1
|
Lederbogen RC, Hoffjan S, Thiels C, Mau-Holzmann UA, Singer S, Yusenko MV, Nguyen HHP, Gerding WM. Optical Genome Mapping Reveals Disruption of the RASGRF2 Gene in a Patient with Developmental Delay Carrying a De Novo Balanced Reciprocal Translocation. Genes (Basel) 2024; 15:809. [PMID: 38927744 PMCID: PMC11203114 DOI: 10.3390/genes15060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
While balanced reciprocal translocations are relatively common, they often remain clinically silent unless they lead to the disruption of functional genes. In this study, we present the case of a boy exhibiting developmental delay and mild intellectual disability. Initial karyotyping revealed a translocation t(5;6)(q13;q23) between chromosomes 5 and 6 with limited resolution. Optical genome mapping (OGM) enabled a more precise depiction of the breakpoint regions involved in the reciprocal translocation. While the breakpoint region on chromosome 6 did not encompass any known gene, OGM revealed the disruption of the RASGRF2 (Ras protein-specific guanine nucleotide releasing factor 2) gene on chromosome 5, implicating RASGRF2 as a potential candidate gene contributing to the observed developmental delay in the patient. Variations in RASGRF2 have so far not been reported in developmental delay, but research on the RASGRF2 gene underscores its significance in various aspects of neurodevelopment, including synaptic plasticity, signaling pathways, and behavioral responses. This study highlights the utility of OGM in identifying breakpoint regions, providing possible insights into the understanding of neurodevelopmental disorders. It also helps affected individuals in gaining more knowledge about potential causes of their conditions.
Collapse
Affiliation(s)
- Rosa Catalina Lederbogen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| | - Charlotte Thiels
- Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany;
| | - Ulrike Angelika Mau-Holzmann
- Institute of Medical Genetics and Applied Genomics, University Tübingen, 72074 Tübingen, Germany; (U.A.M.-H.); (S.S.)
| | - Sylke Singer
- Institute of Medical Genetics and Applied Genomics, University Tübingen, 72074 Tübingen, Germany; (U.A.M.-H.); (S.S.)
| | - Maria Viktorovna Yusenko
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| | - Hoa Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| | - Wanda Maria Gerding
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| |
Collapse
|
2
|
Jimeno D, Lillo C, de la Villa P, Calzada N, Santos E, Fernández-Medarde A. GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina. Cells 2023; 12:2574. [PMID: 37947653 PMCID: PMC10650203 DOI: 10.3390/cells12212574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.
Collapse
Affiliation(s)
- David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | | | - Pedro de la Villa
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcalá de Henares, and IRYCIS, 28034 Madrid, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Jankowski M, Kaczmarek M, Wąsiatycz G, Dompe C, Mozdziak P, Jaśkowski JM, Piotrowska-Kempisty H, Kempisty B. Expression Profile of New Marker Genes Involved in Differentiation of Canine Adipose-Derived Stem Cells into Osteoblasts. Int J Mol Sci 2021; 22:6663. [PMID: 34206369 PMCID: PMC8269079 DOI: 10.3390/ijms22136663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells' application in regenerative medicine.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
4
|
Baltanás FC, García-Navas R, Santos E. SOS2 Comes to the Fore: Differential Functionalities in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22126613. [PMID: 34205562 PMCID: PMC8234257 DOI: 10.3390/ijms22126613] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS-PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.
Collapse
|
5
|
Fernández-Medarde A, Santos E. Ras GEF Mouse Models for the Analysis of Ras Biology and Signaling. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:361-395. [PMID: 33977490 DOI: 10.1007/978-1-0716-1190-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animal models have become in recent years a crucial tool to understand the physiological and pathological roles of many cellular proteins. They allow analysis of the functional consequences of [1] complete or partial (time- or organ-limited) removal of specific proteins (knockout animals), [2] the exchange of a wild-type allele for a mutant or truncated version found in human illnesses (knock-in), or [3] the effect of overexpression of a given protein in the whole body or in specific organs (transgenic mice). In this regard, the study of phenotypes in Ras GEF animal models has allowed researchers to find specific functions for otherwise very similar proteins, uncovering their role in physiological contexts such as memory formation, lymphopoiesis, photoreception, or body homeostasis. In addition, mouse models have been used to unveil the functional role of Ras GEFs under pathological conditions, including Noonan syndrome, skin tumorigenesis, inflammatory diseases, diabetes, or ischemia among others. In the following sections, we will describe the methodological approaches employed for Ras GEF animal model analyses, as well as the main discoveries made.
Collapse
Affiliation(s)
- Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain
| |
Collapse
|
6
|
Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey JM, Lines G, Kerins C, Mueller AK, Zetterberg H, Hardy J, Ryan NS, Fox NC, Lashley T, Wray S. Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Rep 2021; 34:108615. [PMID: 33440141 PMCID: PMC7809623 DOI: 10.1016/j.celrep.2020.108615] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer's disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and β-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.
Collapse
Affiliation(s)
- Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| | - Christopher Lovejoy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lachlan Harris
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Nanet Willumsen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jackie M Casey
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Georgie Lines
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caoimhe Kerins
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Anika K Mueller
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
7
|
|