1
|
Gerhard WA, Gunsch CK. Metabarcoding and machine learning analysis of environmental DNA in ballast water arriving to hub ports. ENVIRONMENT INTERNATIONAL 2019; 124:312-319. [PMID: 30660844 DOI: 10.1016/j.envint.2018.12.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
While ballast water has long been linked to the global transport of invasive species, little is known about its microbiome. Herein, we used 16S rRNA gene sequencing and metabarcoding to perform the most comprehensive microbiological survey of ballast water arriving to hub ports to date. In total, we characterized 41 ballast, 20 harbor, and 6 open ocean water samples from four world ports (Shanghai, China; Singapore; Durban, South Africa; Los Angeles, California). In addition, we cultured Enterococcus and E. coli to evaluate adherence to International Maritime Organization standards for ballast discharge. Five of the 41 vessels - all of which were loaded in China - did not comply with standards for at least one indicator organism. Dominant bacterial taxa of ballast water at the class level were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia. Ballast water samples were composed of significantly lower proportions of Oxyphotobacteria than either ocean or harbor samples. Linear discriminant analysis (LDA) effect size (LEfSe) and machine learning were used to identify and test potential biomarkers for classifying sample types (ocean, harbor, ballast). Eight candidate biomarkers were used to achieve 81% (k nearest neighbors) to 88% (random forest) classification accuracy. Further research of these biomarkers could aid the development of techniques to rapidly assess ballast water origin.
Collapse
Affiliation(s)
- William A Gerhard
- Duke University, Department of Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC 27708-0287, United States
| | - Claudia K Gunsch
- Duke University, Department of Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC 27708-0287, United States.
| |
Collapse
|
2
|
Wang F, Men X, Zhang G, Liang K, Xin Y, Wang J, Li A, Zhang H, Liu H, Wu L. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express 2018; 8:182. [PMID: 30415449 PMCID: PMC6230335 DOI: 10.1186/s13568-018-0713-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/03/2018] [Indexed: 11/10/2022] Open
Abstract
Selection of optimal primer pairs in 16S rRNA gene sequencing is a pivotal issue in microorganism diversity analysis. However, limited effort has been put into investigation of specific primer sets for analysis of the bacterial diversity of aging flue-cured tobaccos (AFTs), as well as prediction of the function of the bacterial community. In this study, the performance of four primer pairs in determining bacterial community structure based on 16S rRNA gene sequences in AFTs was assessed, and the functions of genes were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Results revealed that the primer set 799F-1193R covering the amplification region V5V6V7 gave a more accurate picture of the bacterial community structure of AFTs, with lower co-amplification levels of chloroplast and mitochondrial genes, and more genera covered than when using the other primers. In addition, functional gene prediction suggested that the microbiome of AFTs was involved in kinds of interested pathways. A high abundance of functional genes involved in nitrogen metabolism was detected in AFTs, reflecting a high level of bacteria involved in degrading harmful nitrogen compounds and generating nitrogenous nutrients for others. Additionally, the functional genes involved in biosynthesis of valuable metabolites and degradation of toxic compounds provided information that the AFTs possess a huge library of microorganisms and genes that could be applied to further studies. All of these findings provide a significance reference for researchers working on the bacterial diversity assessment of tobacco-related samples.
Collapse
Affiliation(s)
- Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ge Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kaichao Liang
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Yuhua Xin
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Juan Wang
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Aijun Li
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haobao Liu
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
- Tobacco Research Institute of Chinese Academy of Agriculture Sciences, Qingdao, 266101 Shandong China
| | - Lijun Wu
- Yunnan Academy of Tobacco Sciences, Kunming, 650106 China
| |
Collapse
|
3
|
Jeuck A, Nitsche F, Wylezich C, Wirth O, Bergfeld T, Brutscher F, Hennemann M, Monir S, Scherwaß A, Troll N, Arndt H. A Comparison of Methods to Analyze Aquatic Heterotrophic Flagellates of Different Taxonomic Groups. Protist 2017; 168:375-391. [PMID: 28654859 DOI: 10.1016/j.protis.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 11/19/2022]
Abstract
Heterotrophic flagellates contribute significantly to the matter flux in aquatic and terrestrial ecosystems. Still today their quantification and taxonomic classification bear several problems in field studies, though these methodological problems seem to be increasingly ignored in current ecological studies. Here we describe and test different methods, the live-counting technique, different fixation techniques, cultivation methods like the liquid aliquot method (LAM), and a molecular single cell survey called aliquot PCR (aPCR). All these methods have been tested either using aquatic field samples or cultures of freshwater and marine taxa. Each of the described methods has its advantages and disadvantages, which have to be considered in every single case. With the live-counting technique a detection of living cells up to morphospecies level is possible. Fixation of cells and staining methods are advantageous due to the possible long-term storage and observation of samples. Cultivation methods (LAM) offer the possibility of subsequent molecular analyses, and aPCR tools might complete the deficiency of LAM in terms of the missing detection of non-cultivable flagellates. In summary, we propose a combination of several investigation techniques reducing the gap between the different methodological problems.
Collapse
Affiliation(s)
- Alexandra Jeuck
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Frank Nitsche
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Claudia Wylezich
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Olaf Wirth
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Tanja Bergfeld
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Fabienne Brutscher
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Melanie Hennemann
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Shahla Monir
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Anja Scherwaß
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Nicole Troll
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Hartmut Arndt
- Department of General Ecology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany.
| |
Collapse
|
4
|
Methodological Studies on Estimates of Abundance and Diversity of Heterotrophic Flagellates from the Deep-Sea Floor. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Prosdocimi EM, Mapelli F, Gonella E, Borin S, Crotti E. Microbial ecology-based methods to characterize the bacterial communities of non-model insects. J Microbiol Methods 2015; 119:110-25. [PMID: 26476138 DOI: 10.1016/j.mimet.2015.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 12/30/2022]
Abstract
Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities.
Collapse
Affiliation(s)
- Erica M Prosdocimi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy.
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
6
|
Arenz BE, Schlatter DC, Bradeen JM, Kinkel LL. Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities. J Microbiol Methods 2015; 117:1-3. [PMID: 26159909 DOI: 10.1016/j.mimet.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022]
Abstract
A blocking primer set based on the technique described by Vestheim and Jarman (2008) was developed to reduce amplification of non-target plant DNA when conducting metagenomic studies on bacterial endophyte communities. Bacterial amplification efficiency was increased 300-fold compared to standard PCR in an Illumina-based study of Sorghastrum nutans leaves.
Collapse
Affiliation(s)
- Brett E Arenz
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States
| | - Dan C Schlatter
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States
| | - James M Bradeen
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States
| |
Collapse
|
7
|
Mori H, Maruyama F, Kato H, Toyoda A, Dozono A, Ohtsubo Y, Nagata Y, Fujiyama A, Tsuda M, Kurokawa K. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res 2013; 21:217-27. [PMID: 24277737 PMCID: PMC3989492 DOI: 10.1093/dnares/dst052] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.
Collapse
Affiliation(s)
- Hiroshi Mori
- 1Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-36, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jeuck A, Arndt H. A short guide to common heterotrophic flagellates of freshwater habitats based on the morphology of living organisms. Protist 2013; 164:842-60. [PMID: 24239731 DOI: 10.1016/j.protis.2013.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Alexandra Jeuck
- Department of General Ecology, Zoological Institute, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Hartmut Arndt
- Department of General Ecology, Zoological Institute, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany.
| |
Collapse
|
9
|
Wang J, McLenachan PA, Biggs PJ, Winder LH, Schoenfeld BIK, Narayan VV, Phiri BJ, Lockhart PJ. Environmental bio-monitoring with high-throughput sequencing. Brief Bioinform 2013; 14:575-88. [DOI: 10.1093/bib/bbt032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|