1
|
Henke L, Ghorbani A, Mole SE. The use of nanocarriers in treating Batten disease: A systematic review. Int J Pharm 2025; 670:125094. [PMID: 39694161 DOI: 10.1016/j.ijpharm.2024.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The neuronal ceroid lipofuscinoses, commonly known as Batten disease, are a group of lysosomal storage disorders affecting children. There is extensive central nervous system and retinal degeneration, resulting in seizures, vision loss and a progressive cognitive and motor decline. Enzyme replacement and gene therapies are being developed, and mRNA and oligonucleotide therapies are more recently being considered. Overcoming the challenges of the blood-brain barrier and blood-ocular barrier is crucial for effectively targeting the brain and eye, whatever the therapeutic approach. Nanoparticles and extracellular vesicles are small carriers that can encapsulate a cargo and pass through these cell barriers. They have been investigated as drug carriers for other pathologies and could be a promising treatment strategy for Batten disease. Their use in gene, enzyme, or mRNA replacement therapy of all lysosomal storage disorders, including Mucopolysaccharidoses, Niemann-Pick diseases, and Fabry disease, is investigated in this systematic review. Different nanocarriers can efficiently target the lysosome and cross the barriers into the brain and eyes. This supports continued exploration of nanocarriers as potential future treatment options for Batten disease.
Collapse
Affiliation(s)
- Larissa Henke
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ali Ghorbani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Kim S, Jung UJ, Kim SR. Role of Oxidative Stress in Blood-Brain Barrier Disruption and Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:1462. [PMID: 39765790 PMCID: PMC11673141 DOI: 10.3390/antiox13121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Upregulation of reactive oxygen species (ROS) levels is a principal feature observed in the brains of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). In these diseases, oxidative stress can disrupt the blood-brain barrier (BBB). This disruption allows neurotoxic plasma components, blood cells, and pathogens to enter the brain, leading to increased ROS production, mitochondrial dysfunction, and inflammation. Collectively, these factors result in protein modification, lipid peroxidation, DNA damage, and, ultimately, neural cell damage. In this review article, we present the mechanisms by which oxidative damage leads to BBB breakdown in brain diseases. Additionally, we summarize potential therapeutic approaches aimed at reducing oxidative damage that contributes to BBB disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
3
|
Zhao D, Huang ZK, Liang Y, Li ZJ, Zhang XW, Li KH, Wu H, Zhang XD, Li CS, An D, Sun X, An MX, Shi JX, Bao YJ, Tian L, Wang DF, Wu AH, Chen YH, Zhao WD. Monocytes Release Pro-Cathepsin D to Drive Blood-to-Brain Transcytosis in Diabetes. Circ Res 2024; 134:e17-e33. [PMID: 38420756 DOI: 10.1161/circresaha.123.323622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, China (D.Z., K.-H.L., X.-D.Z., Y.-J.B.)
| | - Zeng-Kang Huang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Yu Liang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Zhi-Jun Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Xue-Wei Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Kun-Hang Li
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, China (D.Z., K.-H.L., X.-D.Z., Y.-J.B.)
| | - Hao Wu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Xu-Dong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, China (D.Z., K.-H.L., X.-D.Z., Y.-J.B.)
| | - Chen-Sheng Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Dong An
- School of Mechanical Engineering, Shenyang Jianzhu University, China (D.A.)
| | - Xue Sun
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Ming-Xin An
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Yi-Jun Bao
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shenyang, China (D.Z., K.-H.L., X.-D.Z., Y.-J.B.)
| | - Li Tian
- Department of Gerontology (L.T., D.-F.W.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Di-Fei Wang
- Department of Gerontology (L.T., D.-F.W.), Shengjing Hospital of China Medical University, Shenyang, China
| | - An-Hua Wu
- Department of Neurosurgery (A.-H.W.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China (D.Z., Z.-K.H., Y.L., Z.-J.L., X.-W.Z., H.W., C.-S.L., X.S., M.-X.A., J.-X.S., Y.-H.C., W.-D.Z.)
| |
Collapse
|
4
|
Mustafa A, Elkhamisy F, Arghiani N, Pranjol MZI. Potential crosstalk between pericytes and cathepsins in the tumour microenvironment. Biomed Pharmacother 2023; 164:114932. [PMID: 37236029 DOI: 10.1016/j.biopha.2023.114932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer remains a formidable global health challenge, and as such, investigators are constantly exploring underlying mechanisms that drive its progression. One area of interest is the role of lysosomal enzymes, such as cathepsins, in regulating cancer growth and development in the tumour microenvironment (TME). Pericytes, a key component of vasculature, play a key role in regulating blood vessel formation in the TME, have been shown to be influenced by cathepsins and their activity. Although cathepsins such as cathepsins D and L have been shown to induce angiogenesis, currently no direct link is known between pericytes and cathepsins interaction. This review aims to shed light on the potential interplay between pericytes and cathepsins in the TME, highlighting the possible implications for cancer therapy and future research directions.
Collapse
Affiliation(s)
- A Mustafa
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - F Elkhamisy
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - N Arghiani
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - M Z I Pranjol
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
5
|
Endothelial Dysfunction in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032909. [PMID: 36769234 PMCID: PMC9918222 DOI: 10.3390/ijms24032909] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood-brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer's disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.
Collapse
|
6
|
FKN/NR Signaling Pathway Regulates Hippocampal Inflammatory Responses: the Survival of Hippocampal Neurons in Diabetic Rats with Chronic Unpredictable Mild Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8980627. [PMID: 36072409 PMCID: PMC9444384 DOI: 10.1155/2022/8980627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Aim To investigate the mechanism via which FKN/CX3CR1 signaling abnormalities mediate N-methyl-D-aspartic acid receptor (NMDA) overexcitation-induced hippocampal neuronal injury in diabetic rats complicated with depression (DD). Methods Sixty rats were randomly divided into 5 groups. The depression-like behaviors of the rats were evaluated by open field test and Morris water maze. The pathological changes of hippocampus in DD rats were observed by HE staining. The blood levels of inflammatory factors (IL-1β, TNF-α, and IL-6) and neurotransmitters (D-serine and glutamic acid) were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of BDNF, A1 receptor (A1R), A2 receptor (A2R), A3 receptor (A3R), calmodulin dependent kinase II (CaMKII), CX3CR1, CX3CL1 (FKN), NR2A, and NR2B proteins were detected by immunohistochemistry and Western-blotting. Results Compared with the normal control group, blood glucose level increased significantly and body weight decreased in T2DM group and T2DMC group. In addition, the number of spontaneous activities significantly decreased and the capability of learning and memory was attenuated in T2DMC group and Chronic Stress group. The blood levels of IL-1β, TNF-α, IL-6, glutamate (Glu), and D-serine significantly increased in each model group. After intervention with CX3CR1 antibody, the expressions of BDNF, CaMK II, A1R, and A3R increased and those of A2R, CX3CR1, FKN, NR2A, and NR2B decreased. Conclusion In the diabetic state, the binding of FKN to CX3CR1 increases, which regulates a variety of adenosine receptors. When it exerts its effect on neurons, the overactivation of NR results in neuronal injury and causes depression.
Collapse
|
7
|
Role of pericytes in blood-brain barrier preservation during ischemia through tunneling nanotubes. Cell Death Dis 2022; 13:582. [PMID: 35790716 PMCID: PMC9256725 DOI: 10.1038/s41419-022-05025-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
Crosstalk mechanisms between pericytes, endothelial cells, and astrocytes preserve integrity and function of the blood-brain-barrier (BBB) under physiological conditions. Long intercellular channels allowing the transfer of small molecules and organelles between distant cells called tunneling nanotubes (TNT) represent a potential substrate for energy and matter exchanges between the tripartite cellular compartments of the BBB. However, the role of TNT across BBB cells under physiological conditions and in the course of BBB dysfunction is unknown. In this work, we analyzed the TNT's role in the functional dialog between human brain endothelial cells, and brain pericytes co-cultured with human astrocytes under normal conditions or after exposure to ischemia/reperfusion, a condition in which BBB breakdown occurs, and pericytes participate in the BBB repair. Using live time-lapse fluorescence microscopy and laser-scanning confocal microscopy, we found that astrocytes form long TNT with pericytes and endothelial cells and receive functional mitochondria from both cell types through this mechanism. The mitochondrial transfer also occurred in multicellular assembloids of human BBB that reproduce the three-dimensional architecture of the BBB. Under conditions of ischemia/reperfusion, TNT formation is upregulated, and astrocytes exposed to oxygen-glucose deprivation were rescued from apoptosis by healthy pericytes through TNT-mediated transfer of functional mitochondria, an effect that was virtually abolished in the presence of TNT-destroying drugs. The results establish a functional role of TNT in the crosstalk between BBB cells and demonstrate that TNT-mediated mitochondrial transfer from pericytes rescues astrocytes from ischemia/reperfusion-induced apoptosis. Our data confirm that the pericytes might play a pivotal role in preserving the structural and functional integrity of BBB under physiological conditions and participate in BBB repair in brain diseases.
Collapse
|
8
|
Domowicz MS, Chan WC, Claudio-Vázquez P, Henry JG, Ware CB, Andrade J, Dawson G, Schwartz NB. Global Brain Transcriptome Analysis of a Tpp1 Neuronal Ceroid Lipofuscinoses Mouse Model. ASN Neuro 2020; 11:1759091419843393. [PMID: 31003587 PMCID: PMC6475859 DOI: 10.1177/1759091419843393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In humans, homozygous mutations in the TPP1 gene results in loss
of tripeptidyl peptidase 1 (TPP1) enzymatic activity, leading to late infantile
neuronal ceroid lipofuscinoses disease. Using a mouse model that targets the
Tpp1 gene and recapitulates the pathology and clinical
features of the human disease, we analyzed end-stage (4 months) transcriptional
changes associated with lack of TPP1 activity. Using RNA sequencing technology,
Tpp1 expression changes in the forebrain/midbrain and
cerebellum of 4-month-old homozygotes were compared with strain-related
controls. Transcriptional changes were found in 510 and 1,550 gene transcripts
in forebrain/midbrain and cerebellum, respectively, from
Tpp1-deficient brain tissues when compared with age-matched
controls. Analysis of the differentially expressed genes using the Ingenuity™
pathway software, revealed increased neuroinflammation activity in microglia and
astrocytes that could lead to neuronal dysfunction, particularly in the
cerebellum. We also observed upregulation in the production of nitric oxide and
reactive oxygen species; activation of leukocyte extravasation signals and
complement pathways; and downregulation of major transcription factors involved
in control of circadian rhythm. Several of these expression changes were
confirmed by independent quantitative polymerase chain reaction and histological
analysis by mRNA in situ hybridization, which allowed for an
in-depth anatomical analysis of the pathology and provided independent
confirmation of at least two of the major networks affected in this model. The
identification of differentially expressed genes has revealed new lines of
investigation for this complex disorder that may lead to novel therapeutic
targets.
Collapse
Affiliation(s)
- Miriam S Domowicz
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Wen-Ching Chan
- 2 Center for Research Informatics, Biological Sciences Division, The University of Chicago, IL, USA
| | | | - Judith G Henry
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Christopher B Ware
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Jorge Andrade
- 2 Center for Research Informatics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Glyn Dawson
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Nancy B Schwartz
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA.,3 Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, IL, USA
| |
Collapse
|
9
|
Wang PW, Hung YC, Lin TY, Fang JY, Yang PM, Chen MH, Pan TL. Comparison of the Biological Impact of UVA and UVB upon the Skin with Functional Proteomics and Immunohistochemistry. Antioxidants (Basel) 2019; 8:antiox8120569. [PMID: 31756938 PMCID: PMC6943602 DOI: 10.3390/antiox8120569] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
The skin provides protection against external stimuli; however, solar radiation, including ultraviolet A (UVA) and ultraviolet B (UVB), can result in profound influences on skin structure and function, which eventually impairs its molecular characteristics and normal physiology. In the current study, we performed proteome tools combined with an immunohistological approach on nude mouse skin to evaluate the adverse responses elicited by UVA and UVB irradiation, respectively. Our findings indicated that UVA significantly promotes oxidative damage in DNA, the breakdown of collagen fiber in the dermis, and the apoptosis of fibroblasts, which leads to inflammation. Meanwhile, UVB administration was found to enhance the carbonylation of various proteins and the proliferation of keratinocyte. Particularly, raspberry extract, which has been confirmed to have antioxidative efficacy, could effectively attenuate ultraviolet (UV) radiation-caused cell death. Network analysis also implied that UVA and UVB induce quite different responses, and that UVA results in cell death as well as inflammation mediated by caspase-3 and activator protein 1/nuclear factor kappa-light-chain-enhancer of activated B cells (AP-1/NF-κB), while UVB predominantly increases the risk of skin carcinogenesis involved with oncogenes such as p53 and c-Myc. Taken together, functional proteomics coordinated with histological experiments could allow for a high-throughput study to explore the alterations of crucial proteins and molecules linked to skin impacts subjected to UVA and UVB exposure.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan;
| | - Yu-Chiang Hung
- Department of Chinese Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan;
| | - Tung-Yi Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Pei-Ming Yang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11042, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5105); Fax: +886-3-211-8700
| |
Collapse
|
10
|
Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration. Cell Commun Signal 2019; 17:26. [PMID: 30894190 PMCID: PMC6425710 DOI: 10.1186/s12964-019-0340-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Pericytes, as a key cellular part of the blood-brain barrier, play an important role in the maintenance of brain neurovascular unit. These cells participate in brain homeostasis by regulating vascular development and integrity mainly through secreting various factors. Pericytes per se show different restorative properties after blood-brain barrier injury. Upon the occurrence of brain acute and chronic diseases, pericytes provoke immune cells to regulate neuro-inflammatory conditions. Loss of pericytes in distinct neurologic disorders intensifies blood-brain barrier permeability and leads to vascular dementia. The therapeutic potential of pericytes is originated from the unique morphological shape, location, and their ability in providing vast paracrine and juxtacrine interactions. A subset of pericytes possesses multipotentiality and exhibit trans-differentiation capacity in the context of damaged tissue. This review article aimed to highlight the critical role of pericytes in restoration of the blood-brain barrier after injury by focusing on the dynamics of pericytes and cross-talk with other cell types.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Golgasht St., Azadi Ave, Tabriz, 5166614756, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Golgasht St., Azadi Ave, Tabriz, 5166614756, Iran.
| |
Collapse
|
11
|
Chai YL, Chong JR, Weng J, Howlett D, Halsey A, Lee JH, Attems J, Aarsland D, Francis PT, Chen CP, Lai MKP. Lysosomal cathepsin D is upregulated in Alzheimer's disease neocortex and may be a marker for neurofibrillary degeneration. Brain Pathol 2018; 29:63-74. [PMID: 30051532 DOI: 10.1111/bpa.12631] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of β-amyloid plaques (AP) and neurofibrillary tangles (NFT) in the cortex, together with synaptic loss and amyloid angiopathy. Perturbations in the brain lysosomal system, including the cathepsin family of proteases, have been implicated in AD where they may be involved in proteolytic clearance of misfolded and abnormally aggregated peptides. However, the status of cathepsin D (catD) is unclear in Lewy body dementia, the second most common form of neurodegenerative dementia after AD, and characterized by Lewy bodies (LB) containing aggregated α-synuclein. Furthermore, earlier reports of catD changes in AD have not been entirely consistent. We measured CatD immunoreactivities in the temporal (Brodmann area BA21) and parietal (BA40) cortices of well characterized AD brains as well as two clinical subtypes of Lewy body dementia, namely Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB), known to show varying degrees of concomitant AD pathology. Increased catD immunoreactivities in AD were found for both neocortical regions measured, where they also correlated with neuropathological NFT scores and phosphorylated pSer396 tau burden, and appeared to co-localize at least partly to NFT-containing neurons. In contrast, catD was increased only in BA40 in DLB and not at all in PDD, did not correlate with LB scores, and did not appreciably co-localize with α-synuclein inclusions. Our study suggests that catD upregulation may be an adaptive response to AD-related processes leading to neurofibrillary degeneration, but may not be directly associated with formation of α-synuclein inclusions in Lewy body dementia.
Collapse
Affiliation(s)
- Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Jiaju Weng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - David Howlett
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Andrea Halsey
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Jasinda H Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Johannes Attems
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Dag Aarsland
- Department NVS, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institute, Huddinge, Sweden
| | - Paul T Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
12
|
Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 2017; 134:208-217. [PMID: 29128308 DOI: 10.1016/j.neuropharm.2017.11.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022]
Abstract
The past two decades have witnessed remarkable advances in oxidative stress research, particularly in the context of ischemic brain injury. Oxidative stress in ischemic tissues compromises the integrity of the genome, resulting in DNA lesions, cell death in neurons, glial cells, and vascular cells, and impairments in neurological recovery after stroke. As DNA is particularly vulnerable to oxidative attack, cells have evolved the ability to induce multiple DNA repair mechanisms, including base excision repair (BER), nucleotide excision repair (NER) and non-homogenous endpoint jointing (NHEJ). Defective DNA repair is tightly correlated with worse neurological outcomes after stroke, whereas upregulation of DNA repair enzymes, such as APE1, OGG1, and XRCC1, improves long-term functional recovery following stroke. Indeed, DNA damage and repair are now known to play critical roles in fundamental aspects of stroke recovery, such as neurogenesis, white matter recovery, and neurovascular unit remodeling. Several DNA repair enzymes are essential for comprehensive neural repair mechanisms after stroke, including Polβ and NEIL3 for neurogenesis, APE1 for white matter repair, Gadd45b for axonal regeneration, and DNA-PKs for neurovascular remodeling. This review discusses the emerging role of DNA damage and repair in functional recovery after stroke and highlights the contribution of DNA repair to regenerative elements after stroke. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
|
13
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 606] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Saffari A, Kölker S, Hoffmann GF, Ebrahimi-Fakhari D. Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases. J Inherit Metab Dis 2017; 40:631-640. [PMID: 28477283 DOI: 10.1007/s10545-017-0048-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
Abstract
Lysosomal storage diseases (LSD) are inborn errors of metabolism resulting in multisystem disease. Central nervous system involvement, often with progressive neurodegeneration, accounts for a large portion of the morbidity and mortality seen in many LSD. Available treatments fail to prevent or correct neurologic symptoms and decline. Emerging evidence points to an important role for mitochondrial dysfunction in the pathogenesis and progression of LSD-associated neurodegeneration. Mitochondrial dysfunction in LSD is characterized by alterations in mitochondrial mass, morphology and function. Disturbed mitochondrial metabolism in the CNS may lead to excessive production of mitochondrial reactive oxygen species and dysregulated calcium homeostasis. These metabolic disturbances ultimately result in mitochondria-induced apoptosis and neuronal degeneration. Here, we review the current evidence for mitochondrial dysfunction in neuronal models of seven LSD, including GM1-gangliosidosis, mucopolysaccharidosis IIIC, multiple sulfatase deficiency, Krabbe disease, Gaucher disease, Niemann Pick disease type C and the neural ceroid lipofuscinoses and outline current experimental therapies aimed at restoring mitochondrial function and neuroprotection in LSD.
Collapse
Affiliation(s)
- Afshin Saffari
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, 3 Blackfan Circle, CLS 14060, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Stem Cells as a Promising Tool for the Restoration of Brain Neurovascular Unit and Angiogenic Orientation. Mol Neurobiol 2016; 54:7689-7705. [DOI: 10.1007/s12035-016-0286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
16
|
Fang JY, Wang PW, Huang CH, Chen MH, Wu YR, Pan TL. Skin aging caused by intrinsic or extrinsic processes characterized with functional proteomics. Proteomics 2016; 16:2718-2731. [PMID: 27459910 DOI: 10.1002/pmic.201600141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
The skin provides protection against environmental stress. However, intrinsic and extrinsic aging causes significant alteration to skin structure and components, which subsequently impairs molecular characteristics and biochemical processes. Here, we have conducted an immunohistological investigation and established the proteome profiles on nude mice skin to verify the specific responses during aging caused by different factors. Our results showed that UVB-elicited aging results in upregulation of proliferating cell nuclear antigen and strong oxidative damage in DNA, whereas chronological aging abolished epidermal cell growth and increased the expression of caspase-14, as well as protein carbonylation. Network analysis indicated that the programmed skin aging activated the ubiquitin system and triggered obvious downregulation of 14-3-3 sigma, which might accelerate the loss of cell growth capacity. On the other hand, UVB stimulation enhanced inflammation and the risk of skin carcinogenesis. Collectively, functional proteomics could provide large-scale investigation of the potent proteins and molecules that play important roles in skin subjected to both intrinsic and extrinsic aging.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hsun Huang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Ru Wu
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
17
|
Cai Z, Zhao B, Deng Y, Shangguan S, Zhou F, Zhou W, Li X, Li Y, Chen G. Notch signaling in cerebrovascular diseases (Review). Mol Med Rep 2016; 14:2883-98. [PMID: 27574001 PMCID: PMC5042775 DOI: 10.3892/mmr.2016.5641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood-brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bin Zhao
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanqing Deng
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shouqin Shangguan
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Faming Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenqing Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoli Li
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanfeng Li
- Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
18
|
Zhong Y, Chen AF, Zhao J, Gu YJ, Fu GX. Serum levels of cathepsin D, sirtuin1, and endothelial nitric oxide synthase are correlatively reduced in elderly healthy people. Aging Clin Exp Res 2016; 28:641-5. [PMID: 26462844 DOI: 10.1007/s40520-015-0472-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 02/01/2023]
Abstract
AIM Nowadays, cathepsins have been reported to be related to aging. The aim of this study is to evaluate the association between serum levels of cathepsin D (CTSD) and human aging. METHODS In the present study, we analyzed the serum levels of CTSD and its relation with levels of sirtuin1 (SIRT1) and endothelial nitric oxide synthase (eNOS) activity, which were known having an important role in aging. This study recruited 90 healthy subjects (62 men and 28 women), which were subdivided into three groups with respect to age: young (about 19 years old, n = 30), middle-age (about 40 years old, n = 30), and aged (above 65 years old, n = 30). Altered serum levels of CTSD and SIRT1 were measured by enzyme-linked immunosorbent assay, and eNOS activity was assessed by the conversion of 14(C)-L-arginine to 14(C)-L-citrulline. RESULTS Elderly subjects had significantly lower CTSD, SIRT1, and eNOS than younger ones. Serum levels of CTSD were negatively correlated with age. There was a statistically significant positive correlation between serum levels of CTSD, eNOS, and SIRT1. CONCLUSIONS This study shows lower serum CTSD values in elderly subjects than in younger subjects. This is the first to demonstrate age-related changes in cathepsin D levels in humans and the association between SIRT1 and eNOS.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, People's Republic of China
| | - Alex F Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jian Zhao
- Shanghai Sixth People's Hospital Jinshan Branch, No. 147 Health Road, Zhujing Town, Jinshan District, Shanghai, 201500, People's Republic of China
| | - Ying-Jia Gu
- Shanghai Sixth People's Hospital Jinshan Branch, No. 147 Health Road, Zhujing Town, Jinshan District, Shanghai, 201500, People's Republic of China
| | - Guo-Xiang Fu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
19
|
Dohgu S, Takata F, Kataoka Y. Brain pericytes regulate the blood-brain barrier function. Nihon Yakurigaku Zasshi 2015; 146:63-5. [PMID: 26165344 DOI: 10.1254/fpj.146.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Ketscher A, Ketterer S, Dollwet-Mack S, Reif U, Reinheckel T. Neuroectoderm-specific deletion of cathepsin D in mice models human inherited neuronal ceroid lipofuscinosis type 10. Biochimie 2015; 122:219-26. [PMID: 26232697 DOI: 10.1016/j.biochi.2015.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 01/13/2023]
Abstract
Cathepsin D (Ctsd) is a ubiquitously expressed aspartic protease functioning primarily in the acidic endosomal/lysosomal cell compartment. At an age of 26 ± 1 days, mice with constitutive Ctsd deficiency (Ctsd(-/-)) die from a neurodegenerative lysosomal storage disease equivalent to the congenital neuronal ceroid lipofuscinosis (NCL) type 10 in humans. In addition to neurodegeneration, Ctsd(-/-) mice exhibit a loss of CD4(+)/CD8(+)-double-positive thymocytes and an atrophy of the intestinal mucosa. To date, it is not understood if and how these phenotypes are triggering each other. In addition, the cell type causing initiation of NCL in Ctsd(-/-) mice has not been identified yet. To investigate the tissue- and cell type-specific functions of Ctsd, we generated a novel conditional Ctsd allele by flanking the second exon with loxP sites. We compared a ubiquitous Ctsd deletion with a deletion of the protease by a Nestin-promoter controlled Cre-recombinase expression in cells of neuroectodermal origin, e.g. in neurons and astroglia, but not in microglia. First, we confirmed absence of Ctsd in the respective cell- and tissue types. The neuroectoderm specific knock-out mice survived about 5.5 days longer than the mice with ubiquitous Ctsd deletion, which was in line with the progress in brain histopathology. Atrophies of thymus and small intestine were delayed to similar extend. The conditional Ctsd knock-out mouse model established in this study not only demonstrates that this type of NCL is initiated by cells of neuroectodermal origin, but will also help to further study tissue-specific functions of Ctsd in vivo.
Collapse
Affiliation(s)
- Anett Ketscher
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Stephanie Ketterer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), D-79106 Freiburg, Germany; German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Susanne Dollwet-Mack
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Ulrike Reif
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), D-79106 Freiburg, Germany; German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
21
|
Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int J Mol Sci 2015; 16:11873-91. [PMID: 26016499 PMCID: PMC4490420 DOI: 10.3390/ijms160611873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/22/2023] Open
Abstract
Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER) stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM) and the control rats were separated using two-dimensional gel electrophoresis (2-DE) to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT) and cathepsin D (CATD), which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2) protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia-reperfusion-related neuronal injury.
Collapse
|
22
|
Northrop NA, Yamamoto BK. Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 2015; 9:69. [PMID: 25788874 PMCID: PMC4349189 DOI: 10.3389/fnins.2015.00069] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.
Collapse
Affiliation(s)
- Nicole A Northrop
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| |
Collapse
|