1
|
Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front Microbiol 2022; 13:1065894. [PMID: 36519172 PMCID: PMC9742232 DOI: 10.3389/fmicb.2022.1065894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanbin Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Chassalevris T, Chaintoutis SC, Koureas M, Petala M, Moutou E, Beta C, Kyritsi M, Hadjichristodoulou C, Kostoglou M, Karapantsios T, Papadopoulos A, Papaioannou N, Dovas CI. SARS-CoV-2 wastewater monitoring using a novel PCR-based method rapidly captured the Delta-to-Omicron ΒΑ.1 transition patterns in the absence of conventional surveillance evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022. [PMID: 35753493 DOI: 10.1101/2022.01.28.21268186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Conventional SARS-CoV-2 surveillance based on genotyping of clinical samples is characterized by challenges related to the available sequencing capacity, population sampling methodologies, and is time, labor, and resource-demanding. Wastewater-based variant surveillance constitutes a valuable supplementary practice, since it does not require extensive sampling, and provides information on virus prevalence in a timely and cost-effective manner. Consequently, we developed a sensitive real-time RT-PCR-based approach that exclusively amplifies and quantifies SARS-CoV-2 genomic regions carrying the S:Δ69/70 deletion, indicative of the Omicron BA.1 variant, in wastewater. The method was incorporated in the analysis of composite daily samples taken from the main Wastewater Treatment Plant of Thessaloniki, Greece, from 1 December 2021. The applicability of the methodology is dependent on the epidemiological situation. During Omicron BA.1 global emergence, Thessaloniki was experiencing a massive epidemic wave attributed solely to the Delta variant, according to genomic surveillance data. Since Delta does not possess the S:Δ69/70, the emergence of Omicron BA.1 could be monitored via the described methodology. Omicron BA.1 was detected in sewage samples on 19 December 2021 and a rapid increase of its viral load was observed in the following 10-day period, with an estimated early doubling time of 1.86 days. The proportion of the total SARS-CoV-2 load attributed to BA.1 reached 91.09 % on 7 January, revealing a fast Delta-to-Omicron transition pattern. The detection of Omicron BA.1 subclade in wastewater preceded the outburst of reported (presumable) Omicron cases in the city by approximately 7 days. The proposed wastewater surveillance approach based on selective PCR amplification of a genomic region carrying a deletion signature enabled rapid, real-time data acquisition on Omicron BA.1 prevalence and dynamics during the slow remission of the Delta wave. Timely provision of these results to State authorities readily influences the decision-making process for targeted public health interventions, including control measures, awareness, and preparedness.
Collapse
Affiliation(s)
- Taxiarchis Chassalevris
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra str., 54627, Thessaloniki, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra str., 54627, Thessaloniki, Greece
| | - Michalis Koureas
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi str., 41222 Larissa, Greece
| | - Maria Petala
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evangelia Moutou
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra str., 54627, Thessaloniki, Greece
| | - Christina Beta
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maria Kyritsi
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi str., 41222 Larissa, Greece
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi str., 41222 Larissa, Greece
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, School of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Thodoris Karapantsios
- Laboratory of Chemical and Environmental Technology, School of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Agis Papadopoulos
- EYATH S.A., Thessaloniki Water Supply and Sewerage Company S.A., 54636 Thessaloniki, Greece
| | - Nikolaos Papaioannou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra str., 54627, Thessaloniki, Greece.
| |
Collapse
|
3
|
Chassalevris T, Chaintoutis SC, Koureas M, Petala M, Moutou E, Beta C, Kyritsi M, Hadjichristodoulou C, Kostoglou M, Karapantsios T, Papadopoulos A, Papaioannou N, Dovas CI. SARS-CoV-2 wastewater monitoring using a novel PCR-based method rapidly captured the Delta-to-Omicron ΒΑ.1 transition patterns in the absence of conventional surveillance evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156932. [PMID: 35753493 PMCID: PMC9225927 DOI: 10.1016/j.scitotenv.2022.156932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 05/21/2023]
Abstract
Conventional SARS-CoV-2 surveillance based on genotyping of clinical samples is characterized by challenges related to the available sequencing capacity, population sampling methodologies, and is time, labor, and resource-demanding. Wastewater-based variant surveillance constitutes a valuable supplementary practice, since it does not require extensive sampling, and provides information on virus prevalence in a timely and cost-effective manner. Consequently, we developed a sensitive real-time RT-PCR-based approach that exclusively amplifies and quantifies SARS-CoV-2 genomic regions carrying the S:Δ69/70 deletion, indicative of the Omicron BA.1 variant, in wastewater. The method was incorporated in the analysis of composite daily samples taken from the main Wastewater Treatment Plant of Thessaloniki, Greece, from 1 December 2021. The applicability of the methodology is dependent on the epidemiological situation. During Omicron BA.1 global emergence, Thessaloniki was experiencing a massive epidemic wave attributed solely to the Delta variant, according to genomic surveillance data. Since Delta does not possess the S:Δ69/70, the emergence of Omicron BA.1 could be monitored via the described methodology. Omicron BA.1 was detected in sewage samples on 19 December 2021 and a rapid increase of its viral load was observed in the following 10-day period, with an estimated early doubling time of 1.86 days. The proportion of the total SARS-CoV-2 load attributed to BA.1 reached 91.09 % on 7 January, revealing a fast Delta-to-Omicron transition pattern. The detection of Omicron BA.1 subclade in wastewater preceded the outburst of reported (presumable) Omicron cases in the city by approximately 7 days. The proposed wastewater surveillance approach based on selective PCR amplification of a genomic region carrying a deletion signature enabled rapid, real-time data acquisition on Omicron BA.1 prevalence and dynamics during the slow remission of the Delta wave. Timely provision of these results to State authorities readily influences the decision-making process for targeted public health interventions, including control measures, awareness, and preparedness.
Collapse
Affiliation(s)
- Taxiarchis Chassalevris
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra str., 54627, Thessaloniki, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra str., 54627, Thessaloniki, Greece
| | - Michalis Koureas
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi str., 41222 Larissa, Greece
| | - Maria Petala
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evangelia Moutou
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra str., 54627, Thessaloniki, Greece
| | - Christina Beta
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maria Kyritsi
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi str., 41222 Larissa, Greece
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi str., 41222 Larissa, Greece
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, School of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Thodoris Karapantsios
- Laboratory of Chemical and Environmental Technology, School of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Agis Papadopoulos
- EYATH S.A., Thessaloniki Water Supply and Sewerage Company S.A., 54636 Thessaloniki, Greece
| | - Nikolaos Papaioannou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra str., 54627, Thessaloniki, Greece.
| |
Collapse
|