1
|
Zhang M, Qian X, Wei Z, Chen K, Ding H, Jia J, Li Y, Liu S, Yang K, Wang J, Chen H, Zhang W. Micro-Infusion of 5-HT1a Receptor Antagonists into the Ventral Subiculum Ameliorate MK-801 Induced Schizophrenia-Like Behavior in Rats. Neuroscience 2024; 552:115-125. [PMID: 38909674 DOI: 10.1016/j.neuroscience.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Recent studies have shown that the 5-HT1a receptor (5-HT1aR) in the central 5-HT (Serotonergic) system is involved in the pathophysiology of schizophrenia through its various receptors, and the dysfunction of the ventral hippocampus may be a key causative factor in schizophrenia. To date, whether the 5-HT1a receptor is involved in ventral hippocampal dysfunction and its internal mechanism remain unclear. In this study, schizophrenia-like animal model was induced by intraperitoneal injection of aspartate receptor antagonist MK-801 in male Sprague Dawley rats, and the role of 5-HT1aR in this animal model was investigated by bilaterally micro-infusing the 5-HT1aR antagonist WAY100635 into the ventral subiculum (vSub) of the hippocampus of rats. Behavioral experiments such as open field test (OFT) and prepulse inhibition (PPI) were performed. The results showed that MK-801 induced hyperactivity and impaired prepulse inhibition in rats, whereas, micro-infusion of 5-HT1aR antagonist WAY100635 into the vSub ameliorated these phenomena. Immunofluorescence analysis revealed that WAY100635 significantly increased the c-Fos expression in vSub. Western blot and immunohistochemical analysis showed that MK-801 induced up-regulation of 5-HT1aR and phospho-extracellular regulated protein kinase (p-ERK) pathway, while micro-infusion of the WAY100635 down-regulated 5-HT1aR and p-ERK in the vSub. Therefore, the results of the present study suggested that in vSub, the 5-HT1aR antagonist WAY100635 may attenuate MK-801-induced schizophrenia-like activity by modulating excitatory neurons and downregulating p-ERK.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu Province, PR China; School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Ziwei Wei
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Kai Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Hongqun Ding
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Junhai Jia
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Ying Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Siyu Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Kun Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Jia Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| | - Huanxin Chen
- Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.
| | - Weining Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Vega-Rivera NM, González-Trujano ME, Luna-Angula A, Sánchez-Chapul L, Estrada-Camarena E. Antidepressant-like effects of the Punica granatum and citalopram combination are associated with structural changes in dendritic spines of granule cells in the dentate gyrus of rats. Front Pharmacol 2023; 14:1211663. [PMID: 37900157 PMCID: PMC10613096 DOI: 10.3389/fphar.2023.1211663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Natural products such as phytoestrogens-enriched foods or supplements have been considered as an alternative therapy to reduce depressive symptoms associated with menopause. It is known that the aqueous extract of Punica granatum (AE-PG) exerts antidepressant-like effects by activating β-estrogen receptors and facilitates the antidepressant response of the clinical drug citalopram (CIT). However, the effects on neuroplasticity are unknown. Objectvie investigated the antidepressant-like response of combining AE-PG and CIT at sub-optimal doses, analyzing their effects on the formation and maturation of dendrite spines in granule cells as well as on the dendrite complexity. Methods: Ovariectomized Wistar rats (3-month-old) were randomly assigned to one of the following groups: A) control (saline solution as vehicle of CIT and AE-PG, B) AE-PG at a sub-threshold dose (vehicle of CIT plus AE-PG at 0.125 mg/kg), C) CIT at a sub-threshold dose (0.77 mg/kg plus vehicle of AE-PG), and D) a combination of CIT plus AE-PG (0.125 mg/kg and 0.77 mg/kg, respectively). All rats were treated intraperitoneally for 14 days. Antidepressant-like effects were evaluated using the force swimming test test (FST). The complexity of dendrites and the number and morphology of dendrite spines of neurons were assessed in the dentate gyrus after Golgi-Cox impregnation. The expressions of the mature brain-derived neurotrophic factor (mBDNF) in plasma and of mBDNF and synaptophysin in the hippocampus, as markers of synaptogenesis, were also determined. Results: Administration of CIT combined with AE-PG, but not alone, induced a significant antidepressant-like effect in the FST with an increase in the dendritic complexity and the number of dendritic spines in the dentate gyrus (DG) of the hippocampus, revealed by the thin and stubby categories of neurons at the granular cell layer. At the same time, an increase of mBDNF and synaptophysin expression was observed in the hippocampus of rats that received the combination of AE-PG and CIT.
Collapse
Affiliation(s)
- Nelly-Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Alexandra Luna-Angula
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| |
Collapse
|
5
|
Yang JS, Gao FF, Yang XX, Liang F, Yang ZJ, Chen J, Zhang YX, Yan CX. The 5-HT 7 receptors in the VLO contribute to the development of morphine-induced behavioral sensitization in rats. Neurochem Int 2023:105566. [PMID: 37339717 DOI: 10.1016/j.neuint.2023.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
The 5-hydroxytryptamine 7 receptor (5-HT7R) is one of the most recently cloned serotonin receptors which have been implicated in many physiological and pathological processes including drug addiction. Behavioral sensitization is the progressive process during which re-exposure to drugs intensified the behavioral and neurochemical responses to drugs. Our previous study has demonstrated that the ventrolateral orbital cortex (VLO) is critical for morphine-induced reinforcing effect. The aim of the present study was to investigate the effect of 5-HT7Rs in the VLO on morphine-induced behavioral sensitization and their underlying molecular mechanisms. Our results showed that a single injection of morphine, followed by a low challenge dose could induce behavioral sensitization. Microinjection of the selective 5-HT7R agonist AS-19 into the VLO during the development phase significantly increased morphine-induced hyperactivity. Microinjection of the 5-HT7R antagonist SB-269970 suppressed acute morphine-induced hyperactivity and the induction of behavioral sensitization, but had no effect on the expression of behavioral sensitization. In addition, the phosphorylation of AKT (Ser 473) was increased during the expression phase of morphine-induced behavioral sensitization. Suppression of the induction phase could also block the increase of p-AKT (Ser 473). In conclusion, we demonstrated that 5-HT7Rs and p-AKT in the VLO at least partially contribute to morphine-induced behavioral sensitization.
Collapse
Affiliation(s)
- Jing-Si Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University) of the National Health Commission, Xi'an, Shaanxi, 710061, China; Academy of Bio-evidence Science, Science and Technology Innovation Port in Western China, Xi'an Jiaotong University, Xi-Xian New District, Shaanxi, 710115, China
| | - Fei-Fei Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University) of the National Health Commission, Xi'an, Shaanxi, 710061, China; Academy of Bio-evidence Science, Science and Technology Innovation Port in Western China, Xi'an Jiaotong University, Xi-Xian New District, Shaanxi, 710115, China
| | - Xi-Xi Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University) of the National Health Commission, Xi'an, Shaanxi, 710061, China; Academy of Bio-evidence Science, Science and Technology Innovation Port in Western China, Xi'an Jiaotong University, Xi-Xian New District, Shaanxi, 710115, China
| | - Feng Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University) of the National Health Commission, Xi'an, Shaanxi, 710061, China
| | - Zhuo-Jin Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University) of the National Health Commission, Xi'an, Shaanxi, 710061, China; Academy of Bio-evidence Science, Science and Technology Innovation Port in Western China, Xi'an Jiaotong University, Xi-Xian New District, Shaanxi, 710115, China
| | - Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University) of the National Health Commission, Xi'an, Shaanxi, 710061, China; Academy of Bio-evidence Science, Science and Technology Innovation Port in Western China, Xi'an Jiaotong University, Xi-Xian New District, Shaanxi, 710115, China
| | - Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University) of the National Health Commission, Xi'an, Shaanxi, 710061, China; Academy of Bio-evidence Science, Science and Technology Innovation Port in Western China, Xi'an Jiaotong University, Xi-Xian New District, Shaanxi, 710115, China.
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University) of the National Health Commission, Xi'an, Shaanxi, 710061, China; Academy of Bio-evidence Science, Science and Technology Innovation Port in Western China, Xi'an Jiaotong University, Xi-Xian New District, Shaanxi, 710115, China.
| |
Collapse
|
6
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
7
|
Rodríguez-Lavado J, Alarcón-Espósito J, Mallea M, Lorente A. A new paradigm shift in antidepressant therapy? From dual-action to multitarget-directed ligands. Curr Med Chem 2022; 29:4896-4922. [PMID: 35301942 DOI: 10.2174/0929867329666220317121551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Major Depressive Disorder is a chronic, recurring, and potentially fatal disease affecting up to 20% of the global population. Since the monoamine hypothesis was proposed more than 60 years ago, only a few relevant advances have been achieved, with very little disease course changing, from a pharmacological perspective. Moreover, since negative efficacy studies with novel molecules are frequent, many pharmaceutical companies have put new studies on hold. Fortunately, relevant clinical studies are currently being performed, and extensive striving is being developed by universities, research centers, and other public and private institutions. Depression is no longer considered a simple disease but a multifactorial one. New research fields are emerging in what could be a paradigm shift: the multitarget approach beyond monoamines. In this review, we summarize the present and the past of antidepressant drug discovery, with the aim to shed some light on the current state of the art in clinical and preclinical advances to face this increasingly devastating disease.
Collapse
Affiliation(s)
- Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Jazmín Alarcón-Espósito
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Michael Mallea
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Alejandro Lorente
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| |
Collapse
|
8
|
Liu K, Garcia A, Park JJ, Toliver AA, Ramos L, Aizenman CD. Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes. Neuroscience 2021; 467:110-121. [PMID: 34048796 DOI: 10.1016/j.neuroscience.2021.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
Although selective serotonin reuptake inhibitors are commonly prescribed for prenatal depression, there exists controversy over adverse effects of SSRI use on fetal development. Few studies have adequately isolated outcomes due to SSRI exposure and those due to maternal psychiatric conditions. Here, we directly investigated outcomes of exposure to widely-used SSRIs Fluoxetine and Citalopram on the developing nervous system of Xenopus laevis tadpoles, using an integrative experimental approach. We exposed tadpoles to low doses of Citalopram and Fluoxetine during a critical developmental period and found that different experimental groups displayed opposing behavioral effects. While both groups showed reduced schooling behavior, the Fluoxetine group showed increased seizure susceptibility and reduced startle habituation. In contrast, Citalopram treated tadpoles had decreased seizure susceptibility and increased habituation. Both groups had abnormal dendritic morphology in the optic tectum, a brain area important for behaviors tested. Whole-cell electrophysiological recordings of tectal neurons showed no differences in synaptic function; however, tectal cells from Fluoxetine-treated tadpoles had decreased voltage gated K+ currents while cells in the Citalopram group had increased K+ currents. Both behavioral and electrophysiological findings indicate that cells and circuits in the Fluoxetine treated optic tecta are hyperexcitable, while the Citalopram group exhibits decreased excitability. Taken together, these results show that early developmental exposure to SSRIs is sufficient to induce neurodevelopmental effects, however these effects can be complex and vary depending on the SSRI. This may explain some discrepancies across human studies, and further underscores the importance of serotonergic signaling for the developing nervous system.
Collapse
Affiliation(s)
- Karine Liu
- Department of Neuroscience, Brown University, United States
| | - Alfonso Garcia
- Department of Neuroscience, Brown University, United States
| | - Jenn J Park
- Department of Neuroscience, Brown University, United States
| | | | | | | |
Collapse
|
9
|
Villas-Boas GR, Lavorato SN, Paes MM, de Carvalho PMG, Rescia VC, Cunha MS, de Magalhães-Filho MF, Ponsoni LF, de Carvalho AAV, de Lacerda RB, da S. Leite L, da S. Tavares-Henriques M, Lopes LAF, Oliveira LGR, Silva-Filho SE, da Silveira APS, Cuman RKN, de S. Silva-Comar FM, Comar JF, do A. Brasileiro L, dos Santos JN, de Freitas WR, Leão KV, da Silva JG, Klein RC, Klein MHF, da S. Ramos BH, Fernandes CKC, de L. Ribas DG, Oesterreich SA. Modulation of the Serotonergic Receptosome in the Treatment of Anxiety and Depression: A Narrative Review of the Experimental Evidence. Pharmaceuticals (Basel) 2021; 14:ph14020148. [PMID: 33673205 PMCID: PMC7918669 DOI: 10.3390/ph14020148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) receptors are found throughout central and peripheral nervous systems, mainly in brain regions involved in the neurobiology of anxiety and depression. 5-HT receptors are currently promising targets for discovering new drugs for treating disorders ranging from migraine to neuropsychiatric upsets, such as anxiety and depression. It is well described in the current literature that the brain expresses seven types of 5-HT receptors comprising eighteen distinct subtypes. In this article, we comprehensively reviewed 5-HT1-7 receptors. Of the eighteen 5-HT receptors known today, thirteen are G protein-coupled receptors (GPCRs) and represent targets for approximately 40% of drugs used in humans. Signaling pathways related to these receptors play a crucial role in neurodevelopment and can be modulated to develop effective therapies to treat anxiety and depression. This review presents the experimental evidence of the modulation of the “serotonergic receptosome” in the treatment of anxiety and depression, as well as demonstrating state-of-the-art research related to phytochemicals and these disorders. In addition, detailed aspects of the pharmacological mechanism of action of all currently known 5-HT receptor families were reviewed. From this review, it will be possible to direct the rational design of drugs towards new therapies that involve signaling via 5-HT receptors.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
- Correspondence: ; Tel.: +55-(77)-3614-3152
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Pablinny M. G. de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Luis F. Ponsoni
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Adryano Augustto Valladao de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Roseli B. de Lacerda
- Department of Pharmacology, Center for Biological Sciences, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Lais da S. Leite
- Collegiate Biomedicine, SulAmérica College, Rua Gláuber Rocha, 66, Jardim Paraíso, Luís Eduardo Magalhães CEP 47850-000, BA, Brazil;
| | - Matheus da S. Tavares-Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal Universityof Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - Luiz A. F. Lopes
- Teaching and Research Manager at the University Hospital—Federal University of Grande Dourados (HU/EBSERH-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, Unigran Capital University Center, RuaBalbina de Matos, 2121, Jarddim Universitário, Dourados CEP 79.824-900, MS, Brazil;
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State Universityof Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas CEP 45988-058, BA, Brazil;
| | - Katyuscya V. Leão
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Jonatas G. da Silva
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Raphael C. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Mary H. F. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Cristiane K. C. Fernandes
- University Center of Montes Belos, Av. Hermógenes Coelho s/n, Setor Universitário, São Luís de Montes Belos CEP 76100-000, GO, Brazil;
| | - Dayane G. de L. Ribas
- Gaus College and Course, Rua Severino Vieira, 60, Centro, Barreiras CEP 47800-160, BA, Brazil;
| | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, MS, Brazil;
| |
Collapse
|
10
|
Vahid-Ansari F, Albert PR. Rewiring of the Serotonin System in Major Depression. Front Psychiatry 2021; 12:802581. [PMID: 34975594 PMCID: PMC8716791 DOI: 10.3389/fpsyt.2021.802581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved.
Collapse
Affiliation(s)
- Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
11
|
Prasad S, Ponimaskin E, Zeug A. Serotonin receptor oligomerization regulates cAMP-based signaling. J Cell Sci 2019; 132:jcs.230334. [PMID: 31371490 DOI: 10.1242/jcs.230334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022] Open
Abstract
Protein-protein interaction is often investigated using quantitative molecular microscopy with Förster resonant energy transfer (FRET). Here, we combined 'linear unmixing FRET' (lux-FRET) with the simultaneous application of a FRET-based biosensor for cAMP to investigate the oligomerization between the 5-HT7 receptor (5-HT7R, also known as HTR7) and the 5-HT1A receptor (5-HT1AR, also known as HTR1A) and its importance for cAMP signaling. We found that the 5-HT7R not only stimulates cAMP production, but also forms hetero-oligomers with 5-HT1AR, which blocks the inhibitory effect of the latter. 5-HT7R signaling, however, is not affected by this hetero-oligomerization. By modeling the kinetics of intracellular cAMP level changes in relation to the 5-HT7R:5-HT1AR stoichiometry, we were able to decipher the complex signaling characteristics of endogenous serotonin receptors in cultured hippocampal neurons. Our findings indicate that serotonergic signaling is not only modulated by the concentration of an individual receptor but also by its specific interaction with other receptors in endogenous systems. We conclude that the regulated ratio of serotonin receptors in immature and mature neurons may be critically involved in both the onset and response to treatments of psychiatric diseases, such as anxiety and depression.
Collapse
Affiliation(s)
- Sonal Prasad
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.,Department of Behavioral Neurogenomics, Institute of Cytology and Genetics, Lavrentyeva av., 10 630090, Novosibirsk, Russia
| | - Andre Zeug
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
12
|
Franco R, Villa M, Morales P, Reyes-Resina I, Gutiérrez-Rodríguez A, Jiménez J, Jagerovic N, Martínez-Orgado J, Navarro G. Increased expression of cannabinoid CB 2 and serotonin 5-HT 1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2019; 152:58-66. [PMID: 30738036 DOI: 10.1016/j.neuropharm.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/07/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2 (CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical sections were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.
| | - María Villa
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Irene Reyes-Resina
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Ana Gutiérrez-Rodríguez
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Department of Biochemistry and Physiology. Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Glinská G, Krajčíková K, Zakutanská K, Shylenko O, Kondrakhova D, Tomašovičová N, Komanický V, Mašlanková J, Tomečková V. Noninvasive diagnostic methods for diabetes mellitus from tear fluid. RSC Adv 2019; 9:18050-18059. [PMID: 35520589 PMCID: PMC9064664 DOI: 10.1039/c9ra02078k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/08/2019] [Indexed: 12/03/2022] Open
Abstract
Diabetes mellitus and prolonged hyperglycemia can cause diabetic retinopathy. Diabetic retinopathy arises from damage to retinal vessels and, in its final stages, causes blindness. The early stages are often asymptomatic and although regular screening of diabetic patients is recommended, the beginning of diabetic retinopathy is insufficiently detected. The diagnostic potential of fluorescence spectroscopy, infrared spectroscopy and atomic force microscopy as the untraditional methods for diabetes mellitus was investigated using tear fluid. In our pilot study the structural changes of tear fluid of patients with diabetes mellitus after insulin and oral antidiabetic drug treatment was compared with healthy subjects. The results of analysis, infrared spectroscopy and atomic force microscopy confirmed structural changes in tear fluid of patients in comparison with the tear fluid of healthy subjects. Using new experimental laboratory methods in future could contribute to an improvement in diagnosis of diabetes mellitus and other selected ocular diseases using tear fluid. In our pilot study we assessed the diagnostic potential of FS, IRS and AFM for diabetes mellitus using tear fluid.![]()
Collapse
Affiliation(s)
- Gabriela Glinská
- Department of Medical and Clinical Biochemistry
- Faculty of Medicine
- Pavol Jozef Šafárik University in Košice
- 040 11 Košice
- Slovakia
| | - Kristína Krajčíková
- Department of Medical and Clinical Biochemistry
- Faculty of Medicine
- Pavol Jozef Šafárik University in Košice
- 040 11 Košice
- Slovakia
| | | | - Oleg Shylenko
- Department of Condensed Matter Physics
- Institute of Physics
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- 041 54 Košice
| | - Daria Kondrakhova
- Department of Condensed Matter Physics
- Institute of Physics
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- 041 54 Košice
| | | | - Vladimír Komanický
- Department of Condensed Matter Physics
- Institute of Physics
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- 041 54 Košice
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry
- Faculty of Medicine
- Pavol Jozef Šafárik University in Košice
- 040 11 Košice
- Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry
- Faculty of Medicine
- Pavol Jozef Šafárik University in Košice
- 040 11 Košice
- Slovakia
| |
Collapse
|
14
|
Wang QQ, Wang CM, Cheng BH, Yang CQ, Bai B, Chen J. Signaling transduction regulated by 5-hydroxytryptamine 1A receptor and orexin receptor 2 heterodimers. Cell Signal 2018; 54:46-58. [PMID: 30481562 DOI: 10.1016/j.cellsig.2018.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/09/2022]
Abstract
As G-protein-coupled receptors (GPCRs), 5-hydroxytryptamine 1A receptor (5-HT1AR) and orexin receptor 2 (OX2R) regulate the levels of the cellular downstream molecules. The heterodimers of different GPCRs play important roles in various of neurological diseases. Moreover, 5-HT1AR and OX2R are involved in the pathogenesis of neurological diseases such as depression with deficiency of hippocampus plasticity. However, the direct interaction of the two receptors remains elusive. In the present study, we firstly demonstrated the heterodimer formation of 5-HT1AR and OX2R. Exchange protein directly activated by cAMP (Epac) cAMP bioluminescence resonance energy transfer (BRET) biosensor analysis revealed that the expression levels of cellular cAMP significantly increased in HEK293T cells transfected with the two receptors compared with the 5-HT1AR group. Additionally, the cellular level of calcium was upregulated robustly in HEK293T cells co-transfected with 5-HT1AR and OX2R group after agonist treatment. Furthermore, western blotting data showed that 5-HT1AR and OX2R heterodimer decreased the levels of phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element-binding protein (CREB). These results not only unraveled the formation of 5-HT1AR and OX2R heterodimer but also suggested that the heterodimer affected the downstream signaling pathway, which will provide new insights into the function of the two receptors in the brain.
Collapse
Affiliation(s)
- Qin-Qin Wang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Chun-Mei Wang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Bao-Hua Cheng
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Chun-Qing Yang
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China
| | - Bo Bai
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China.
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Colleges of Shandong, Jining 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
15
|
Modica MN, Lacivita E, Intagliata S, Salerno L, Romeo G, Pittalà V, Leopoldo M. Structure-Activity Relationships and Therapeutic Potentials of 5-HT 7 Receptor Ligands: An Update. J Med Chem 2018; 61:8475-8503. [PMID: 29767995 DOI: 10.1021/acs.jmedchem.7b01898] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Serotonin 5-HT7 receptor (5-HT7R) has been the subject of intense research efforts because of its presence in brain areas such as the hippocampus, hypothalamus, and cortex. Preclinical data link the 5-HT7R to a variety of central nervous system processes including the regulation of circadian rhythms, mood, cognition, pain processing, and mechanisms of addiction. 5-HT7R blockade has antidepressant effects and may ameliorate cognitive deficits associated with schizophrenia. 5-HT7R has been recently shown to modulate neuronal morphology, excitability, and plasticity, thus contributing to shape brain networks during development and to remodel neuronal wiring in the mature brain. Therefore, the activation of 5-HT7R has been proposed as a therapeutic approach for neurodevelopmental and neuropsychiatric disorders associated with abnormal neuronal connectivity. This Perspective celebrates the silver jubilee of the discovery of 5-HT7R by providing a survey of recent studies on the medicinal chemistry of 5-HT7R ligands and on the neuropharmacology of 5-HT7R.
Collapse
Affiliation(s)
- Maria N Modica
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 Bari , Italy
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy , University of Florida , Medical Science Building, 1345 Center Drive , Gainesville , Florida 32610 , United States
| | - Loredana Salerno
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Giuseppe Romeo
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Valeria Pittalà
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
16
|
Zhang P, Xu R, Guo Y, Qin J, Dai Y, Liu N, Wu C. DL-3-n-butylphthalide promotes dendrite development in cortical neurons subjected to oxygen-glucose deprivation/reperfusion. Cell Biol Int 2018; 42:1041-1049. [PMID: 29696738 DOI: 10.1002/cbin.10980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhang
- Affiliated Bayi Brain Hospital; The PLA Army General Hospital; Beijing 100700 China
| | - Ruxiang Xu
- Affiliated Bayi Brain Hospital; The PLA Army General Hospital; Beijing 100700 China
| | - Yang Guo
- Department of Neurology; Zhujiang Hospital; Guangzhou 510282 China
| | - Jiazhen Qin
- Affiliated Bayi Brain Hospital; The PLA Army General Hospital; Beijing 100700 China
| | - Yiwu Dai
- Affiliated Bayi Brain Hospital; The PLA Army General Hospital; Beijing 100700 China
| | - Ning Liu
- Affiliated Bayi Brain Hospital; The PLA Army General Hospital; Beijing 100700 China
| | - Cuiying Wu
- Affiliated Bayi Brain Hospital; The PLA Army General Hospital; Beijing 100700 China
| |
Collapse
|