1
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Li Y, Kong M, Qiu T, Ji Y. Targeting ESM1 via SOX4 promotes the progression of infantile hemangioma through the PI3K/AKT signaling pathway. PRECISION CLINICAL MEDICINE 2024; 7:pbae026. [PMID: 39507292 PMCID: PMC11540160 DOI: 10.1093/pcmedi/pbae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Infantile hemangioma (IH) is the most prevalent benign vascular tumor in children, yet its pathogenesis remains incompletely understood. Research has established a strong association between SOX4 and tumor blood vessel formation. The objective of this study was to investigate the function and underlying mechanism of SOX4 in IH development with the aim of identifying novel therapeutic targets. Methods We identified the transcription factor SOX4 associated with IH through RNA-seq screening of IH microtumors and validated it in IH tissues. The effect of SOX4 on the biological behavior of CD31+ hemangioma-derived endothelial cells (HemECs) was investigated via in vitro cell experiments. In addition, RNA-seq analysis was performed on CD31+ HemECs with low expression levels of SOX4, and the target genes of SOX4 were identified. Finally, the effect of SOX4 on tumor angiogenesis was further elucidated through 3D microtumor and animal experiments. Results SOX4 is highly expressed in IH tissues and promotes the proliferation, migration, and angiogenesis of CD31+ HemECs. In addition, SOX4 binds to the endothelial cell-specific molecule 1 (ESM1) promoter to promote the progression of the PI3K/AKT signaling pathway. Finally, through IH 3D microtumor and animal experiments, SOX4 and ESM1 are shown to be tumorigenic genes that independently promote tumor progression. Conclusions SOX4 plays a crucial role in the progression of IH, and the SOX4/ESM1 axis may serve as a novel biomarker and potential therapeutic target for IH.
Collapse
Affiliation(s)
- Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Kong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan 25002, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Wang J, Yao G, Zhang B, Zhao Z, Fan Y. Interaction between miR‑206 and lncRNA MALAT1 in regulating viability and invasion in hepatocellular carcinoma. Oncol Lett 2024; 27:5. [PMID: 38028177 PMCID: PMC10665983 DOI: 10.3892/ol.2023.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/19/2023] [Indexed: 12/01/2023] Open
Abstract
MicroRNAs (miRNAs) are strongly associated to the progression of hepatocellular carcinoma (HCC), which presents a high potential for diagnosis and treatment; however, the role of miRNAs is still largely unknown. The aim of the present study was to examine the expression and the biological role of miRNA (miR)-206 in the development of HCC, and to identify the underlying molecular mechanism. Results from this study show that miR-206 was significantly downregulated in HCC tissues and cell lines. It was observed that low expression of miR-206 was linked to advanced TNM stage, tumor nodularity and venous infiltration in patients with HCC; low miR-206 expression was associated with shorter survival times. miR-206 overexpression using miR-206 mimics notably decreased the proliferative ability and increased apoptosis of MHCC97-H and HCCLM3 HCC cell lines. Overexpression of miR-206 suppressed invasiveness associated with reduced epithelial-mesenchymal transition. Moreover, the c-Met oncogene, which is upregulated in HCC tissues, was negatively associated with the expression of miR-206. Notably, it was shown that miR-206 may exert its antitumor effect through suppressing c-Met/Akt/mTOR signaling. Low expression of miR-206 was shown to be regulated by lncRNA MALAT1 in HCC. Collectively, this study presented evidence that miR-206 was controlled by lncRNA MALAT1 and partially suppressed the proliferation and invasion of HCC through the c-Met/Akt/mTOR signaling pathway. According to these results, understanding MALAT1/miR-206-dependent regulation may lead to potential approaches for diagnosis and prospective treatment of HCC.
Collapse
Affiliation(s)
- Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Guoliang Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Beike Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zerui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yonggang Fan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
4
|
Zhang X, Du S, Yang D, Jin X, Zhang Y, Wang D, Wang H, Zhang Y, Zhu M. LncRNA MALAT1 knockdown inhibits the development of choroidal neovascularization. Heliyon 2023; 9:e19503. [PMID: 37810031 PMCID: PMC10558713 DOI: 10.1016/j.heliyon.2023.e19503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
In the pathogenesis of age-related macular degeneration, long non-coding RNAs have become important regulators. This study aimed to investigate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the progression of choroidal neovascularization (CNV) and the underlying mechanisms. The in vivo and in vitro model of CNV was established using laser-induced mouse CNV model and human choroidal vascular endothelial cells (HCVECs) exposed to hypoxia respectively. We explore the role of MALAT1 in the pathogenesis of CNV by using the small interference RNA both in vivo and in vitro. MALAT1 expression was found to be upregulated in the retinal pigment epithelial-choroidal complexes. MALAT1 knockdown inhibited CNV development and leakage in vivo and decreased HCVECs proliferation, migration, and tube formation in vitro. MALAT1 performed the task as a miR-17-5p sponge to regulate the expression of vascular endothelial growth factor A (VEGFA) and E26 transformation specific-1 (ETS1). This study provides a new perspective on the pathogenesis of CNV and suggests that the axis MALAT/miR-17-5p/VEGFA or ETS1 may be an effective therapeutic target for CNV.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Defeng Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xuemei Jin
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuan Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Diya Wang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Huixia Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Vaz CDO, Hounkpe BW, Oliveira JD, Mazetto B, Cardoso Jacintho B, Aparecida Locachevic G, Henrique De Oliveira Soares K, Carlos Silva Mariolano J, Castilho de Mesquita G, Colombera Peres K, Vieira- Damiani G, Vieira Geraldo M, Orsi FA. MicroRNA 205-5p and COVID-19 adverse outcomes: Potential molecular biomarker and regulator of the immune response. Exp Biol Med (Maywood) 2023; 248:1024-1033. [PMID: 37403291 PMCID: PMC10323515 DOI: 10.1177/15353702231175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 07/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The uncontrolled systemic inflammatory response, resulting from the release of large amounts of pro-inflammatory cytokines, is the main mechanism behind severe acute respiratory syndrome and multiple organ failure, the two main causes of death in COVID-19. Epigenetic mechanisms, such as gene expression regulation by microRNAs (miRs), may be at the basis of the immunological changes associated with COVID-19. Therefore, the main objective of the study was to evaluate whether the expression of miRNAs upon hospital admission could predict the risk of fatal COVID-19. To evaluate the level of circulating miRNAs, we used serum samples of COVID-19 patients collected upon hospital admission. Screening of differentially expressed miRNAs in fatal COVID-19 was performed by miRNA-Seq and the validation of miRNAs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The Mann-Whitney test and receiver operating characteristic (ROC) curve were used to validate the miRNAs, whose potential signaling pathways and biological processes were identified through an in silico approach. A cohort of 100 COVID-19 patients was included in this study. By comparing the circulating levels of miRs between survivors and patients who died due to complications of the infection, we found that the expression of miR-205-5p was increased in those who died during hospitalization, and the expression of both miR-205-5p (area under the curve [AUC] = 0.62, 95% confidence interval [CI] = 0.5-0.7, P = 0.03) and miR-206 (AUC = 0.62, 95% CI = 0.5-0.7, P = 0.03) was increased in those who lately evolved to severe forms of the disease (AUC = 0.70, 95% CI = 0.6-0.8, P = 0.002)."In silico" analysis revealed that miR-205-5p has the potential to enhance the activation of NLPR3 inflammasome and to inhibit vascular endothelial growth factor (VEGF) pathways. Impaired innate immune response against SARS-CoV-2 may be explained by epigenetic mechanisms, which could form early biomarkers of adverse outcomes.
Collapse
Affiliation(s)
| | - Bidossessi Wilfried Hounkpe
- Bone Metabolism Laboratory, Rheumatology Division, School of Medical Sciences, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - José Diogo Oliveira
- School of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil
| | - Bruna Mazetto
- School of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil
| | | | - Gisele Aparecida Locachevic
- Clinical Hospital, Department of Clinical Pathology, State University of Campinas, Campinas 13083-888, Brazil
| | | | - João Carlos Silva Mariolano
- Clinical Hospital, Department of Clinical Pathology, State University of Campinas, Campinas 13083-888, Brazil
| | | | - Karina Colombera Peres
- Clinical Hospital, Department of Clinical Pathology, State University of Campinas, Campinas 13083-888, Brazil
| | | | - Murilo Vieira Geraldo
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas 13083-862, Brazil
| | - Fernanda Andrade Orsi
- Department of Pathology, School of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil
| |
Collapse
|
6
|
de Souza IR, Iulini M, Galbiati V, Silva EZM, Sivek TW, Rodrigues AC, Gradia DF, Pestana CB, Leme DM, Corsini E. An integrated in silico-in vitro investigation to assess the skin sensitization potential of 4-Octylphenol. Toxicology 2023; 493:153548. [PMID: 37207816 DOI: 10.1016/j.tox.2023.153548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
One of the major challenges in chemical toxicity testing is the possibility to protect human health against adverse effects with non-animal methods. In this paper, 4-Octylphenol (OP) was tested for skin sensitization and immunomodulatory effects using an integrated in silico-in vitro test approach. In silico tools (QSAR TOOLBOX 4.5, ToxTree and VEGA) were used together with several in vitro tests including HaCaT cells (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA and expression of genes TNF, IL1A, IL6 and IL8 by RT- qPCR), RHE model (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA) and THP-1 activation assay (CD86/CD54 expression and IL-8 release). Additionally, the immunomodulatory effect of OP was investigated using lncRNAs MALAT1 and NEAT1 expression and LPS-induced THP-1 activation (CD86/CD54 expression and IL-8 release). The in silico tools predicted OP as a sensitizer. In vitro tests are also concordant with the in silico prediction. OP increased IL-6 expression (HaCaT cells); IL-18 and IL-8 expressions (RHE model). An irritant potential was also shown by a great expression of IL-1α (RHE model); and increased expression of CD54 marker and IL-8 in THP-1 cells. Immunomodulatory effects of OP were demonstrated by the downregulation of NEAT1, MALAT1 (epigenetic markers), IL6 and IL8; and an increase in LPS-induced CD54 and IL-8 expressions. Overall, results indicate that OP is a skin sensitizer, being positive in three key events of the AOP for skin sensitization, also showing immunomodulatory effects.
Collapse
Affiliation(s)
- Isisdoris Rodrigues de Souza
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Milan, Italy.
| | - Enzo Zini Moreira Silva
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Tainá Wilke Sivek
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Fiori Gradia
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Cynthia Bomfim Pestana
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Zheng Y, Xu P, Pan C, Wang Y, Liu Z, Chen Y, Chen C, Fu S, Xue K, Zhou Q, Liu K. Production and Biological Effects of Extracellular Vesicles from Adipose-Derived Stem Cells Were Markedly Increased by Low-Intensity Ultrasound Stimulation for Promoting Diabetic Wound Healing. Stem Cell Rev Rep 2022; 19:784-806. [PMID: 36562958 DOI: 10.1007/s12015-022-10487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Diabetic wound treatment has posed a significant challenge in clinical practice. As a kind of cell-derived nanoparticles, extracellular vesicles produced by adipose-derived stem cells (ADSC-EVs) have been reported to be potential agents for diabetic wound treatment. However, ADSC-EV yield is insufficient to meet the demands of clinical therapy. In this study, a novel method involving the use of low-intensity ultrasound stimulation on ADSCs is developed to promote EV secretion for clinical use. A proper low-intensity ultrasound stimulation parameter which significantly increases ADSC-EV quantity has been found. In addition, EVs secreted by ADSCs following low-intensity ultrasound stimulation (US-EVs) are enriched in wound healing-related miRNAs. Moreover, US-EVs promote the biological functions of fibroblasts, keratinocytes, and endothelial cells in vitro, and promote diabetic wound healing in db/db mice in vivo through re-epithelialization, collagen production, cell proliferation, keratinocyte differentiation and migration, and angiogenesis. This study proposes low-intensity ultrasound stimulation as a new method for promoting significant EV secretion by ADSCs and for improving the diabetic wound-healing potential of EVs, which will meet the clinical needs for these nanoparticles. The production of extracellular vesicles of adipose-derived stem cells is obviously promoted by a low-intensity ultrasound stimulation method, and the biological effects of promoting diabetic wound healing were markedly increased in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China.
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Yikai Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Zibo Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Yahong Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Chuhsin Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China.
| |
Collapse
|
8
|
PCAT19 Regulates the Proliferation and Apoptosis of Lung Cancer Cells by Inhibiting miR-25-3p via Targeting the MAP2K4 Signal Axis. DISEASE MARKERS 2022; 2022:2442094. [PMID: 35615401 PMCID: PMC9126706 DOI: 10.1155/2022/2442094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
Both PCAT19 and miR-25-3p have been reported in lung cancer studies, but whether there is a correlation between the two and whether they jointly regulate the progress of lung cancer have not been reported yet. Therefore, this study carried out a further in-depth research. The expression of PCAT19 was detected in lung cancer (LC) tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of PCAT19 on tumor growth was detected in a tumor-bearing model of nude mice. PCAT19-transfected cells were treated with Honokiol and anisomycin. The effects of PCAT19 on proliferation, apoptosis, and cycle of LC cells were investigated by biomolecule experiments. The effects of PCAT19 on the expressions of mitogen-activated protein kinase- (MAPK-) related proteins were evaluated by western blotting. The expression of PCAT19 was decreased in LC tissues and related to patient survival, tumor size, and pathology. In addition, upregulation of PCAT19 hindered LC cell proliferation, miR-25-3p expression, and the activation of extracellular regulated protein kinases (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK), while facilitating LC cell apoptosis. Furthermore, upregulation of PCAT19 reversed the effects of Honokiol and anisomycin on promoting cell proliferation and inhibiting cell apoptosis. Collectively, our findings show that upregulated PCAT19 suppresses proliferation yet promotes the apoptosis of LC cells through modulating the miR-25-3p/MAP2K4 signaling axis.
Collapse
|
9
|
Zhao Y, Li D, Han Y, Wang H, Du R, Yan Z. The ester derivatives obtained by C‐ring modification of podophyllotoxin induced apoptosis and inhibited proliferation in Hemangioma Endothelial Cells via down‐regulation of PI3K/Akt signaling pathway. Chem Biol Drug Des 2022; 99:828-838. [PMID: 35184389 DOI: 10.1111/cbdd.14034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/12/2021] [Accepted: 01/15/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Yan Zhao
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun 130118 China
| | - Danyao Li
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun 130118 China
| | - Yun Han
- Department of Pharmacy TCM Hospital Nanjing University of Chinese Medicine Suzhou 215009 China
| | - Haohao Wang
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun 130118 China
| | - Rui Du
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun 130118 China
| | - Zhaowei Yan
- Department of Pharmacy The First Affiliated Hospital of Soochow University Suzhou 215006 China
| |
Collapse
|
10
|
Li J, Guan X, Xu C, Jia J, Zhang L, Han H. miR-206 Targets MALAT1 to Suppress Cell Progression of Ectopic Endometrial Stromal Cells in Endometriosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8094385. [PMID: 35126948 PMCID: PMC8813257 DOI: 10.1155/2022/8094385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND miR-206 was reported to be a tumor suppressor in bladder cancer. In this study, we explore the expression and function of miR-206 in endometriosis (EM). METHODS 40 EM patients undergoing total hysterectomy were selected as the experimental group. RT-qPCR assay was adopted to detect the expression of MALAT1 and miR-206 in EM. Cell proliferation was detected by EdU incorporation and colony formation assay. Cell migration and invasion viability of ESCs were examined by transwell assay and wound healing assay. Flow cytometry was carried out to assess cell apoptosis of ESCs. The protein expressions of Bcl-2 and Bax were examined by western blot assay. The relationship between miR-206 and MALAT1 was verified by the dual-luciferase reporter assay and RNA pull-down assay. RESULTS In this work, miR-206 was found to be downregulated in EM. Functional experiments displayed that miR-206 mimic repressed cell proliferation, migration, and invasion of ESCs and promoted cell apoptosis of ESCs. Furthermore, miR-206 mimic reduced the expression of Bcl-2 but enhanced the expression of Bax. MALAT1 was found to be upregulated in EM. Furthermore, MALAT1 was indicated to be a target of miR-206. Additionally, MALAT1 was found to alleviate the influence of miR-206 on cell progression of ESCs. Furthermore, miR-206 inhibited tumor growth in vivo. CONCLUSION This study indicated that miR-206 inhibited cell progression by regulating MALAT1 in EM. Hence, miR-206 was suggested to be a possible target for EM treatment.
Collapse
Affiliation(s)
- Jinggang Li
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining 272100, China
| | - Xiaofei Guan
- Depatment of Obstetrics, Pingdu People's Hospital, Qingdao 266700, China
| | - Chongyun Xu
- Department of Obstetrics, Wulian Country People's Hospital, Rizhao 262300, China
| | - Jingyun Jia
- Department of Obstetrics, Chifeng City Center Hospital Ningcheng Country, Chifeng 024200, China
| | - Ling Zhang
- Record Room, Gaoqing Country People's Hospital, Zibo 256300, China
| | - Hui Han
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining 272100, China
| |
Collapse
|
11
|
Vimalraj S, Subramanian R, Dhanasekaran A. LncRNA MALAT1 Promotes Tumor Angiogenesis by Regulating MicroRNA-150-5p/VEGFA Signaling in Osteosarcoma: In-Vitro and In-Vivo Analyses. Front Oncol 2021; 11:742789. [PMID: 34692524 PMCID: PMC8529043 DOI: 10.3389/fonc.2021.742789] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
The present study aims to analyze the expression of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in human osteosarcoma (OS) cells and to investigate its role in OS-induced angiogenesis. MALAT1 expression in OS cells was significantly higher than in normal osteoblasts. The functional analysis indicated that MALAT1 appears to enhance OS-induced angiogenesis, in vitro and in vivo analyses, endothelial cell proliferation and migration, chick embryo angiogenesis assay, and zebrafish xenograft model. Mechanistically, silencing MALAT1 downregulated vascular endothelial growth factor A (VEGFA) expression and upregulated miR-150-5p expression in OS cells, and MALAT1-mediated angiogenic induction by VEGFA in OS microenvironment. Moreover, MALAT1 directly targeted miR-150-5p and miR-150-5p directly target VEGFA in OS. Overexpression of miR-150-5p downregulates VEGFA expression in OS. More notably, we showed that MALAT1 induced angiogenesis in OS microenvironment by upregulating the expression of VEGFA via targeting miR-150-5p. Overall, our findings suggest that MALAT1 promotes angiogenesis by regulating the miR-150-5p/VEGFA signaling in OS microenvironment. The findings of the molecular mechanisms of MALAT1 in tumor angiogenesis offer a new viewpoint on OS treatment.
Collapse
Affiliation(s)
| | - Raghunandhakumar Subramanian
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | | |
Collapse
|
12
|
Zhang Y, Xiang J, Zhu N, Ge H, Sheng X, Deng S, Chen J, Yu L, Zhou Y, Shen J. Curcumin in Combination With Omacetaxine Suppress Lymphoma Cell Growth, Migration, Invasion, and Angiogenesis via Inhibition of VEGF/Akt Signaling Pathway. Front Oncol 2021; 11:656045. [PMID: 34458134 PMCID: PMC8386016 DOI: 10.3389/fonc.2021.656045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Background Both omacetaxine (HHT) and curcumin were shown to exhibit anti-proliferative effect on lymphoma cells. However, the role of combination of HHT with curcumin (HHT/curcumin combination) on lymphoma cells remains unclear. Thus, this study aimed to investigate the effect of HHT/curcumin combination on the proliferation, migration, and angiogenesis of lymphoma cells. Methods Cell counting kit-8 (CCK-8), Ki67 immunofluorescence and transwell assays were used to assess the viability, proliferation and migration of U937 and Raji cells respectively. In addition, tube formation assay was used to determine the effects of HHT/curcumin combination on angiogenesis in human umbilical vein endothelial cells (HUVECs). Results In this study, we found that HHT/curcumin combination significantly inhibited the proliferation, migration and invasion in U937 and Raji cells (all P < 0.01). In addition, combination treatment markedly inhibited the secreted levels of vascular endothelial growth factor (VEGF)-(A-D) (all P < 0.01) in Raji cells. Moreover, combination treatment exhibited anti-tumor effects in Raji cells, as shown by the decreased signals of phosphorylated VEGF receptor 2 (p-VEGFR2) and phosphorylated protein kinase B (p-Akt) (all P < 0.01). Meanwhile, combination treatment inhibited VEGFA levels (P < 0.01) in exosomes derived from Raji cells. Application of exosomes with downregulated VEGF to HUVECs notably inhibited proliferation, migration and tube formation of HUVECs, evidenced by the decreased signals of p-Akt, angiogenin-1, matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMP9) (all P < 0.01). Conclusion Our findings indicated that combination of HHT and curcumin could inhibit lymphoma cell growth and angiogenesis via inhibition of VEGF/Akt signaling pathway. These results suggested that HHT combined with curcumin might be regarded as a promising therapeutic approach for the treatment of lymphoma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Xiang
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni Zhu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangping Ge
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianfu Sheng
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu Deng
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfa Chen
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lihong Yu
- First Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Zhou
- First Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianping Shen
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Roles of the Immune/Methylation/Autophagy Landscape on Single-Cell Genotypes and Stroke Risk in Breast Cancer Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5633514. [PMID: 34457116 PMCID: PMC8397558 DOI: 10.1155/2021/5633514] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
This study sought to perform integrative analysis of the immune/methylation/autophagy landscape on breast cancer prognosis and single-cell genotypes. Breast Cancer Recurrence Risk Score (BCRRS) and Breast Cancer Prognostic Risk Score (BCPRS) were determined based on 6 prognostic IMAAGs obtained from the TCGA-BRCA cohort. BCRRS and BCPRS, respectively, were used to construct a risk prediction model of overall survival and progression-free survival. Predictive capacity of the model was evaluated using clinical data. Analysis showed that BCRRS is associated with a high risk of stroke. In addition, PPI and drug-ceRNA networks based on differences in BCPRS were constructed. Single cells were genotyped through integrated scRNA-seq of the TNBC samples based on clustering results of BCPRS-related genes. The findings of this study show the potential regulatory effects of IMAAGs on breast cancer tumor microenvironment. High AUCs of 0.856 and 0.842 were obtained for the OS and PFS prognostic models, respectively. scRNA-seq analysis showed high expression levels of adipocytes and adipose tissue macrophages (ATMs) in high BCPRS clusters. Moreover, analysis of ligand-receptor interactions and potential regulatory mechanisms were performed. The LINC00276&MALAT1/miR-206/FZD4-Wnt7b pathway was also identified which may be useful in future research on targets against breast cancer metastasis and recurrence. Neural network-based deep learning models using BCPRS-related genes showed that these genes can be used to map the tumor microenvironment. In summary, analysis of IMAAGs, BCPRS, and BCRRS provides information on the breast cancer microenvironment at both the macro- and microlevels and provides a basis for development of personalized treatment therapy.
Collapse
|
14
|
Ma Q, Dai X, Lu W, Qu X, Liu N, Zhu C. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis. Biochem Biophys Res Commun 2021; 556:72-78. [PMID: 33839417 DOI: 10.1016/j.bbrc.2021.03.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Even though long non-coding RNA (lncRNA) MEG8 plays vital roles in carcinogenesis of malignances, its roles and mechanisms in hemangioma remain unknown. Therefore, we evaluate the oncogenic roles of MEG8 in hemangioma. Small interfering RNA (siRNA)-mediated depletion of MEG8 inhibited the proliferation and increased MDA level in human hemangioma endothelial cells (HemECs). The inhibitors of ferroptosis (ferrostatin-1 and liproxstatin-1) abolished the MEG8 silence induced cell viability loss. Knockdown of MEG8 increased the miR-497-5p expression and reduced the mRNA and protein levels of NOTCH2. Using a dual-luciferase assay, we confirmed the binding between MEG8 and miR-497-5p, and between the miR-497-5p and 3'UTR of NOTCH2. We further found that silencing MEG8 significantly decreased the expressions of SLC7A11 and GPX4 both in mRNA and protein level and had no effect on the level of AIFM2. Importantly, blocking miR-497-5p abrogated the effects of MEG8 loss on cell viability, MDA level and expression levels of NOTCH2, SLC7A11 and GPX4 in HemECs. Taken together, our results suggested that knockdown of long non-coding RNA MEG8 inhibited the proliferation and induced the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis.
Collapse
Affiliation(s)
- Qingjie Ma
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Xiaolin Dai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weiwei Lu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaowen Qu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Na Liu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Chongtao Zhu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
15
|
Wu M, Chen Y, Feng L, Dai H, Fang S, Xu J. MiR-206 promotes extracellular matrix accumulation and relieves infantile hemangioma through targeted inhibition of DNMT3A. Cell Cycle 2021; 20:978-992. [PMID: 33945391 PMCID: PMC8172163 DOI: 10.1080/15384101.2021.1919820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 10/21/2022] Open
Abstract
MiR-206 is abnormally expressed in infant hemangioma endothelial cells (HemECs), but the mechanism is not clear. We explored the intervention of miR-206 in HemECs in relation to extracellular matrix (ECM) metabolism. We selected 48 cases of infantile hemangioma (IH) from volunteer organizations. After the isolated and extracted HemECs were interfered with overexpressed or silenced miR-206, the effects of miR-206 on the proliferation, migration and invasion of HemECs were examined through basic cell function experiments. The expression differences of miR-206, DNA Methyltransferase 3A (DNMT3A) and ECM-related genes were analyzed as needed by qRT-PCR or Western blot. TargetScan and dual-luciferase experiments were applied to predict and confirm the binding relationship between miR-206 and DNMT3A. The correlation between miR-206 and DNMT3A was analyzed in IH tissues by Pearson correlation coefficient, and further confirmed in HemECs by conducting rescue experiments. A nude mouse model of xenograft tumor was constructed to verify the results of in vitro experiments. MiR-206, which was downregulated in proliferative hemangioma, suppressed the malignant development of HemECs by regulating ECM-related genes. As the target gene of miR-206, DNMT3A was high-expressed in IH tissues and was negatively correlated with miR-206. Overexpressed DNMT3A counteracted the inhibitory effect of miR-206 mimic on HemECs and its regulatory effect on ECM. The results of in vivo experiments were consistent with those from cell experiments. Thus, miR-206 could promote ECM accumulation through targeted inhibition of DNMT3A, further inhibiting the malignant development of HemECs and relieving IH.
Collapse
Affiliation(s)
- Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yong Chen
- Department of Plastic Surgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, China
| | - Ling Feng
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haiying Dai
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuo Fang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianguo Xu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Yang K, Zhang X, Chen L, Chen S, Ji Y. Microarray expression profile of mRNAs and long noncoding RNAs and the potential role of PFK-1 in infantile hemangioma. Cell Div 2021; 16:1. [PMID: 33430906 PMCID: PMC7802351 DOI: 10.1186/s13008-020-00069-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Infantile hemangioma (IH) is the most common benign tumor in children. Long noncoding RNAs (lncRNAs) play a critical role in tumorigenesis. However, the expression levels and biological functions of lncRNAs in IH have not been well-studied. This study aimed to analyze the expression profile of lncRNAs and mRNAs in proliferating and involuting IHs. METHODS The expression profiles of lncRNAs and mRNAs in proliferating and involuting IHs were identified by microarray analysis. Subsequently, detailed bioinformatics analyses were performed. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) analyses were conducted to validate the microarray results. RESULTS In total, 146 differentially expressed (DE) lncRNAs and 374 DE mRNAs were identified. The DE mRNAs were enriched mostly in angiogenesis-related biological processes (BPs) and pathways by bioinformatics analysis. In addition, metabolism-related BPs (e.g., "glycogen biosynthetic process" and "metabolic process") and pathways (e.g., "oxidative phosphorylation") were identified. A lncRNA-mRNA co-expression network was constructed from 42 DE lncRNAs and 217 DE mRNAs. Twelve lncRNAs were predicted to have cis-regulated target genes. The microarray analysis results were validated by qRT-PCR using 5 randomly selected lncRNAs and 13 mRNAs. The IHC results revealed that both LOXL2 and FPK-1 exhibited higher protein expression levels in proliferating IH than in involuting IH. Moreover, inhibition of PFK-1 could suppress hemangioma-derived endothelial cell proliferation and migration, induce cell arrest, and reduce glucose uptake and lactate and ATP production. CONCLUSIONS The findings suggest that the identified DE lncRNAs and mRNAs may be associated with the pathogenesis of IH. The data presented herein can improve our understanding of IH development and provide direction for further studies investigating the mechanism underlying IH.
Collapse
Affiliation(s)
- Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, China
| | - Xuepeng Zhang
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linwen Chen
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, China.
| |
Collapse
|
17
|
De Leye H, Saerens J, Janmohamed SR. News on infantile haemangioma. Part 1: clinical course and pathomechanism. Clin Exp Dermatol 2020; 46:473-479. [PMID: 33278055 DOI: 10.1111/ced.14502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
Currently, there is no doubt that the first choice of treatment for alarming infantile haemangiomas (IHs) is oral beta-blockers. However, research in this field remains active, as the pathogenesis of IH is still not completely elucidated. Furthermore, there are different approaches to the management of IHs with beta-blockers. In Part 1 of this review we will discuss the state-of-the-art evidence for IH with regard to (i) the definition, epidemiology, course, risk factors and sequelae, and (ii) the pathogenesis, focusing on genetic studies. This review will update the reader on the latest developments in the pathogenesis of IH. Furthermore, we hope this review will give more insight into risk factors and sequelae of IH, thereby contributing to better decisions in the clinical management of patients with IH. The therapy and evaluation of IHs will be discussed in Part 2 of this review.
Collapse
Affiliation(s)
- H De Leye
- Department of Dermatology, Universitair Ziekenhuis Brussel (UZB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - J Saerens
- Department of Dermatology, Universitair Ziekenhuis Brussel (UZB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - S R Janmohamed
- Department of Dermatology, Universitair Ziekenhuis Brussel (UZB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|