1
|
Alipour MB, Davoudi M, Farsiani H, Sarkhosh M, Gharib S, Miri HH. The effect of medical face masks on inhalation risk of bacterial bioaerosols in hospital waste decontamination station. Sci Rep 2024; 14:26259. [PMID: 39482346 PMCID: PMC11527977 DOI: 10.1038/s41598-024-69088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
There is insufficient research on bioaerosols in hospital waste decontamination stations. This study aimed to investigate the effect of three-layer and N95 masks in reducing the inhalation risk of bacterial bioaerosols in a waste decontamination station at a teaching hospital. Active sampling was conducted on five different days at three locations: the yard, resting room, and autoclave room in three different modes: without a mask, with a three-layer mask, and with an N95 mask. Bacterial bioaerosols passing through the masks were identified using biochemical tests and polymerase chain reaction (PCR). The median concentration and interquartile range (IQR) of bacterial bioaerosols was 217.093 (230.174) colony-forming units per cubic meter (CFU/m3), which is higher than the recommended amount by Pan American Health Organization (PAHO). The resting room had high contamination levels, with a median (IQR) of 321.9 (793.529) CFU/m3 of bacterial bioaerosols. The maximum concentration of bioaerosols was also recorded in the same room (2443.282 CFU/m3). The concentration of bacterial bioaerosols differed significantly between using a three-layer or N95 mask and not using a mask (p-value < 0.001). The non-carcinogenic risk level was acceptable in all cases, except in the resting room without a mask (Hazard Quotient (HQ) = 2.07). The predominant bacteria were Gram-positive cocci (33.98%). Micrococci (three-layer mask = 51.28%, N95 mask = 50%) and Coagulase-negative Staphylococci (three-layer mask = 30.77%, N95 mask = 31.82%) were the most abundant bioaerosols passing through the masks. The results obtained are useful for managerial decisions in hospital waste decontamination stations to reduce exposure to bioaerosols and develop useful guidelines.
Collapse
Affiliation(s)
- Morvarid Boroumand Alipour
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Davoudi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hadi Farsiani
- Mashhad University of Medical Sciences, Antimicrobial Resistance Research Center, Mashhad, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyfollah Gharib
- Department of Occupational Health and Safety Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Heidarian Miri
- Infant Research Center, School of Food and Nutritional Science, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Solazzo G, Rovelli S, Iodice S, Chung M, Frimpong M, Bollati V, Ferrari L, Ghedin E. The microbiome of Total Suspended Particles (TSP) and its influence on the respiratory microbiome of healthy office workers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607611. [PMID: 39372735 PMCID: PMC11451605 DOI: 10.1101/2024.08.12.607611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Air particulate matter (PM) is widely recognized for its potential to negatively affect human health, including changes in the upper respiratory microbiome. However, research on PM-associated microbiota remains limited and mostly focused on PM (e.g., PM2.5 and PM10). This study aims to characterize for the first time the microbiome of Total Suspended Particles (TSP) and investigate the correlations of indoor TSP with the human upper respiratory microbiome. Biological and environmental samples were collected over three collection periods lasting three weeks each, between May and July 2022 at the University of Milan and the University of Insubria Como. TSP were sampled using a filter-based technique, while respiratory samples from both anterior nares (AN) and the nasopharynx (NP) were collected using swabs. Microbiome analysis of both human (N = 145) and TSP (N = 51) samples was conducted on metagenomic sequencing data. A comparison of indoor and outdoor TSP microbiomes revealed differences in microbial diversity and taxonomic composition. The indoor samples had higher relative abundance of environmental bacteria often associated with opportunistic infections like Paracoccus sp., as well as respiratory bacteria such as Staphylococcus aureus and Klebsiella pneumoniae. Additionally, both indoor and outdoor TSP samples contained broad spectrum antibiotic resistance genes. Indoor TSP exposure was negatively associated with commensal bacteria and positively associated with Staphylococcus aureus relative abundance. Finally, a correlation between the relative abundance of respiratory bacteria identified in the indoor TSP and the upper respiratory microbiome was found, suggesting a potential interaction between TSP and the upper airways.
Collapse
Affiliation(s)
- Giulia Solazzo
- EPIGET LAB, Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Rovelli
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Simona Iodice
- EPIGET LAB, Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Frimpong
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Ben Ghezala I, Gabrielle PH, Sibert M, Steinberg LA, Dautriche A, Arnould L, Creuzot-Garcher C. Severe Intraocular Inflammation After Intravitreal Injection of Faricimab: A Single-Site Case Series of Six Patients. Am J Ophthalmol 2024; 269:11-19. [PMID: 39134258 DOI: 10.1016/j.ajo.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE To describe the patient characteristics and clinical course of severe intraocular inflammation (IOI) following intravitreal injection (IVT) of faricimab. DESIGN Retrospective case series. METHODS Case series at a single French academic center (Dijon University Hospital) where 263 patients were treated with faricimab IVT between January 9, 2024 and May 7, 2024. RESULTS Over the 4-month period, a total of 1659 eyes (1338 patients) received anti-vascular endothelial growth factor (anti-VEGF) IVTs for a total of 3510 IVTs, of which 343 eyes (263 patients) received faricimab IVTs for a total of 971 IVTs. Overall, 6 pretreated eyes with neovascular age-related macular degeneration that were switched to faricimab developed severe unilateral IOI following faricimab IVT (1/162 injections [0.62%]), including 5 eyes presenting with a severe anterior and intermediate uveitis mimicking infectious endophthalmitis. All eyes were normotensive and presented with mild to moderate pain and predominantly moderate vitritis, associated with granulomatous keratic precipitates in 2 eyes and nonocclusive vasculitis in one eye. The clinical presentation, sterile vitreous sample culture, and rapid improvement with treatment made the diagnosis of infectious endophthalmitis unlikely. Four patients out of 6 did not recover their pre-IOI visual acuity, with an average visual loss of +0.2 logMAR. Two patients had positive antinuclear antibodies, including one with a history of cutaneous lupus. CONCLUSIONS In this case series, we reported 6 cases of severe IOI after intravitreal faricimab over 4 months in a single French center with an estimated incidence rate of 0.6% per injection. Future real-world data will contribute to a better evaluation of the epidemiology of this rare inflammatory adverse event related to intravitreal faricimab.
Collapse
Affiliation(s)
- Inès Ben Ghezala
- From the Ophthalmology Department (I.B.G., P-H.G., M.S., L-A.S., L.A., C.C-G.), University Hospital, Dijon, France; Inserm, CIC 1432 (I.B.G.), Clinical Investigation Center, Clinical Epidemiology/Clinical Trials Unit, University Hospital, Dijon, France.
| | - Pierre-Henry Gabrielle
- From the Ophthalmology Department (I.B.G., P-H.G., M.S., L-A.S., L.A., C.C-G.), University Hospital, Dijon, France; Eye and Nutrition Research Group (P-H.G., C.C-G.), CSGA, UMR1324 INRAE, 6265 CNRS, Dijon, France
| | - Maxime Sibert
- From the Ophthalmology Department (I.B.G., P-H.G., M.S., L-A.S., L.A., C.C-G.), University Hospital, Dijon, France
| | - Laure-Anne Steinberg
- From the Ophthalmology Department (I.B.G., P-H.G., M.S., L-A.S., L.A., C.C-G.), University Hospital, Dijon, France
| | - Anne Dautriche
- Burgundy Regional Pharmacovigilance Center (A.D.), University Hospital, Dijon, France
| | - Louis Arnould
- From the Ophthalmology Department (I.B.G., P-H.G., M.S., L-A.S., L.A., C.C-G.), University Hospital, Dijon, France
| | - Catherine Creuzot-Garcher
- From the Ophthalmology Department (I.B.G., P-H.G., M.S., L-A.S., L.A., C.C-G.), University Hospital, Dijon, France; Eye and Nutrition Research Group (P-H.G., C.C-G.), CSGA, UMR1324 INRAE, 6265 CNRS, Dijon, France
| |
Collapse
|
4
|
Ki J, Kwon IH, Lee J, Lim J, Jang S, Son SU, Seo SB, Oh SY, Kang T, Jung J, Lee KG, Hwang J, Lim EK. A portable smartphone-based colorimetric sensor that utilizes dual amplification for the on-site detection of airborne bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132398. [PMID: 37639787 DOI: 10.1016/j.jhazmat.2023.132398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, infections caused by airborne pathogens have spread worldwide, infecting several people and becoming an increasingly severe threat to public health. Therefore, there is an urgent need for developing airborne pathogen monitoring technology for use in confined environments to enable epidemic prevention. In this study, we designed a colorimetry-based bacterial detection platform that uses a clustered regularly interspaced short palindromic repeat-associated protein 12a system to amplify signals and a urease enzyme to induce color changes. Furthermore, we have developed a smartphone application that can distinguish colors under different illumination conditions based on the HSV model and detect three types of disease-causing bacteria. Even synthetic oligomers of a few picomoles of concentration and genomic DNA of airborne bacteria smaller than several nanograms can be detected with the naked eye and using color analysis systems. Furthermore, in the air capture model system, the bacterial sample generated approximately a 2-fold signal difference compared with that in the control group. This colorimetric detection method can be widely applied for public safety because it is easy to use and does not require complex equipment.
Collapse
Affiliation(s)
- Jisun Ki
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ik Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jina Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Medical Device Development Center, Osong Medical innovation foundation, 123, Osongsaengmyeong-ro, Chungcheongbuk-do, 28160, Republic of Korea
| | - Soojin Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seong Uk Son
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seung Beom Seo
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seo Yeong Oh
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Bagewadi ZK, Yunus Khan T, Gangadharappa B, Kamalapurkar A, Mohamed Shamsudeen S, Yaraguppi DA. Molecular dynamics and simulation analysis against superoxide dismutase (SOD) target of Micrococcus luteus with secondary metabolites from Bacillus licheniformis recognized by genome mining approach. Saudi J Biol Sci 2023; 30:103753. [PMID: 37583871 PMCID: PMC10424208 DOI: 10.1016/j.sjbs.2023.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein-ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2-) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.
Collapse
Affiliation(s)
- Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Bhavya Gangadharappa
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, Karnataka 560054, India
| | - Ankita Kamalapurkar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic dental science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| |
Collapse
|
6
|
Baselga M, Alba JJ, Schuhmacher AJ. Impact of needle-point bipolar ionization system in the reduction of bioaerosols in collective transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158965. [PMID: 36162581 PMCID: PMC9500091 DOI: 10.1016/j.scitotenv.2022.158965] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
| | - Juan J Alba
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto J Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain.
| |
Collapse
|
7
|
Zinn MK, Flemming HC, Bockmühl D. A Comprehensive View of Microbial Communities in the Laundering Cycle Suggests a Preventive Effect of Soil Bacteria on Malodour Formation. Microorganisms 2022; 10:microorganisms10071465. [PMID: 35889184 PMCID: PMC9318688 DOI: 10.3390/microorganisms10071465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Microorganisms are an important factor in the wash-and-use cycle of textiles since they can cause unwanted aesthetic effects, such as malodour formation, and even pose health risks. In this regard, a comprehensive view of the microbial communities in washing machines and consideration of the microbial contamination of used textiles is needed to understand the formation of malodour and evaluate the infection risk related to laundering. So far, neither the compositions of washing machine biofilms leading to the formation of or protection against malodour have been investigated intensively, nor have microbial communities on used towels been analysed after normal use. Our results link the qualitative and quantitative analysis of microbial communities in washing machines and on used towels with the occurrence of malodour and thus not only allow for a better risk evaluation but also suggest bacterial colonizers of washing machines that might prevent malodour formation. It was shown that soil bacteria such as Rhizobium, Agrobacterium, Bosea, and Microbacterium in particular are found in non-odourous machines, and that Rhizobium species are able to prevent malodour formation in an in vitro model.
Collapse
Affiliation(s)
- Marc-Kevin Zinn
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany;
- Biofilm Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45131 Essen, Germany;
| | - Hans-Curt Flemming
- Biofilm Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45131 Essen, Germany;
| | - Dirk Bockmühl
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany;
- Correspondence: ; Tel.: +49-2821-806-73-208
| |
Collapse
|
8
|
An Assessment of Airborne Bacteria and Fungi in the Female Dormitory Environment: Level, Impact Factors and Dose Rate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116642. [PMID: 35682227 PMCID: PMC9180550 DOI: 10.3390/ijerph19116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
In this study, the levels of airborne bacteria and fungi were tested in a female dormitory room; the effects of heating, relative humidity and number of occupants on indoor microorganisms were analyzed and the dose rate of exposure to microbes was assessed. The bacterial and fungal concentrations in the room ranged from 100 to several thousand CFU/m3, and the highest counts were observed in the morning (930 ± 1681 CFU/m3). Staphylococcus spp. and Micrococcus spp. were found in the dormitory. When the heating was on, the total bacterial and fungal counts were lower than when there was no heating. Moreover, statistically significant differences were observed for bacterial concentrations during the morning periods between the times when there was no heating and the times when there was heating. The number of occupants had an obvious positive effect on the total bacterial counts. Moreover, RH had no correlation with the airborne fungi in the dormitory, statistically. Furthermore, the highest dose rate from exposure to bacteria and fungi was observed during sleeping hours. The dose rate from exposure to airborne microorganisms in the dormitory was associated with the activity level in the room. These results helped to elucidate the threat of bioaerosols to the health of female occupants and provide guidance for protective measures.
Collapse
|
9
|
Complete Genome Sequence of Micrococcus luteus Strain CW.Ay, Isolated from Indoor Air in a Hong Kong School. Microbiol Resour Announc 2022; 11:e0119421. [PMID: 35175116 PMCID: PMC8852316 DOI: 10.1128/mra.01194-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Micrococcus luteus strain CW.Ay was isolated from indoor air in Hong Kong. The complete genome (2,543,764 bp; GC content, 72.93%) was established by hybrid assembly and comprised a linear plasmid and a single chromosome featuring many genes to account for its broad distribution in very diverse habitats.
Collapse
|
10
|
Jacob KM, Reguera G. Competitive advantage of oral streptococci for colonization of the middle ear mucosa. Biofilm 2022; 4:100067. [PMID: 35146417 PMCID: PMC8818537 DOI: 10.1016/j.bioflm.2022.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 10/29/2022] Open
|
11
|
Asghari E, Kiel A, Kaltschmidt BP, Wortmann M, Schmidt N, Hüsgen B, Hütten A, Knabbe C, Kaltschmidt C, Kaltschmidt B. Identification of Microorganisms from Several Surfaces by MALDI-TOF MS: P. aeruginosa Is Leading in Biofilm Formation. Microorganisms 2021; 9:microorganisms9050992. [PMID: 34064414 PMCID: PMC8147854 DOI: 10.3390/microorganisms9050992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 01/10/2023] Open
Abstract
New ecological trends and changes in consumer behavior are known to favor biofilm formation in household appliances, increasing the need for new antimicrobial materials and surfaces. Their development requires laboratory-cultivated biofilms, or biofilm model systems (BMS), which allow for accelerated growth and offer better understanding of the underlying formation mechanisms. Here, we identified bacterial strains in wildtype biofilms from a variety of materials from domestic appliances using matrix-assisted laser desorption/ionization-time of flight mass spectroscopy (MALDI-TOF-MS). Staphylococci and pseudomonads were identified by MALDI-TOF-MS as the main genera in the habitats and were analyzed for biofilm formation using various in vitro methods. Standard quantitative biofilm assays were combined with scanning electron microscopy (SEM) to characterize biofilm formation. While Pseudomonas putida, a published lead germ, was not identified in any of the collected samples, Pseudomonas aeruginosa was found to be the most dominant biofilm producer. Water-born Pseudomonads were dominantly found in compartments with water contact only, such as in detergent compartment and detergent enemata. Furthermore, materials in contact with the washing load are predominantly colonized with bacteria from the human.
Collapse
Affiliation(s)
- Ehsan Asghari
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (E.A.); (A.K.); (C.K.)
| | - Annika Kiel
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (E.A.); (A.K.); (C.K.)
| | - Bernhard Peter Kaltschmidt
- Department of Thin Films & Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, University of Bielefeld, 33615 Bielefeld, Germany; (B.P.K.); (A.H.)
| | - Martin Wortmann
- Department of Plastics Technology, University of Applied Sciences, 33619 Bielefeld, Germany; (M.W.); (B.H.)
| | - Nadine Schmidt
- Institute for Laboratory- and Transfusion Medicine, Heart- and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany; (N.S.); (C.K.)
| | - Bruno Hüsgen
- Department of Plastics Technology, University of Applied Sciences, 33619 Bielefeld, Germany; (M.W.); (B.H.)
| | - Andreas Hütten
- Department of Thin Films & Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, University of Bielefeld, 33615 Bielefeld, Germany; (B.P.K.); (A.H.)
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart- and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany; (N.S.); (C.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (E.A.); (A.K.); (C.K.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (E.A.); (A.K.); (C.K.)
- Correspondence:
| |
Collapse
|
12
|
Draft Genome Sequences of Various Bacterial Phyla Isolated from the International Space Station. Microbiol Resour Announc 2021; 10:10/17/e00214-21. [PMID: 33927037 PMCID: PMC8086211 DOI: 10.1128/mra.00214-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequences were generated from 96 bacterial strains of 14 species that were isolated from International Space Station surfaces during the Microbial Tracking 2 study. Continued characterization of this closed habitat's microbiome enables tracking of the spread and evolution of secondary pathogens, which is vital for astronaut health. Whole-genome sequences were generated from 96 bacterial strains of 14 species that were isolated from International Space Station surfaces during the Microbial Tracking 2 study. Continued characterization of this closed habitat's microbiome enables tracking of the spread and evolution of secondary pathogens, which is vital for astronaut health.
Collapse
|
13
|
Cultivation-Based Quantification and Identification of Bacteria at Two Hygienic Key Sides of Domestic Washing Machines. Microorganisms 2021; 9:microorganisms9050905. [PMID: 33922491 PMCID: PMC8146927 DOI: 10.3390/microorganisms9050905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
Detergent drawer and door seal represent important sites for microbial life in domestic washing machines. Interestingly, quantitative data on the microbial contamination of these sites is scarce. Here, 10 domestic washing machines were swab-sampled for subsequent bacterial cultivation at four different sampling sites: detergent drawer and detergent drawer chamber, as well as the top and bottom part of the rubber door seal. The average bacterial load over all washing machines and sites was 2.1 ± 1.0 × 104 CFU cm−2 (average number of colony forming units ± standard error of the mean (SEM)). The top part of the door seal showed the lowest contamination (11.1 ± 9.2 × 101 CFU cm−2), probably due to less humidity. Out of 212 isolates, 178 (84%) were identified on the genus level, and 118 (56%) on the species level using matrix-assisted laser desorption/ionization (MALDI) Biotyping, resulting in 29 genera and 40 identified species across all machines. The predominant bacterial genera were Staphylococcus and Micrococcus, which were found at all sites. 22 out of 40 species were classified as opportunistic pathogens, emphasizing the need for regular cleaning of the investigated sites.
Collapse
|
14
|
Theisinger SM, de Smidt O, Lues JFR. Categorisation of culturable bioaerosols in a fruit juice manufacturing facility. PLoS One 2021; 16:e0242969. [PMID: 33882058 PMCID: PMC8059861 DOI: 10.1371/journal.pone.0242969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Bioaerosols are defined as aerosols that comprise particles of biological origin or activity that may affect living organisms through infectivity, allergenicity, toxicity, or through pharmacological or other processes. Interest in bioaerosol exposure has increased over the last few decades. Exposure to bioaerosols may cause three major problems in the food industry, namely: (i) contamination of food (spoilage); (ii) allergic reactions in individual consumers; or (iii) infection by means of pathogenic microorganisms present in the aerosol. The aim of this study was to characterise the culturable fraction of bioaerosols in the production environment of a fruit juice manufacturing facility and categorise isolates as harmful, innocuous or potentially beneficial to the industry, personnel and environment. Active sampling was used to collect representative samples of five areas in the facility during peak and off-peak seasons. Areas included the entrance, preparation and mixing area, between production lines, bottle dispersion and filling stations. Microbes were isolated and identified using 16S, 26S or ITS amplicon sequencing. High microbial counts and species diversity were detected in the facility. 239 bacteria, 41 yeasts and 43 moulds were isolated from the air in the production environment. Isolates were categorised into three main groups, namely 27 innocuous, 26 useful and 39 harmful bioaerosols. Harmful bioaerosols belonging to the genera Staphylococcus, Pseudomonas, Penicillium and Candida were present. Although innocuous and useful bioaerosols do not negatively influence human health their presence act as an indicator that an ideal environment exists for possible harmful bioaerosols to emerge.
Collapse
Affiliation(s)
- Shirleen M. Theisinger
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Olga de Smidt
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Jan F. R. Lues
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| |
Collapse
|
15
|
Madoroba E, Magwedere K, Chaora NS, Matle I, Muchadeyi F, Mathole MA, Pierneef R. Microbial Communities of Meat and Meat Products: An Exploratory Analysis of the Product Quality and Safety at Selected Enterprises in South Africa. Microorganisms 2021; 9:507. [PMID: 33673660 PMCID: PMC7997435 DOI: 10.3390/microorganisms9030507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Consumption of food that is contaminated by microorganisms, chemicals, and toxins may lead to significant morbidity and mortality, which has negative socioeconomic and public health implications. Monitoring and surveillance of microbial diversity along the food value chain is a key component for hazard identification and evaluation of potential pathogen risks from farm to the consumer. The aim of this study was to determine the microbial diversity in meat and meat products from different enterprises and meat types in South Africa. Samples (n = 2017) were analyzed for Yersinia enterocolitica, Salmonella species, Listeria monocytogenes, Campylobacter jejuni, Campylobacter coli, Staphylococcus aureus, Clostridium perfringens, Bacillus cereus, and Clostridium botulinum using culture-based methods. PCR was used for confirmation of selected pathogens. Of the 2017 samples analyzed, microbial ecology was assessed for selected subsamples where next generation sequencing had been conducted, followed by the application of computational methods to reconstruct individual genomes from the respective sample (metagenomics). With the exception of Clostridium botulinum, selective culture-dependent methods revealed that samples were contaminated with at least one of the tested foodborne pathogens. The data from metagenomics analysis revealed the presence of diverse bacteria, viruses, and fungi. The analyses provide evidence of diverse and highly variable microbial communities in products of animal origin, which is important for food safety, food labeling, biosecurity, and shelf life limiting spoilage by microorganisms.
Collapse
Affiliation(s)
- Evelyn Madoroba
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Nyaradzo Stella Chaora
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa;
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; (I.M.); (M.A.M.)
| | - Farai Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| | - Masenyabu Aletta Mathole
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; (I.M.); (M.A.M.)
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (F.M.); (R.P.)
| |
Collapse
|
16
|
Arnold JW, Roach J, Fabela S, Moorfield E, Ding S, Blue E, Dagher S, Magness S, Tamayo R, Bruno-Barcena JM, Azcarate-Peril MA. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. MICROBIOME 2021; 9:31. [PMID: 33509277 PMCID: PMC7845053 DOI: 10.1186/s40168-020-00980-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Prebiotic galacto-oligosaccharides (GOS) have an extensively demonstrated beneficial impact on intestinal health. In this study, we determined the impact of GOS diets on hallmarks of gut aging: microbiome dysbiosis, inflammation, and intestinal barrier defects ("leaky gut"). We also evaluated if short-term GOS feeding influenced how the aging gut responded to antibiotic challenges in a mouse model of Clostridioides difficile infection. Finally, we assessed if colonic organoids could reproduce the GOS responder-non-responder phenotypes observed in vivo. RESULTS Old animals had a distinct microbiome characterized by increased ratios of non-saccharolytic versus saccharolytic bacteria and, correspondingly, a lower abundance of β-galactosidases compared to young animals. GOS reduced the overall diversity, increased the abundance of specific saccharolytic bacteria (species of Bacteroides and Lactobacillus), increased the abundance of β-galactosidases in young and old animals, and increased the non-saccharolytic organisms; however, a robust, homogeneous bifidogenic effect was not observed. GOS reduced age-associated increased intestinal permeability and increased MUC2 expression and mucus thickness in old mice. Clyndamicin reduced the abundance Bifidobacterium while increasing Akkermansia, Clostridium, Coprococcus, Bacillus, Bacteroides, and Ruminococcus in old mice. The antibiotics were more impactful than GOS on modulating serum markers of inflammation. Higher serum levels of IL-17 and IL-6 were observed in control and GOS diets in the antibiotic groups, and within those groups, levels of IL-6 were higher in the GOS groups, regardless of age, and higher in the old compared to young animals in the control diet groups. RTqPCR revealed significantly increased gene expression of TNFα in distal colon tissue of old mice, which was decreased by the GOS diet. Colon transcriptomics analysis of mice fed GOS showed increased expression of genes involved in small-molecule metabolic processes and specifically the respirasome in old animals, which could indicate an increased oxidative metabolism and energetic efficiency. In young mice, GOS induced the expression of binding-related genes. The galectin gene Lgals1, a β-galactosyl-binding lectin that bridges molecules by their sugar moieties and is an important modulator of the immune response, and the PI3K-Akt and ECM-receptor interaction pathways were also induced in young mice. Stools from mice exhibiting variable bifidogenic response to GOS injected into colon organoids in the presence of prebiotics reproduced the response and non-response phenotypes observed in vivo suggesting that the composition and functionality of the microbiota are the main contributors to the phenotype. CONCLUSIONS Dietary GOS modulated homeostasis of the aging gut by promoting changes in microbiome composition and host gene expression, which was translated into decreased intestinal permeability and increased mucus production. Age was a determining factor on how prebiotics impacted the microbiome and expression of intestinal epithelial cells, especially apparent from the induction of galectin-1 in young but not old mice. Video abstract.
Collapse
Affiliation(s)
- Jason W Arnold
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, USA
| | - Salvador Fabela
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Current affiliation: Programa de Inmunología Molecular Microbiana. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Emily Moorfield
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Eric Blue
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Suzanne Dagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Scott Magness
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Jose M Bruno-Barcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Fröhling A, Bußler S, Durek J, Schlüter OK. Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets ( Acheta domesticus). Front Microbiol 2020; 11:884. [PMID: 32523562 PMCID: PMC7261824 DOI: 10.3389/fmicb.2020.00884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
The role of insects for human consumption has lately increased in interest and in order to deliver safe and high-quality raw materials and ingredients for food and feed applications, processing of insects is a major pre-requisite. For edible insects a thermal treatment and appropriate storage conditions are recommended to minimize the microbiological risk and the impact of processing methods on the microbial contamination needs to be considered and determined. Based on standard process conditions for the production of Acheta domesticus flour, different heating treatments were used to reduce the microbial load of A. domesticus. In addition, the drying temperature and drying time were varied to determine whether the required residual moisture of <5% can be achieved more quickly with consistent microbial quality. The influence of the process conditions on the microbial community of A. domesticus along the processing chain was finally investigated under optimized process conditions. The total viable count was reduced from 9.24 log10 CFU/gDM to 1.98 log10 CFU/gDM along the entire processing chain. While Bacillaceae, Enterobacteriaceae, Enterococcaceae, and yeast and molds were no longer detectable in the A. domesticus flour, Staphylococcaceae and mesophilic spore forming bacteria were still found in the flour. The results indicate that the steaming process is essential for effectively increasing microbial safety since this processing step showed the highest inactivation. It is recommended to not only evaluate the total viable count but also to monitor changes in microbial diversity during processing to ensure microbial safety of the final product.
Collapse
Affiliation(s)
- Antje Fröhling
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Sara Bußler
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Food4Future, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Julia Durek
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Oliver K. Schlüter
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Food4Future, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|
18
|
Kozajda A, Jeżak K, Kapsa A. Airborne Staphylococcus aureus in different environments-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34741-34753. [PMID: 31654301 PMCID: PMC6900272 DOI: 10.1007/s11356-019-06557-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
The aim of the literature review was to describe the environments where the presence of airborne Staphylococcus aureus was confirmed and to catalogue the most often used methods and conditions of bioaerosol sampling to identify the bacteria. The basis for searching of studies on S. aureus in the bioaerosol in different environments was PubMed database resources from the years 1990-2019 (May). The review included studies which were carried on in selected environments: hospitals and other health care facilities, large-scale animal breeding, wastewater treatment plants, residential areas, educational institutions, and other public places. The highest concentrations and genetic diversity of identified S. aureus strains, including MRSA (methicillin-resistant S. aureus), have been shown in large-scale animal breeding. The role of the airborne transmission in dissemination of infection caused by these pathogens is empirically confirmed in environmental studies. Commonly available, well-described, and relatively inexpensive methods of sampling, identification, and subtyping guarantee a high reliability of results and allow to obtain fast and verifiable outcomes in environmental studies on air transmission routes of S. aureus strains.
Collapse
Affiliation(s)
- Anna Kozajda
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348, Łódź, Poland.
| | - Karolina Jeżak
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348, Łódź, Poland
| | - Agnieszka Kapsa
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348, Łódź, Poland
| |
Collapse
|
19
|
Huang CH, Wang CL, Liou JS, Lee AY, Blom J, Huang L, Watanabe K. Reclassification of Micrococcus aloeverae and Micrococcus yunnanensis as later heterotypic synonyms of Micrococcus luteus. Int J Syst Evol Microbiol 2019; 69:3512-3518. [DOI: 10.1099/ijsem.0.003654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Chun-Lin Wang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Jong-Shian Liou
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Ai-Yun Lee
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, 35392, Germany
| | - Lina Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Koichi Watanabe
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
- Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Rd., Taipei 10673, Taiwan, ROC
| |
Collapse
|
20
|
Mora M, Perras A, Alekhova TA, Wink L, Krause R, Aleksandrova A, Novozhilova T, Moissl-Eichinger C. Resilient microorganisms in dust samples of the International Space Station-survival of the adaptation specialists. MICROBIOME 2016; 4:65. [PMID: 27998314 PMCID: PMC5175303 DOI: 10.1186/s40168-016-0217-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/03/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND The International Space Station (ISS) represents a unique biotope for the human crew but also for introduced microorganisms. Microbes experience selective pressures such as microgravity, desiccation, poor nutrient-availability due to cleaning, and an increased radiation level. We hypothesized that the microbial community inside the ISS is modified by adapting to these stresses. For this reason, we analyzed 8-12 years old dust samples from Russian ISS modules with major focus on the long-time surviving portion of the microbial community. We consequently assessed the cultivable microbiota of these samples in order to analyze their extremotolerant potential against desiccation, heat-shock, and clinically relevant antibiotics. In addition, we studied the bacterial and archaeal communities from the stored Russian dust samples via molecular methods (next-generation sequencing, NGS) and compared our new data with previously derived information from the US American ISS dust microbiome. RESULTS We cultivated and identified in total 85 bacterial, non-pathogenic isolates (17 different species) and 1 fungal isolate from the 8-12 year old dust samples collected in the Russian segment of the ISS. Most of these isolates exhibited robust resistance against heat-shock and clinically relevant antibiotics. Microbial 16S rRNA gene and archaeal 16S rRNA gene targeting Next Generation Sequencing showed signatures of human-associated microorganisms (Corynebacterium, Staphylococcus, Coprococcus etc.), but also specifically adapted extremotolerant microorganisms. Besides bacteria, the detection of archaeal signatures in higher abundance was striking. CONCLUSIONS Our findings reveal (i) the occurrence of living, hardy microorganisms in archived Russian ISS dust samples, (ii) a profound resistance capacity of ISS microorganisms against environmental stresses, and (iii) the presence of archaeal signatures on board. In addition, we found indications that the microbial community in the Russian segment dust samples was different to recently reported US American ISS microbiota.
Collapse
Affiliation(s)
- Maximilian Mora
- Department for Internal Medicine, Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Alexandra Perras
- Department for Internal Medicine, Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Department for Microbiology, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | | | - Lisa Wink
- Department for Internal Medicine, Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Robert Krause
- Department for Internal Medicine, Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Alina Aleksandrova
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | | | - Christine Moissl-Eichinger
- Department for Internal Medicine, Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- BioTechMed Graz, Krenngasse 37, 8010 Graz, Austria
| |
Collapse
|
21
|
Kooken J, Fox K, Fox A, Wunschel D. Reprint of "Assessment of marker proteins identified in whole cell extracts for bacterial speciation using liquid chromatography electrospray ionization tandem mass spectrometry". Mol Cell Probes 2014; 28:58-64. [PMID: 24486519 DOI: 10.1016/j.mcp.2014.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 10/25/2022]
Abstract
Staphylococcal strains (CoNS) were speciated in this study. Digests of proteins released from whole cells were converted to tryptic peptides for analysis. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS, Orbitrap) was employed for peptide analysis. Data analysis was performed employing the open-source software X!Tandem which uses sequenced genomes to generate a virtual peptide database for comparison to experimental data. The search database was modified to include the genomes of the 11 Staphylococcus species most commonly isolated from man. The number of total peptides matching each protein along with the number of peptides specifically matching to the homologue (or homologues) for strains of the same species were assessed. Any peptides not matching to the species examined were considered conflict peptides. The proteins typically identified with the largest percentage of sequence coverage, number of matched peptides and number of peptides corresponding to only the correct species were elongation factor Tu (EF Tu) and enolase (Enol). Additional proteins with consistently observed peptides as well as peptides matching only homologues from the same species were citrate synthase (CS) and 1-pyrroline-5-carboxylate dehydrogenase (1P5CD). Protein markers, previously identified from gel slices, (aconitate hydratase and oxoglutarate dehydrogenase) were found to provide low confidence scores when employing whole cell digests. The methodological approach described here provides a simple yet elegant way of identification of staphylococci. However, perhaps more importantly the technology should be applicable universally for identification of any bacterial species.
Collapse
Affiliation(s)
- Jennifer Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Karen Fox
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Alvin Fox
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - David Wunschel
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, PO Box 999 MS P7-50, Richland, WA 99354, USA.
| |
Collapse
|
22
|
Kooken J, Fox K, Fox A, Altomare D, Creek K, Wunschel D, Pajares-Merino S, Martínez-Ballesteros I, Garaizar J, Oyarzabal O, Samadpour M. Reprint of "Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray)". Mol Cell Probes 2014; 28:73-82. [PMID: 24486297 DOI: 10.1016/j.mcp.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023]
Abstract
This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.
Collapse
Affiliation(s)
- Jennifer Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Karen Fox
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Alvin Fox
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.
| | - Diego Altomare
- Department of Pharmaceutical and Biomedical Sciences, School of Pharmacy, University of South Carolina, Columbia, SC 29209, USA
| | - Kim Creek
- Department of Pharmaceutical and Biomedical Sciences, School of Pharmacy, University of South Carolina, Columbia, SC 29209, USA
| | - David Wunschel
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, PO Box 999 MS P7-50, Richland, WA 99354, USA
| | - Sara Pajares-Merino
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Ilargi Martínez-Ballesteros
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Javier Garaizar
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Omar Oyarzabal
- Poultry Division, Institute for Environmental Health, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Mansour Samadpour
- Poultry Division, Institute for Environmental Health, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| |
Collapse
|
23
|
Park H, Han JH, Joung Y, Cho SH, Kim SA, Kim S. Bacterial diversity in the indoor air of pharmaceutical environment. J Appl Microbiol 2014; 116:718-27. [DOI: 10.1111/jam.12416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/20/2013] [Accepted: 12/01/2013] [Indexed: 12/01/2022]
Affiliation(s)
- H.K. Park
- Department of Microbiology and Molecular Biology; College of Bioscience and Biotechnology; Chungnam National University; Yuseong Daejeon Korea
- Daejeon Technopark; Daejeon Bioventure Town; Yuseong Daejeon Korea
| | - J.-H. Han
- Department of Microbiology and Molecular Biology; College of Bioscience and Biotechnology; Chungnam National University; Yuseong Daejeon Korea
| | - Y. Joung
- Department of Microbiology and Molecular Biology; College of Bioscience and Biotechnology; Chungnam National University; Yuseong Daejeon Korea
| | - S.-H. Cho
- Department of Microbiology and Molecular Biology; College of Bioscience and Biotechnology; Chungnam National University; Yuseong Daejeon Korea
| | - S.-A. Kim
- Department of Microbiology and Molecular Biology; College of Bioscience and Biotechnology; Chungnam National University; Yuseong Daejeon Korea
- Daejeon Technopark; Daejeon Bioventure Town; Yuseong Daejeon Korea
| | - S.B. Kim
- Department of Microbiology and Molecular Biology; College of Bioscience and Biotechnology; Chungnam National University; Yuseong Daejeon Korea
| |
Collapse
|
24
|
Kooken J, Fox K, Fox A, Altomare D, Creek K, Wunschel D, Pajares-Merino S, Martínez-Ballesteros I, Garaizar J, Oyarzabal O, Samadpour M. Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray). Mol Cell Probes 2013; 28:41-50. [PMID: 24184563 DOI: 10.1016/j.mcp.2013.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/31/2023]
Abstract
This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.
Collapse
Affiliation(s)
- Jennifer Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kawasaki T, Kyotani T, Ushiogi T, Lee H. Distribution of airborne bacteria in railway stations in Tokyo, Japan. J Occup Health 2013; 55:495-502. [PMID: 24025860 DOI: 10.1539/joh.13-0055-fs] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES We performed the current study to (1) understand the distribution of culturable airborne bacteria over a one-year monitoring period, (2) confirm places in stations where airborne bacteria are highly detected, (3) understand the factors that affect concentrations of airborne bacteria and (4) compare the distributions of airborne bacteria and fungi in railway stations in Japan. METHODS Measurements of airborne bacteria were taken at stations A and B located in Tokyo. Station A had under- and above-ground concourses and platforms, whereas station B had spaces only above-ground. Airborne bacteria at each measurement position were collected with an air sampler on plate count agar media. After cultivation of the sampled media, the number of bacteria colonies was counted on each media. RESULTS (1) Airborne bacteria were highly detected in the above-ground concourse in station A. Almost all the indoor-to-outdoor (I/O) ratios of concentrations of airborne bacteria in the above-ground concourse in station A were higher than one throughout the year and were especially high in summer. (2) The factor that affects the concentrations of airborne bacteria seems to be the number of railway customers, not humidity. (3) The characteristics of the distributions of airborne bacteria and fungi were different, even though they were sampled in the same stations on the same days. CONCLUSIONS In the case of controlling indoor air quality of stations in the future, the locations in railway stations that would require control of indoor air quality differ between airborne bacteria or fungi, respectively.
Collapse
Affiliation(s)
- Tamami Kawasaki
- Biotechnology Laboratory, Railway Technical Research Institute
| | | | | | | |
Collapse
|
26
|
Kooken J, Fox K, Fox A, Wunschel D. Assessment of marker proteins identified in whole cell extracts for bacterial speciation using liquid chromatography electrospray ionization tandem mass spectrometry. Mol Cell Probes 2013; 28:34-40. [PMID: 23994725 DOI: 10.1016/j.mcp.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
Staphylococcal strains (CoNS) were speciated in this study. Digests of proteins released from whole cells were converted to tryptic peptides for analysis. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS, Orbitrap) was employed for peptide analysis. Data analysis was performed employing the open-source software X!Tandem which uses sequenced genomes to generate a virtual peptide database for comparison to experimental data. The search database was modified to include the genomes of the 11 Staphylococcus species most commonly isolated from man. The number of total peptides matching each protein along with the number of peptides specifically matching to the homologue (or homologues) for strains of the same species were assessed. Any peptides not matching to the species examined were considered conflict peptides. The proteins typically identified with the largest percentage of sequence coverage, number of matched peptides and number of peptides corresponding to only the correct species were elongation factor Tu (EF Tu) and enolase (Enol). Additional proteins with consistently observed peptides as well as peptides matching only homologues from the same species were citrate synthase (CS) and 1-pyrroline-5-carboxylate dehydrogenase (1P5CD). Protein markers, previously identified from gel slices, (aconitate hydratase and oxoglutarate dehydrogenase) were found to provide low confidence scores when employing whole cell digests. The methodological approach described here provides a simple yet elegant way of identification of staphylococci. However, perhaps more importantly the technology should be applicable universally for identification of any bacterial species.
Collapse
Affiliation(s)
- Jennifer Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
27
|
New and old microbial communities colonizing a seventeenth-century wooden church. Folia Microbiol (Praha) 2013; 59:45-51. [DOI: 10.1007/s12223-013-0265-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
28
|
Mass spectrometry and tandem mass spectrometry characterization of protein patterns, protein markers and whole proteomes for pathogenic bacteria. J Microbiol Methods 2013; 92:381-6. [DOI: 10.1016/j.mimet.2013.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/17/2022]
|