Descartes-Sorbonne Paris Cité University, Hôpital Necker-Enfants Malades (APHP), Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stanislas Lyonnet
- Laboratory of embryology and genetics of human malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Department of Genetics, Paris Descartes-Sorbonne Paris Cité University, Hôpital Necker-Enfants Malades (APHP), Paris, France
| | - Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Maria-Mercè Garcia-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands. .,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| |
Collapse
|
5
|
Li YS, Qin LX, Liu J, Xia WL, Li JP, Shen HL, Gao WQ. GIT1 enhances neurite outgrowth by stimulating microtubule assembly. Neural Regen Res 2016; 11:427-34. [PMID: 27127481 PMCID: PMC4829007 DOI: 10.4103/1673-5374.179054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.
Collapse
Affiliation(s)
- Yi-Sheng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Xia Qin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Liang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Ping Li
- Department of Neurology, Shanghai Renji Hospital, Shanghai, China
| | - Hai-Lian Shen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Collarative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|