1
|
Pilski A, Graves SM. Repeated Methamphetamine Administration Results in Axon Loss Prior to Somatic Loss of Substantia Nigra Pars Compacta and Locus Coeruleus Neurons in Male but Not Female Mice. Int J Mol Sci 2023; 24:13039. [PMID: 37685846 PMCID: PMC10487759 DOI: 10.3390/ijms241713039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Methamphetamine (meth) is a neurotoxic psychostimulant that increases monoamine oxidase (MAO)-dependent mitochondrial oxidant stress in axonal but not somatic compartments of substantia nigra pars compacta (SNc) and locus coeruleus (LC) neurons. Chronic meth administration results in the degeneration of SNc and LC neurons in male mice, and MAO inhibition is neuroprotective, suggesting that the deleterious effects of chronic meth begin in axons before advancing to the soma of SNc and LC neurons. To test this hypothesis, mice were administered meth (5 mg/kg) for 14, 21, or 28 days, and SNc and LC axonal lengths and numbers of neurons were quantified. In male mice, the SNc and LC axon lengths decreased with 14, 21, and 28 days of meth, whereas somatic loss was only observed after 28 days of meth; MAO inhibition (phenelzine; 20 mg/kg) prevented axonal and somatic loss of SNc and LC neurons. In contrast, chronic (28-day) meth had no effect on the axon length or numbers of SNc or LC neurons in female mice. The results demonstrate that repeated exposure to meth produces SNc and LC axonal deficits prior to somatic loss in male subjects, consistent with a dying-back pattern of degeneration, whereas female mice are resistant to chronic meth-induced degeneration.
Collapse
Affiliation(s)
| | - Steven M. Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
2
|
Ma HT, Zhang HC, Zuo ZF, Liu YX. Heterogeneous organization of Locus coeruleus: An intrinsic mechanism for functional complexity. Physiol Behav 2023; 268:114231. [PMID: 37172640 DOI: 10.1016/j.physbeh.2023.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Locus coeruleus (LC) is a small nucleus located deep in the brainstem that contains the majority of central noradrenergic neurons, which provide the primary source of noradrenaline (NA) throughout the entire central nervous system (CNS).The release of neurotransmitter NA is considered to modulate arousal, sensory processing, attention, aversive and adaptive stress responses as well as high-order cognitive function and memory, with the highly ramified axonal arborizations of LC-NA neurons sending wide projections to the targeted brain areas. For over 30 years, LC was thought to be a homogeneous nucleus in structure and function due to the widespread uniform release of NA by LC-NA neurons and simultaneous action in several CNS regions, such as the prefrontal cortex, hippocampus, cerebellum, and spinal cord. However, recent advances in neuroscience tools have revealed that LC is probably not so homogeneous as we previous thought and exhibits heterogeneity in various aspects. Accumulating studies have shown that the functional complexity of LC may be attributed to its heterogeneity in developmental origin, projection patterns, topography distribution, morphology and molecular organization, electrophysiological properties and sex differences. This review will highlight the heterogeneity of LC and its critical role in modulating diverse behavioral outcomes.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China.
| | - Hao-Chen Zhang
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhong-Fu Zuo
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ying-Xue Liu
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
3
|
Rawal B, Rancic V, Ballanyi K. NMDA Enhances and Glutamate Attenuates Synchrony of Spontaneous Phase-Locked Locus Coeruleus Network Rhythm in Newborn Rat Brain Slices. Brain Sci 2022; 12:brainsci12050651. [PMID: 35625039 PMCID: PMC9140167 DOI: 10.3390/brainsci12050651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Locus coeruleus (LC) neurons are controlled by glutamatergic inputs. Here, we studied in brain slices of neonatal rats NMDA and glutamate effects on phase-locked LC neuron spiking at ~1 Hz summating to ~0.2 s-lasting bell-shaped local field potential (LFP). NMDA: 10 μM accelerated LFP 1.7-fold, whereas 25 and 50 μM, respectively, increased its rate 3.2- and 4.6-fold while merging discrete events into 43 and 56% shorter oscillations. After 4–6 min, LFP oscillations stopped every 6 s for 1 s, resulting in ‘oscillation trains’. A dose of 32 μM depolarized neurons by 8.4 mV to cause 7.2-fold accelerated spiking at reduced jitter and enhanced synchrony with the LFP, as evident from cross-correlation. Glutamate: 25–50 μM made rhythm more irregular and the LFP pattern could transform into 2.7-fold longer-lasting multipeak discharge. In 100 μM, LFP amplitude and duration declined. In 25–50 μM, neurons depolarized by 5 mV to cause 3.7-fold acceleration of spiking that was less synchronized with LFP. Both agents: evoked ‘post-agonist depression’ of LFP that correlated with the amplitude and kinetics of Vm hyperpolarization. The findings show that accelerated spiking during NMDA and glutamate is associated with enhanced or attenuated LC synchrony, respectively, causing distinct LFP pattern transformations. Shaping of LC population discharge dynamics by ionotropic glutamate receptors potentially fine-tunes its influence on brain functions.
Collapse
|
4
|
Waselenchuk Q, Ballanyi K. Autocrine Neuromodulation and Network Activity Patterns in the Locus Coeruleus of Newborn Rat Slices. Brain Sci 2022; 12:brainsci12040437. [PMID: 35447969 PMCID: PMC9024645 DOI: 10.3390/brainsci12040437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Already in newborns, the locus coeruleus (LC) controls multiple brain functions and may have a complex organization as in adults. Our findings in newborn rat brain slices indicate that LC neurons (i) generate at ~1 Hz a ~0.3 s-lasting local field potential (LFP) comprising summated phase-locked single spike discharge, (ii) express intrinsic ‘pacemaker’ or ‘burster’ properties and (iii) receive solely excitatory or initially excitatory−secondary inhibitory inputs. μ-opioid or ɑ2 noradrenaline receptor agonists block LFP rhythm at 100−250 nM whereas slightly lower doses transform its bell-shaped pattern into slower crescendo-shaped multipeak bursts. GABAA and glycine receptors hyperpolarize LC neurons to abolish rhythm which remains though unaffected by blocking them. Rhythm persists also during ionotropic glutamate receptor (iGluR) inhibition whereas <10 mV depolarization during iGluR agonists accelerates spiking to cause subtype-specific fast (spindle-shaped) LFP oscillations. Similar modest neuronal depolarization causing a cytosolic Ca2+ rise occurs (without effect on neighboring astrocytes) during LFP acceleration by CNQX activating a TARP-AMPA-type iGluR complex. In contrast, noradrenaline lowers neuronal Ca2+ baseline via ɑ2 receptors, but evokes an ɑ1 receptor-mediated ‘concentric’ astrocytic Ca2+ wave. In summary, the neonatal LC has a complex (possibly modular) organization to enable discharge pattern transformations that might facilitate discrete actions on target circuits.
Collapse
|
5
|
Matschke LA, Komadowski MA, Stöhr A, Lee B, Henrich MT, Griesbach M, Rinné S, Geibl FF, Chiu WH, Koprich JB, Brotchie JM, Kiper AK, Dolga AM, Oertel WH, Decher N. Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease. Sci Rep 2022; 12:3180. [PMID: 35210472 PMCID: PMC8873463 DOI: 10.1038/s41598-022-06832-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is clinically defined by the presence of the cardinal motor symptoms, which are associated with a loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta (SNpc). While SNpc neurons serve as the prototypical cell-type to study cellular vulnerability in PD, there is an unmet need to extent our efforts to other neurons at risk. The noradrenergic locus coeruleus (LC) represents one of the first brain structures affected in Parkinson's disease (PD) and plays not only a crucial role for the evolving non-motor symptomatology, but it is also believed to contribute to disease progression by efferent noradrenergic deficiency. Therefore, we sought to characterize the electrophysiological properties of LC neurons in two distinct PD models: (1) in an in vivo mouse model of focal α-synuclein overexpression; and (2) in an in vitro rotenone-induced PD model. Despite the fundamental differences of these two PD models, α-synuclein overexpression as well as rotenone exposure led to an accelerated autonomous pacemaker frequency of LC neurons, accompanied by severe alterations of the afterhyperpolarization amplitude. On the mechanistic side, we suggest that Ca2+-activated K+ (SK) channels are mediators of the increased LC neuronal excitability, as pharmacological activation of these channels is sufficient to prevent increased LC pacemaking and subsequent neuronal loss in the LC following in vitro rotenone exposure. These findings suggest a role of SK channels in PD by linking α-synuclein- and rotenone-induced changes in LC firing rate to SK channel dysfunction.
Collapse
Affiliation(s)
- Lina A Matschke
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany.,Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Marlene A Komadowski
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Annette Stöhr
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Bolam Lee
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Martin T Henrich
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Markus Griesbach
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Fanni F Geibl
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Wei-Hua Chiu
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - James B Koprich
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 8KD402, Toronto, ON, M5T 2S8, Canada
| | - Jonathan M Brotchie
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 8KD402, Toronto, ON, M5T 2S8, Canada
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Amalia M Dolga
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Wolfgang H Oertel
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany.,Hertie Senior Research Professor of the Charitable Hertie Foundation, 60323, Frankfurt am Main, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
6
|
Ihbe N, Le Prieult F, Wang Q, Distler U, Sielaff M, Tenzer S, Thal SC, Mittmann T. Adaptive Mechanisms of Somatostatin-Positive Interneurons after Traumatic Brain Injury through a Switch of α Subunits in L-Type Voltage-Gated Calcium Channels. Cereb Cortex 2021; 32:1093-1109. [PMID: 34411234 DOI: 10.1093/cercor/bhab268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022] Open
Abstract
Unilateral traumatic brain injury (TBI) causes cortical dysfunctions spreading to the primarily undamaged hemisphere. This phenomenon, called transhemispheric diaschisis, is mediated by an imbalance of glutamatergic versus GABAergic neurotransmission. This study investigated the role of GABAergic, somatostatin-positive (SST) interneurons in the contralateral hemisphere 72 h after unilateral TBI. The brain injury was induced to the primary motor/somatosensory cortex of glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice at postnatal days 19-21 under anesthesia in vivo. Single GFP+ interneurons of the undamaged, contralateral cortex were isolated by fluorescence-activated cell sorting and analyzed by mass spectrometry. TBI caused a switch of 2 α subunits of pore-forming L-type voltage-gated calcium channels (VGCC) in GABAergic interneurons, an increased expression of CaV1.3, and simultaneous ablation of CaV1.2. This switch was associated with 1) increased excitability of single SST interneurons in patch-clamp recordings and (2) a recovery from early network hyperactivity in the contralateral hemisphere in microelectrode array recordings of acute slices. The electrophysiological changes were sensitive to pharmacological blockade of CaV1.3 (isradipine, 100 nM). These data identify a switch of 2 α subunits of VGCCs in SST interneurons early after TBI as a mechanism to counterbalance post-traumatic hyperexcitability.
Collapse
Affiliation(s)
- Natascha Ihbe
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Florie Le Prieult
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Qi Wang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Malte Sielaff
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Serge C Thal
- Clinic for Anesthesiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
7
|
Farahani F, Azizi H, Janahmadi M, Seutin V, Semnanian S. Formalin-induced inflammatory pain increases excitability in locus coeruleus neurons. Brain Res Bull 2021; 172:52-60. [PMID: 33836239 DOI: 10.1016/j.brainresbull.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 11/19/2022]
Abstract
Chronic pain is recognized as an important problem in communities. The locus coeruleus (LC) with extensive ascending and descending projections has a critical role in modulating pain. Some studies indicate how the locus coeruleus-noradrenaline system can remain more active after nociceptive stimulation. In the present study, we examined whether formalin-induced inflammatory pain may affect the electrophysiological properties of LC neurons after 24 h. Inflammatory pain was induced by a subcutaneous injection of 2% formalin (10 μL) into the hind paw of 2-3 week-old male Wistar rats. After 24 h, horizontal slices of brain stem containing the locus coeruleus were prepared and whole-cell patch-clamp recordings were carried out on LC neurons. Findings revealed that LC neurons from formalin injected rats had a significant enhancement in firing rate, half-width and instantaneous frequency of action potentials, but their resting membrane potential, input resistance and afterhyperpolarization amplitude almost remained unchanged. In addition, action potential peak amplitude, maximum rise slope, maximum decay slope, first spike latency and rheobase current significantly decreased in LC neurons obtained from formalin-treated rats. Here, for the first time, we demonstrate that inflammatory pain after 24 h induces hyperexcitability in LC neurons, which in turn may result in changes in noradrenaline release and pain processing.
Collapse
Affiliation(s)
- Fatemeh Farahani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vincent Seutin
- Neurophysiology Unit, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Borodovitsyna O, Duffy BC, Pickering AE, Chandler DJ. Anatomically and functionally distinct locus coeruleus efferents mediate opposing effects on anxiety-like behavior. Neurobiol Stress 2020; 13:100284. [PMID: 33344735 PMCID: PMC7739179 DOI: 10.1016/j.ynstr.2020.100284] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
The locus coeruleus (LC) is a critical node in the stress response, and its activation has been shown to promote hypervigilance and anxiety-like behavior. This noradrenergic nucleus has historically been considered homogeneous with highly divergent neurons that operate en masse to collectively affect central nervous system function and behavioral state. However, in recent years, LC has been identified as a heterogeneous structure whose neurons innervate discrete terminal fields and contribute to distinct aspects of behavior. We have previously shown that in late adolescent male rats, an acute traumatic stressor, simultaneous physical restraint and exposure to predator odor, preferentially induces c-Fos expression in a subset of dorsal LC neurons and persistently increases anxiety-like behavior. To investigate how these neurons respond to and contribute to the behavioral response to stress, we used a combination of retrograde tracing, whole-cell patch clamp electrophysiology, and chemogenetics. Here we show that LC neurons innervating the central nucleus of the amygdala (CeA) and medial prefrontal cortex (mPFC) undergo distinct electrophysiological changes in response to stressor exposure and have opposing roles in mediating anxiety-like behavior. While neurons innervating CeA become more excitable in response to stress and promote anxiety-like behavior, those innervating mPFC become less excitable and appear to promote exploration. These findings show that LC neurons innervating distinct terminal fields have unique physiological responses to particular stimuli. Furthermore, these observations advance the understanding of the LC as a complex and heterogeneous structure whose neurons maintain unique roles in various forms of behavior. Locus coeruleus-central amygdala projections are hyperactive one week after stress. Locus coeruleus-prefrontal cortex projections are hypoactive one week after stress. Chemogenetic manipulation of each pathway distinctly affects anxiety-like behavior.
Collapse
Key Words
- AHP, afterhyperpolarization
- Anxiety-like behavior
- CRF, corticotropin releasing factor
- CeA, central nucleus of the amygdala
- Central nucleus of amygdala
- EPM, elevated plus maze
- LC, locus coeruleus
- Locus coeruleus
- Medial prefrontal cortex
- NE, norepinephrine
- OFT, open field test
- PBS, phosphate buffered saline
- Stress
- TMT, 2,4,5-trimethylthiazole
- aCSF, artificial cerebrospinal fluid
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Olga Borodovitsyna
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Brenna C Duffy
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS81TD, UK
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| |
Collapse
|
9
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
10
|
Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020; 11:371. [PMID: 32477246 PMCID: PMC7235306 DOI: 10.3389/fneur.2020.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is a small brainstem nucleus with widely distributed noradrenergic projections to the whole brain, and loss of LC neurons is a prominent feature of age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This article discusses the hypothesis that in early stages of neurodegenerative diseases, the discharge mode of LC neurons could be changed to a persistent high tonic discharge, which in turn might impair phasic discharge. Since phasic discharge of LC neurons is required for the release of high amounts of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective effects, persistent high tonic discharge of LC neurons could be a key factor in the progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS), a non-invasive technique that potentially increases phasic discharge of LC neurons, could therefore provide a non-pharmacological treatment approach in specific disease stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses the hypothesis that a persistent high tonic discharge of LC neurons might affect neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical tool in specific stages of AD and PD.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Selective neuronal vulnerability in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:61-89. [PMID: 32247375 DOI: 10.1016/bs.pbr.2020.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, disabling millions worldwide. Despite the imperative PD poses, at present, there is no cure or means of slowing progression. This gap is attributable to our incomplete understanding of the factors driving pathogenesis. Research over the past several decades suggests that both cell-autonomous and non-cell autonomous processes contribute to the neuronal dysfunction underlying PD symptoms. The thesis of this review is that an intersection of these processes governs the pattern of pathology in PD. Studies of substantia nigra pars compacta (SNc) dopaminergic neurons, whose loss is responsible for the core motor symptoms of PD, suggest that they have a combination of traits-a long, highly branched axon, autonomous activity, and elevated mitochondrial oxidant stress-that predispose them to non-cell autonomous drivers of pathogenesis, like misfolded forms of alpha-synuclein (α-SYN) and inflammation. The literature surrounding these issues will be briefly summarized, and the translational implications of an intersectional hypothesis of PD pathogenesis discussed.
Collapse
Affiliation(s)
| | - Enrico Zampese
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
12
|
Kawano H, Mitchell SB, Koh JY, Goodman KM, Harata NC. Calcium-induced calcium release in noradrenergic neurons of the locus coeruleus. Brain Res 2020; 1729:146627. [PMID: 31883849 DOI: 10.1016/j.brainres.2019.146627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
The locus coeruleus (LC) is a nucleus within the brainstem that consists of norepinephrine-releasing neurons. It is involved in broad processes including cognitive and emotional functions. Understanding the mechanisms that control the excitability of LC neurons is important because they innervate widespread brain regions. One of the key regulators is cytosolic calcium concentration ([Ca2+]c), the increases in which can be amplified by calcium-induced calcium release (CICR) from intracellular calcium stores. Although the electrical activities of LC neurons are regulated by changes in [Ca2+]c, the extent of CICR involvement in this regulation has remained unclear. Here we show that CICR hyperpolarizes acutely dissociated LC neurons of the rat and demonstrate the underlying pathway. When CICR was activated by extracellular application of 10 mM caffeine, LC neurons were hyperpolarized in the current-clamp mode of patch-clamp recording, and the majority of neurons showed an outward current in the voltage-clamp mode. This outward current was accompanied by increased membrane conductance, and its reversal potential was close to the K+ equilibrium potential, indicating that it is mediated by opening of K+ channels. The outward current was generated in the absence of extracellular calcium and was blocked when the calcium stores were inhibited by applying ryanodine. Pharmacological blockers indicated that it was mediated by Ca2+-activated K+ channels of the non-small conductance type. The application of caffeine increased [Ca2+]c, as visualized by fluorescence microscopy. These findings show CICR suppresses LC neuronal activity, and indicate its dynamic role in modulating the LC-mediated noradrenergic tone in the brain.
Collapse
Affiliation(s)
- Hiroyuki Kawano
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sara B Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jin-Young Koh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, IA, USA
| | - Kirsty M Goodman
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - N Charles Harata
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
13
|
Zhan Y, Raza MU, Yuan L, Zhu MY. Critical Role of Oxidatively Damaged DNA in Selective Noradrenergic Vulnerability. Neuroscience 2019; 422:184-201. [PMID: 31698021 DOI: 10.1016/j.neuroscience.2019.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
Abstract
An important pathology in Parkinson's disease (PD) is the earlier and more severe degeneration of noradrenergic neurons in the locus coeruleus (LC) than dopaminergic neurons in the substantia nigra. However, the basis of such selective vulnerability to insults remains obscure. Using noradrenergic and dopaminergic cell lines, as well as primary neuronal cultures from rat LC and ventral mesencephalon (VM), the present study compared oxidative DNA damage response markers after exposure of these cells to hydrogen peroxide (H2O2). The results showed that H2O2 treatment resulted in more severe cell death in noradrenergic cell lines SK-N-BE(2)-M17 and PC12 than dopaminergic MN9D cells. Furthermore, there were higher levels of oxidative DNA damage response markers in noradrenergic cells and primary neuronal cultures from the LC than dopaminergic cells and primary cultures from the VM. It included increased tail moments and tail lengths in Comet assay, and increased protein levels of phosphor-p53 and γ-H2AX after treatments with H2O2. Consistent with these measurements, exposure of SK-N-BE(2)-M17 cells to H2O2 resulted in higher levels of reactive oxygen species (ROS). Further experiments showed that exposure of SK-N-BE(2)-M17 cells to H2O2 caused an increased level of noradrenergic transporter, reduced protein levels of copper transporter (Ctr1) and 8-oxoGua DNA glycosylase, as well as amplified levels of Cav1.2 and Cav1.3 expression. Taken together, these experiments indicated that noradrenergic neuronal cells seem to be more vulnerable to oxidative damage than dopaminergic neurons, which may be related to the intrinsic characteristics of noradrenergic neuronal cells.
Collapse
Affiliation(s)
- Yanqiang Zhan
- Department of Neurology, Remin Hospital of the Wuhan University, Wuhan, China
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Lian Yuan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
14
|
Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis 2019; 127:114-130. [PMID: 30763678 DOI: 10.1016/j.nbd.2019.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear how selective neural circuits become vulnerable and finally undergo atrophy. We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein targets of Parkin activity, an ubiquitin E3 ligase. Thus, we now used aged Parkin-knockout (KO) mouse brain for a global quantification of ubiquitylated peptides by mass spectrometry (MS). This approach confirmed the most abundant substrate to be VDAC3, a mitochondrial outer membrane porin that modulates calcium flux, while uncovering also >3-fold dysregulations for neuron-specific factors. Ubiquitylation decreases were prominent for Hippocalcin (HPCA), Calmodulin (CALM1/CALML3), Pyruvate Kinase (PKM2), sodium/potassium-transporting ATPases (ATP1A1/2/3/4), the Rab27A-GTPase activating protein alpha (TBC1D10A) and an ubiquitin ligase adapter (DDB1), while strong increases occurred for calcium transporter ATP2C1 and G-protein subunits G(i)/G(o)/G(Tr). Quantitative immunoblots validated elevated abundance for the electrogenic pump ATP1A2, for HPCA as neuron-specific calcium sensor, which stimulates guanylate cyclases and modifies axonal slow afterhyperpolarization (sAHP), and for the calcium-sensing G-protein GNA11. We assessed if compensatory molecular regulations become insufficient over time, leading to functional deficits. Patch clamp experiments in acute Parkin-KO brain slices indeed revealed alterations of the electrophysiological properties in aged noradrenergic locus coeruleus (LC) neurons. LC neurons of aged Parkin-KO brain showed an acceleration of the spontaneous pacemaker frequency, a reduction in sAHP and shortening of action potential duration, without modulation of KCNQ potassium currents. These findings indicate altered calcium-dependent excitability in a PARK2 model of PD, mediated by diminished turnover of potential Parkin targets such as ATP1A2 and HPCA. The data also identified further novel Parkin substrate candidates like SIRT2, OTUD7B and CUL5. Our elucidation of neuron-specific mechanisms of PD pathogenesis helps to explain the known exceptional susceptibility of noradrenergic and dopaminergic projections to alterations of calcium homeostasis and its mitochondrial buffering.
Collapse
Affiliation(s)
- J Key
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - A K Mueller
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - S Gispert
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - L Matschke
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - I Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - O Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France; Inserm, U1127, Paris, F-75013, France; CNRS, UMR 7225, Paris, F-75013, France; Sorbonne Universités, Paris, F-75013, France
| | - C Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - N Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - G Auburger
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
TARP mediation of accelerated and more regular locus coeruleus network bursting in neonatal rat brain slices. Neuropharmacology 2019; 148:169-177. [PMID: 30629989 DOI: 10.1016/j.neuropharm.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Transmembrane AMPA receptor (AMPAR) regulatory proteins (TARP) increase neuronal excitability. However, it is unknown how TARP affect rhythmic neural network activity. Here we studied TARP effects on local field potential (LFP) bursting, membrane potential and cytosolic Ca2+ (Cai) in locus coeruleus neurons of newborn rat brain slices. LFP bursting was not affected by the unselective competitive ionotropic glutamate receptor antagonist kynurenic acid (2.5 mM). TARP-AMPAR complex activation with 25 μM CNQX accelerated LFP rhythm 2.2-fold and decreased its irregularity score from 63 to 9. Neuronal spiking was correspondingly 2.3-fold accelerated in association with a 2-5 mV depolarization and a modest Cai rise whereas Cai was unchanged in neighboring astrocytes. After blocking rhythmic activities with tetrodotoxin (1 μM), CNQX caused a 5-8 mV depolarization and also the Cai rise persisted. In tetrodotoxin, both responses were abolished by the non-competitive AMPAR antagonist GYKI 53655 (25 μM) which also reversed stimulatory CNQX effects in control solution. The CNQX-evoked Cai rise was blocked by the L-type voltage-activated Ca2+ channel inhibitor nifedipine (100 μM). The findings show that ionotropic glutamate receptor-independent neonatal locus coeruleus network bursting is accelerated and becomes more regular by activating a TARP-AMPAR complex. The associated depolarization-evoked L-type Ca2+ channel-mediated neuronal Cai rise may be pivotal to regulate locus coeruleus activity in cooperation with SK-type K+ channels. In summary, this is the first demonstration of TARP-mediated stimulation of neural network bursting. We hypothesize that TARP-AMPAR stimulation of rhythmic locus coeruleus output serves to fine-tune its control of multiple brain functions thus comprising a target for drug discovery.
Collapse
|
16
|
T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice. PLoS One 2018; 13:e0206986. [PMID: 30571684 PMCID: PMC6301769 DOI: 10.1371/journal.pone.0206986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
T-type calcium channels in the brain mediate the pathophysiology of epilepsy, pain, and sleep. Recently, we developed a novel therapeutic candidate, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a] pyridine]-2-ene-3-carboxylate), for Alzheimer's disease (AD). The cognitive improvement by SAK3 is closely associated with enhanced acetylcholine (ACh) release in the hippocampus. Since monoamines such as dopamine (DA), noradrenaline (NA), and serotonin (5-HT) are also involved in hippocampus-dependent learning and psychomotor behaviors in mice, we investigated the effects of SAK3 on these monoamine releases in the mouse brain. Oral administration of SAK3 (0.5 mg/kg, p.o.) significantly promoted DA and 5-HT releases in the naive mouse hippocampal CA1 region but not in the medial prefrontal cortex (mPFC), while SAK3 did not affect NA release in either brain region. The T-type calcium channel-specific inhibitor, NNC 55-0396 (1 μM) significantly antagonized SAK3-enhanced DA and 5-HT releases in the hippocampus. Interestingly, the α7 nicotinic ACh receptor (nAChR) antagonist, methyllycaconitine (1 nM) significantly inhibited DA release, and the α4 nAChR antagonist, dihydro-β-erythroidine (100 μM) significantly blocked both DA and 5-HT releases following SAK3 (0.5 mg/kg, p.o.) administration in the hippocampus. SAK3 did not alter basal monoamine contents both in the mPFC and hippocampus. SAK3 (0.5 mg/kg, p.o.) administration also significantly elevated DA and 5-HT releases in the hippocampal CA1 region of amyloid-precursor protein (APP)NL-GF knock-in (KI) mice. Moreover, hippocampal DA and 5-HT contents were significantly decreased in APPNL-GF KI mice. Taken together, our data suggest that SAK3 promotes monoamine DA and 5-HT releases by enhancing the T-type calcium channel and nAChR in the mouse hippocampus.
Collapse
|
17
|
Lillethorup TP, Glud AN, Alstrup AKO, Noer O, Nielsen EHT, Schacht AC, Landeck N, Kirik D, Orlowski D, Sørensen JCH, Doudet DJ, Landau AM. Longitudinal monoaminergic PET imaging of chronic proteasome inhibition in minipigs. Sci Rep 2018; 8:15715. [PMID: 30356172 PMCID: PMC6200778 DOI: 10.1038/s41598-018-34084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Impairment of the ubiquitin proteasome system has been implicated in Parkinson’s disease. We used positron emission tomography to investigate longitudinal effects of chronic intracerebroventricular exposure to the proteasome inhibitor lactacystin on monoaminergic projections and neuroinflammation. Göttingen minipigs were implanted in the cisterna magna with a catheter connected to a subcutaneous injection port. Minipigs were imaged at baseline and after cumulative doses of 200 and 400 μg lactacystin, respectively. Main radioligands included [11C]-DTBZ (vesicular monoamine transporter type 2) and [11C]-yohimbine (α2-adrenoceptor). [11C]-DASB (serotonin transporter) and [11C]-PK11195 (activated microglia) became available later in the study and we present their results in a smaller subset of animals for information purposes only. Striatal [11C]-DTBZ binding potentials decreased significantly by 16% after 200 μg compared to baseline, but the decrease was not sustained after 400 μg (n = 6). [11C]-yohimbine volume of distribution increased by 18–25% in the pons, grey matter and the thalamus after 200 μg, which persisted at 400 μg (n = 6). In the later subset of minipigs, we observed decreased [11C]-DASB (n = 5) and increased [11C]-PK11195 (n = 3) uptake after 200 μg. These changes may mimic monoaminergic changes and compensatory responses in early Parkinson’s disease.
Collapse
Affiliation(s)
- Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Ove Noer
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Erik H T Nielsen
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Anna C Schacht
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Natalie Landeck
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Dariusz Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Christian H Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Doris J Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark. .,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
18
|
Henrich MT, Geibl FF, Lee B, Chiu WH, Koprich JB, Brotchie JM, Timmermann L, Decher N, Matschke LA, Oertel WH. A53T-α-synuclein overexpression in murine locus coeruleus induces Parkinson's disease-like pathology in neurons and glia. Acta Neuropathol Commun 2018; 6:39. [PMID: 29747690 PMCID: PMC5946574 DOI: 10.1186/s40478-018-0541-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Degeneration of noradrenergic locus coeruleus neurons occurs during the prodromal phase of Parkinson's disease and contributes to a variety of non-motor symptoms, e.g. depression, anxiety and REM sleep behavior disorder. This study was designed to establish the first locus coeruleus α-synucleinopathy mouse model, which should provide sufficient information about the time-course of noradrenergic neurodegeneration, replicate cardinal histopathological features of the human Parkinson's disease neuropathology and finally lead to robust histological markers, which are sufficient to assess the pathological changes in a quantitative and qualitative way. We show that targeted viral vector-mediated overexpression of human mutant A53T-α-synuclein in vivo in locus coeruleus neurons of wild-type mice resulted in progressive noradrenergic neurodegeneration over a time frame of 9 weeks. Observed neuronal cell loss was accompanied by progressive α-synuclein phosphorylation, formation of proteinase K-resistant α-synuclein-aggregates, accumulation of Ubi-1- and p62-positive inclusions in microglia and induction of progressive micro- and astrogliosis. Apart from this local pathology, abundant α-synuclein-positive axons were found in locus coeruleus output regions, indicating rapid anterograde axonal transport of A53T-α-synuclein. Taken together, we present the first model of α-synucleinopathy in the murine locus coeruleus, replicating essential morphological features of human Parkinson's disease pathology. This new model may contribute to the research on prodromal Parkinson's disease, in respect to pathophysiology and the development of disease-modifying therapy.
Collapse
|
19
|
Calcium-activated SK potassium channels are key modulators of the pacemaker frequency in locus coeruleus neurons. Mol Cell Neurosci 2018. [DOI: 10.1016/j.mcn.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Post MR, Lieberman OJ, Mosharov EV. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease? Front Neurosci 2018; 12:161. [PMID: 29593491 PMCID: PMC5861202 DOI: 10.3389/fnins.2018.00161] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Several lines of evidence place alpha-synuclein (aSyn) at the center of Parkinson's disease (PD) etiology, but it is still unclear why overexpression or mutated forms of this protein affect some neuronal populations more than others. Susceptible neuronal populations in PD, dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the locus coeruleus (LC), are distinguished by relatively high cytoplasmic concentrations of dopamine and calcium ions. Here we review the evidence for the multi-hit hypothesis of neurodegeneration, including recent papers that demonstrate synergistic interactions between aSyn, calcium ions and dopamine that may lead to imbalanced protein turnover and selective susceptibility of these neurons. We conclude that decreasing the levels of any one of these toxicity mediators can be beneficial for the survival of SNpc and LC neurons, providing multiple opportunities for targeted drug interventions aimed at modifying the course of PD.
Collapse
Affiliation(s)
- Michael R Post
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Ori J Lieberman
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Eugene V Mosharov
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
21
|
Parkinson's Disease Is Not Simply a Prion Disorder. J Neurosci 2017; 37:9799-9807. [PMID: 29021297 DOI: 10.1523/jneurosci.1787-16.2017] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 12/31/2022] Open
Abstract
The notion that prion-like spreading of misfolded α-synuclein (α-SYN) causes Parkinson's disease (PD) has received a great deal of attention. Although attractive in its simplicity, the hypothesis is difficult to reconcile with postmortem analysis of human brains and connectome-mapping studies. An alternative hypothesis is that PD pathology is governed by regional or cell-autonomous factors. Although these factors provide an explanation for the pattern of neuronal loss in PD, they do not readily explain the apparently staged distribution of Lewy pathology in many PD brains, the feature of the disease that initially motivated the spreading hypothesis by Braak and colleagues. While each hypothesis alone has its shortcomings, a synthesis of the two can explain much of what we know about the etiopathology of PD.Dual Perspectives Companion Paper: Prying into the Prion Hypothesis for Parkinson's Disease, by Patrik Brundin and Ronald Melki.
Collapse
|
22
|
|
23
|
Schildknecht S, Di Monte DA, Pape R, Tieu K, Leist M. Tipping Points and Endogenous Determinants of Nigrostriatal Degeneration by MPTP. Trends Pharmacol Sci 2017; 38:541-555. [DOI: 10.1016/j.tips.2017.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
|
24
|
Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels. J Neurosci 2017; 37:3704-3720. [PMID: 28264982 DOI: 10.1523/jneurosci.0117-17.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022] Open
Abstract
While there is growing appreciation for diversity among ventral tegmental area dopamine neurons, much less is known regarding functional heterogeneity among the substantia nigra pars compacta (SNc) neurons. Here, we show that calbindin-positive dorsal tier and calbindin-negative ventral tier SNc dopaminergic neurons in mice comprise functionally distinct subpopulations distinguished by their dendritic calcium signaling, rebound excitation, and physiological responses to dopamine D2-receptor (D2) autoinhibition. While dopamine is known to inhibit action potential backpropagation, our experiments revealed an unexpected enhancement of excitatory responses and dendritic calcium signals in the presence of D2-receptor inhibition. Specifically, dopamine inhibition and direct hyperpolarization enabled the generation of low-threshold depolarizations that occurred in an all-or-none or graded manner, due to recruitment of T-type calcium channels. Interestingly, these effects occurred selectively in calbindin-negative dopaminergic neurons within the SNc. Thus, calbindin-positive and calbindin-negative SNc neurons differ substantially in their calcium channel composition and efficacy of excitatory inputs in the presence of dopamine inhibition.SIGNIFICANCE STATEMENT Substantia nigra dopaminergic neurons can be divided into two populations: the calbindin-negative ventral tier, which is vulnerable to neurodegeneration in Parkinson's disease, and the calbindin-positive dorsal tier, which is relatively resilient. Although tonic firing is similar in these subpopulations, we find that their responses to dopamine-mediated inhibition are strikingly different. During inhibition, calbindin-negative neurons exhibit increased sensitivity to excitatory inputs, which can then trigger large dendritic calcium transients due to strong expression of T-type calcium channels. Therefore, SNc neurons differ substantially in their calcium channel composition, which may contribute to their differential vulnerability. Furthermore, T-currents increase excitation efficacy onto calbindin-negative cells during dopamine inhibition, suggesting that shared inputs are differentially processed in subpopulations resulting in distinct downstream dopamine signals.
Collapse
|
25
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|