1
|
Rathore AS, Singh SS, Birla H, Zahra W, Keshri PK, Dilnashin H, Singh R, Singh S, Singh SP. Curcumin Modulates p62-Keap1-Nrf2-Mediated Autophagy in Rotenone-Induced Parkinson's Disease Mouse Models. ACS Chem Neurosci 2023. [PMID: 36989171 DOI: 10.1021/acschemneuro.2c00706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Autophagy mediates self-digestion of abnormally aggregated proteins and organelles present in the cytoplasm. This mechanism may prove to be neuroprotective against Parkinson's disease (PD) by clearing misfolded α-synuclein (α-syn) aggregates from dopaminergic neurons. p62, an adaptor protein acts as a selective substrate for autophagy and regulates the formation as well as the degradation of protein aggregates. p62 sequesters keap1 freeing Nrf2 and consequently activating the transcription of its target genes. In the present study, we aimed to investigate the anti-parkinsonian activity of curcumin targeting primarily activation of autophagy via the Nrf2-Keap1 pathway. The mice were subcutaneously injected with rotenone (2.5 mg/kg bodyweight) and co-treated with oral administration of curcumin (80 mg/kg bodyweight) for 35 days. Following completion of dosing, motor activities, anti-oxidative potential, mitochondrial dysfunction, and various protein expressions, including Nrf2, Keap1, p62, LC3, Bcl2, Bax, and caspase 3, were assessed. The results revealed that curcumin restored the motor coordination and anti-oxidative activity while improving the mitochondrial functioning in PD mice. Autophagy was evaluated by the change in the expression of autophagic markers, p62 and LC3-II. Reduced p62 and LC3-II expressions in the rotenone mouse model of PD confirmed the compromised autophagy pathway, consequently increasing the aggregation of misfolded protein α-syn. Whereas, curcumin treatment-enhanced autophagy-mediated clearance of misfolded α-syn proteins by increasing the LC3-II expression and blocked apoptotic cascade. Curcumin administration upregulated the Nrf2 expression and normalized the Nrf2-Keap1 pathway, which justifies the improved anti-oxidative activity. Therefore, the findings reveal that curcumin is a Nrf2-inducer and is endowed with neuroprotective potential, which may prove to be a potential candidate for the anti-Parkinson's disease treatment therapy.
Collapse
Affiliation(s)
- Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Soliman KFA. Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:nu14224787. [PMID: 36432484 PMCID: PMC9695946 DOI: 10.3390/nu14224787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The variety of therapies available for treating and preventing triple-negative breast cancer (TNBC) is constrained by the absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor 2. Nrf2 (nuclear factor-erythroid 2-related factor), and PD-L1 (program cell death ligand 1), a downstream signaling target, have a strong correlation to oxidative stress and inflammation, major factors in the development and progression of TNBC. In this study, the genetically distinct MDA-MB-231 and MDA-MB-468 TNBC cells were treated with the natural component thymoquinone (TQ). The results show that TQ exhibits considerable antioxidant activity and decreases the generation of H2O2, at the same time increasing catalase (CAT) activity, superoxide dismutase (SOD) enzyme, and glutathione (GSH). Additionally, the results show that TQ treatment increased the levels of the different genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM in both cell lines with significant large-fold change in MDA-MB-468 cells (+157.65 vs. +1.7, +48.87 vs. +2.63 and +4.78 vs. +2.17), respectively. Nrf2 mRNA and protein expression were also significantly increased in TQ-treated TNBC cells despite being higher in MDA-MB-468 cells (6.67 vs. 4.06). Meanwhile, TQ administration increased mRNA levels while decreasing PD-L1 protein expression in both cell lines. In conclusion, TQ modifies the expression of multiple oxidative-stress-antioxidant system genes, ROS, antioxidant enzymes, Nrf2, and PD-L1 protein, pointing to the therapeutic potential and chemopreventive utilization of TQ in TNBC.
Collapse
|
3
|
Shi H, Qiao F, Lu W, Huang K, Wen Y, Ye L, Chen Y. Baicalin improved hepatic injury of NASH by regulating NRF2/HO-1/NRLP3 pathway. Eur J Pharmacol 2022; 934:175270. [DOI: 10.1016/j.ejphar.2022.175270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
|
4
|
Carnosic Acid and Carnosol Display Antioxidant and Anti-Prion Properties in In Vitro and Cell-Free Models of Prion Diseases. Antioxidants (Basel) 2022; 11:antiox11040726. [PMID: 35453411 PMCID: PMC9027925 DOI: 10.3390/antiox11040726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are transmissible encephalopathies associated with the conversion of the physiological form of the prion protein (PrPC) to the disease-associated (PrPSc). Despite intense research, no therapeutic or prophylactic agent is available. The catechol-type diterpene Carnosic acid (CA) and its metabolite Carnosol (CS) from Rosmarinus officinalis have well-documented anti-oxidative and neuroprotective effects. Since oxidative stress plays an important role in the pathogenesis of prion diseases, we investigated the potential beneficial role of CA and CS in a cellular model of prion diseases (N2a22L cells) and in a cell-free prion amplification assay (RT-QuIC). The antioxidant effects of the compounds were confirmed when N2a22L were incubated with CA or CS. Furthermore, CA and CS reduced the accumulation of the disease-associated form of PrP, detected by Western Blotting, in N2a22L cells. This effect was validated in RT-QuIC assays, indicating that it is not associated with the antioxidant effects of CA and CS. Importantly, cell-free assays revealed that these natural products not only prevent the formation of PrP aggregates but can also disrupt already formed aggregates. Our results indicate that CA and CS have pleiotropic effects against prion diseases and could evolve into useful prophylactic and/or therapeutic agents against prion and other neurodegenerative diseases.
Collapse
|
5
|
Galkin AP, Sysoev EI. Stress Response Is the Main Trigger of Sporadic Amyloidoses. Int J Mol Sci 2021; 22:4092. [PMID: 33920986 PMCID: PMC8071232 DOI: 10.3390/ijms22084092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyloidoses are a group of diseases associated with the formation of pathological protein fibrils with cross-β structures. Approximately 5-10% of the cases of these diseases are determined by amyloidogenic mutations, as well as by transmission of infectious amyloids (prions) between organisms. The most common group of so-called sporadic amyloidoses is associated with abnormal aggregation of wild-type proteins. Some sporadic amyloidoses are known to be induced only against the background of certain pathologies, but in some cases the cause of amyloidosis is unclear. It is assumed that these diseases often occur by accident. Here we present facts and hypotheses about the association of sporadic amyloidoses with vascular pathologies, trauma, oxidative stress, cancer, metabolic diseases, chronic infections and COVID-19. Generalization of current data shows that all sporadic amyloidoses can be regarded as a secondary event occurring against the background of diseases provoking a cellular stress response. Various factors causing the stress response provoke protein overproduction, a local increase in the concentration or modifications, which contributes to amyloidogenesis. Progress in the treatment of vascular, metabolic and infectious diseases, as well as cancers, should lead to a significant reduction in the risk of sporadic amyloidoses.
Collapse
Affiliation(s)
- Alexey P. Galkin
- St. Petersburg Branch, Vavilov Institute of General Genetics, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeniy I. Sysoev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
6
|
Cellular Prion Protein (PrPc): Putative Interacting Partners and Consequences of the Interaction. Int J Mol Sci 2020; 21:ijms21197058. [PMID: 32992764 PMCID: PMC7583789 DOI: 10.3390/ijms21197058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular prion protein (PrPc) is a small glycosylphosphatidylinositol (GPI) anchored protein most abundantly found in the outer leaflet of the plasma membrane (PM) in the central nervous system (CNS). PrPc misfolding causes neurodegenerative prion diseases in the CNS. PrPc interacts with a wide range of protein partners because of the intrinsically disordered nature of the protein’s N-terminus. Numerous studies have attempted to decipher the physiological role of the prion protein by searching for proteins which interact with PrPc. Biochemical characteristics and biological functions both appear to be affected by interacting protein partners. The key challenge in identifying a potential interacting partner is to demonstrate that binding to a specific ligand is necessary for cellular physiological function or malfunction. In this review, we have summarized the intracellular and extracellular interacting partners of PrPc and potential consequences of their binding. We also briefly describe prion disease-related mutations at the end of this review.
Collapse
|
7
|
Rehman MU, Rather IA. Myricetin Abrogates Cisplatin-Induced Oxidative Stress, Inflammatory Response, and Goblet Cell Disintegration in Colon of Wistar Rats. PLANTS 2019; 9:plants9010028. [PMID: 31878169 PMCID: PMC7020155 DOI: 10.3390/plants9010028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Cisplatin [cis-diamminedichloroplatinum II] is an extensively prescribed drug in cancer chemotherapy; it is also useful for the treatment of diverse types of malignancies. Conversely, cisplatin is associated with a range of side effects such as nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, and so on. Myricetin (3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4chromenone) is a very common natural flavonoid found in fruits, tea, and plants. It has been found to have high-value pharmacological properties and strong health benefits. To examine the role of myricetin in colon toxicity induced by cisplatin, we conducted a concurrent prophylactic study in experimental animals that were treated orally with myricetin for 14 days at two doses—25 and 50 mg/kg of body weight. On the 14th day, a single intraperitoneal injection of cisplatin (7.5 mg/kg body weight) was administered in all groups except control. The effects of myricetin in cisplatin-induced toxicity in the colon were assessed in terms of antioxidant status, phase-II detoxification enzymes, the level of inflammatory markers, and goblet cell disintegration. Myricetin was found to restore the level of all the antioxidant enzymes analyzed in the study. In addition, the compound ameliorated cisplatin-induced lipid peroxidation, increase in xanthine oxidase activity, and phase-II detoxifying enzyme activity. Myricetin also attenuated deteriorative effects induced by cisplatin by regulating the level of molecular markers of inflammation (NF-κB, Nrf-2, IL-6, and TNF-α), restoring Nrf-2 levels, and controlling goblet cell disintegration. The current study reinforces the conclusion that myricetin exerts protection in colon toxicity via up-regulation of inflammatory markers, improving anti-oxidant status, and protecting tissue damage.
Collapse
Affiliation(s)
- Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Division of Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKAUST-Kashmir, Alustang, Srinagar, J&K 190006, India
- Correspondence: (M.U.R.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) P.O. Box-80141, Jeddah 21589, Saudi Arabia
- Correspondence: (M.U.R.); (I.A.R.)
| |
Collapse
|
8
|
Lin SC, Lin CH, Shih NC, Liu HL, Wang WC, Lin KY, Liu ZY, Tseng YJ, Chang HK, Lin YC, Yeh YC, Minato H, Fujii T, Wu YC, Chen MY, Chou TY. Cellular prion protein transcriptionally regulated by NFIL3 enhances lung cancer cell lamellipodium formation and migration through JNK signaling. Oncogene 2019; 39:385-398. [PMID: 31477838 DOI: 10.1038/s41388-019-0994-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Tumor invasion and metastasis are the major causes of treatment failure and mortality in lung cancer patients. In this study, we identified a group of genes with differential expression in in situ and invasive lung adenocarcinoma tissues by expression profiling; among these genes we further characterized the association of the upregulation of PRNP, the gene encoding cellular Prion protein (PrPc), with lung adenocarcinoma invasiveness. Immunohistochemistry on clinical specimens showed an association of PrPc expression with invasive but not in situ lung adenocarcinoma. Consistently, the expression of PrPc was higher in the highly invasive than in the lowly invasive lung adenocarcinoma cell lines. Knockdown of PrPc expression in cultured lung adenocarcinoma cells decreased their lamellipodium formation, in vitro migration and invasion, and in vivo experimental lung metastasis. Phosphorylation of JNKs was found to correlate with PrPc expression and the inhibition of JNKs suppressed the PrPc-induced up-regulation of lamellipodium formation, cell migration, and invasion. Moreover, we identified the nuclear factor, interleukin 3 regulated (NFIL3) protein as a transcriptional activator of the PRNP promoter. Accordingly, NFIL3 promoted lung cancer cell migration and invasion in a PrPc-dependent manner. High NFIL3 expression in clinical specimens of lung adenocarcinoma was also associated with tumor invasiveness. Overall, our observations suggest that the NFIL3/PrPc axis, through regulating lamellipodium formation and cell mobility via JNK signaling, plays a critical role in lung cancer invasiveness and metastasis.
Collapse
Affiliation(s)
- Shin-Chih Lin
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chia-Hung Lin
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Nien-Chu Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hsin-Ling Liu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Wen-Chao Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Kun-Yang Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Zih-Yu Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Jhen Tseng
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hsueh-Kai Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yi-Cheng Lin
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Yi-Chen Yeh
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Hiroshi Minato
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Takeshi Fujii
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Yu-Chung Wu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Mei-Yu Chen
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan. .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Teh-Ying Chou
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan. .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan. .,Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
9
|
Shou L, Bei Y, Song Y, Wang L, Ai L, Yan Q, He W. Nrf2 mediates the protective effect of edaravone after chlorpyrifos-induced nervous system toxicity. ENVIRONMENTAL TOXICOLOGY 2019; 34:626-633. [PMID: 30758894 DOI: 10.1002/tox.22728] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
We aim to confirm the impairment of chlorpyrifos (CPF) in PC12 cells, evaluate the protective effect of edaravone on CPF-induced injury, and try to unravel its underlying mechanism perspective from Nrf2 signaling pathway. Viability of PC12 cells treated with CPF and edaravone (Ed) were evaluated by MTT assay. Cell apoptosis was observed by the Hoechst 33342 stain. The level of reactive oxygen species (ROS), the content of malondialdehyde (MDA), and the activity of superoxide dismutase (SOD) were detected to evaluate the oxidative stress injury. The expression of Nrf2 was detected by Western blot; profoundly, RNA interference was conducted to construct Nrf2 gene knockdown PC12 cells and to uncover its underlying mechanism. MTT results showed CPF injured PC12 cells in a concentration-dependent manner. Increased ROS and MDA content, decreased total SOD activity, or even apoptosis were occurred in PC12 cells when treated with CPF. Interestingly, CPF-induced cell injury was conspicuously reversed after Ed administration. Nrf2 signaling pathway was activated after Ed treatment and the neuroprotective effect of Ed was not significant in cells after Nrf2 gene knockdown. In conclusion, Ed exerts neuroprotective effect on CPF-induced oxidative stress injury and its mechanism was correlated with the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Limeng Shou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, People's Republic of China
- International Medical Center of The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou Mingzhou Hospital, Hangzhou, People's Republic of China
| | - Yun Bei
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Huzhou Teachers College, Huzhou, People's Republic of China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Libo Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Liyao Ai
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qinying Yan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Wei He
- International Medical Center of The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou Mingzhou Hospital, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Korytina GF, Akhmadishina LZ, Aznabaeva YG, Kochetova OV, Zagidullin NS, Kzhyshkowska JG, Zagidullin SZ, Viktorova TV. Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease. Gene 2019; 692:102-112. [DOI: 10.1016/j.gene.2018.12.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
|
11
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front Mol Neurosci 2018; 11:310. [PMID: 30337853 DOI: 10.3389/fnmol.2018.00310/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 05/26/2023] Open
Abstract
Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual's brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front Mol Neurosci 2018; 11:310. [PMID: 30337853 PMCID: PMC6180192 DOI: 10.3389/fnmol.2018.00310] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual’s brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Abstract
The cellular prion protein, PrPC, is a small, cell surface glycoprotein with a function that is currently somewhat ill defined. It is also the key molecule involved in the family of neurodegenerative disorders called transmissible spongiform encephalopathies, which are also known as prion diseases. The misfolding of PrPC to a conformationally altered isoform, designated PrPTSE, is the main molecular process involved in pathogenesis and appears to precede many other pathologic and clinical manifestations of disease, including neuronal loss, astrogliosis, and cognitive loss. PrPTSE is also believed to be the major component of the infectious "prion," the agent responsible for disease transmission, and preparations of this protein can cause prion disease when inoculated into a naïve host. Thus, understanding the biochemical and biophysical properties of both PrPC and PrPTSE, and ultimately the mechanisms of their interconversion, is critical if we are to understand prion disease biology. Although entire books could be devoted to research pertaining to the protein, herein we briefly review the state of knowledge of prion biochemistry, including consideration of prion protein structure, function, misfolding, and dysfunction.
Collapse
Affiliation(s)
- Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Andrew R Castle
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Macedo JA, Schrama D, Duarte I, Tavares E, Renaut J, Futschik ME, Rodrigues PM, Melo EP. Membrane-enriched proteome changes and prion protein expression during neural differentiation and in neuroblastoma cells. BMC Genomics 2017; 18:319. [PMID: 28431525 PMCID: PMC5401558 DOI: 10.1186/s12864-017-3694-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/08/2017] [Indexed: 01/12/2023] Open
Abstract
Background The function of the prion protein, involved in the so-called prion diseases, remains a subject of intense debate and the possibility that it works as a pleiotropic protein through the interaction with multiple membrane proteins is somehow supported by recent reports. Therefore, the use of proteomic and bioinformatics combined to uncover cellular processes occurring together with changes in the expression of the prion protein may provide further insight into the putative pleiotropic role of the prion protein. Results This study assessed the membrane-enriched proteome changes accompanying alterations in the expression of the prion protein. A 2D-DIGE approach was applied to two cell lines after prefractionation towards the membrane protein subset: an embryonic stem cell line and the PK1 subline of neuroblastoma cells which efficiently propagates prion infection. Several proteins were differentially abundant with the increased expression of the prion protein during neural differentiation of embryonic stem cells and with the knockdown of the prion protein in PK1 cells. The identity of around 20% of the differentially abundant proteins was obtained by tandem MS. The catalytic subunit A of succinate dehydrogenase, a key enzyme for the aerobic energy metabolism and redox homeostasis, showed a similar abundance trend as the prion protein in both proteomic experiments. A gene ontology analysis revealed “myelin sheath”, “organelle membrane” and “focal adhesion” associated proteins as the main cellular components, and “protein folding” and “ATPase activity” as the biological processes enriched in the first set of differentially abundant proteins. The known interactome of these differentially abundant proteins was customized to reveal four interactors with the prion protein, including two heat shock proteins and a protein disulfide isomerase. Conclusions Overall, our study shows that expression of the prion protein occurs concomitantly with changes in chaperone activity and cell-redox homeostasis, emphasizing the functional link between these cellular processes and the prion protein. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3694-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J A Macedo
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - D Schrama
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - I Duarte
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - E Tavares
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - J Renaut
- LIST, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - M E Futschik
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal.,School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - P M Rodrigues
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - E P Melo
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
15
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
16
|
Prion Protein Family Contributes to Tumorigenesis via Multiple Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:207-224. [PMID: 29052140 DOI: 10.1007/978-981-10-5765-6_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A wealth of evidence suggests that proteins from prion protein (PrP) family contribute to tumorigenesis in many types of cancers, including pancreatic ductal adenocarcinoma (PDAC), breast cancer, glioblastoma, colorectal cancer, gastric cancer, melanoma, etc. It is well documented that PrP is a biomarker for PDAC, breast cancer, and gastric cancer. However, the underlying mechanisms remain unclear. The major reasons for cancer cell-caused patient death are metastasis and multiple drug resistance, both of which connect to physiological functions of PrP expressing in cancer cells. PrP enhances tumorigenesis by multiple pathways. For example, PrP existed as pro-PrP in most of the PDAC cell lines, thus increasing cancer cell motility by binding to cytoskeletal protein filamin A (FLNa). Using PDAC cell lines BxPC-3 and AsPC-1 as model system, we identified that dysfunction of glycosylphosphatidylinositol (GPI) anchor synthesis machinery resulted in the biogenesis of pro-PrP. In addition, in cancer cells without FLNa expression, pro-PrP can modify cytoskeleton structure by affecting cofilin/F-actin axis, thus influencing cancer cell movement. Besides pro-PrP, we showed that GPI-anchored unglycosylated PrP can elevate cell mobility by interacting with VEGFR2, thus stimulating cell migration under serum-free condition. Besides affecting cancer cell motility, overexpressed PrP or doppel (Dpl) in cancer cells has been shown to increase cell proliferation, multiple drug resistance, and angiogenesis, thus, proteins from PrP gene family by affecting important processes via multiple pathways for cancer cell growth exacerbating tumorigenesis.
Collapse
|
17
|
Haigh CL, McGlade AR, Collins SJ. MEK1 transduces the prion protein N2 fragment antioxidant effects. Cell Mol Life Sci 2015; 72:1613-29. [PMID: 25391659 PMCID: PMC11114014 DOI: 10.1007/s00018-014-1777-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
The prion protein (PrP(C)) when mis-folded is causally linked with a group of fatal neurodegenerative diseases called transmissible spongiform encephalopathies or prion diseases. PrP(C) normal function is still incompletely defined with such investigations complicated by PrP(C) post-translational modifications, such as internal cleavage, which feasibly could change, activate, or deactivate the function of this protein. Oxidative stress induces β-cleavage and the N-terminal product of this cleavage event, N2, demonstrates a cellular protective response against oxidative stress. The mechanisms by which N2 mediates cellular antioxidant protection were investigated within an in vitro cell model. N2 protection was regulated by copper binding to the octarepeat domain, directing the route of internalisation, which stimulated MEK1 signalling. Precise membrane interactions of N2, determined by copper saturation, and involving both the copper-co-ordinating octarepeat region and the structure conferred upon the N-terminal polybasic region by the proline motif, were essential for the correct engagement of this pathway. The phenomenon of PrP(C) post-translational modification, such as cleavage and copper co-ordination, as a molecular "switch" for activation or deactivation of certain functions provides new insight into the apparent multi-functionality of PrP(C).
Collapse
Affiliation(s)
- C. L. Haigh
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
| | - A. R. McGlade
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
- Mental Health Research Institute, The University of Melbourne, Parkville, Melbourne, 3010 Australia
| | - S. J. Collins
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|