1
|
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, Martins-de-Souza D. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration. Biochem Soc Trans 2024; 52:163-176. [PMID: 38288874 DOI: 10.1042/bst20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lívia Ramos-da-Silva
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aline Valéria Sousa Santos
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D)
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
2
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
3
|
Yim YY, Nestler EJ. Cell-Type-Specific Neuroproteomics of Synapses. Biomolecules 2023; 13:998. [PMID: 37371578 PMCID: PMC10296650 DOI: 10.3390/biom13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the last two decades, our knowledge of synaptic proteomes and their relationship to normal brain function and neuropsychiatric disorders has been expanding rapidly through the use of more powerful neuroproteomic approaches. However, mass spectrometry (MS)-based neuroproteomic studies of synapses still require cell-type, spatial, and temporal proteome information. With the advancement of sample preparation and MS techniques, we have just begun to identify and understand proteomes within a given cell type, subcellular compartment, and cell-type-specific synapse. Here, we review the progress and limitations of MS-based neuroproteomics of synapses in the mammalian CNS and highlight the recent applications of these approaches in studying neuropsychiatric disorders such as major depressive disorder and substance use disorders. Combining neuroproteomic findings with other omics studies can generate an in-depth, comprehensive map of synaptic proteomes and possibly identify new therapeutic targets and biomarkers for several central nervous system disorders.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | |
Collapse
|
4
|
Mansouri M, Kremser L, Nguyen TP, Kasugai Y, Caberlotto L, Gassmann M, Sarg B, Lindner H, Bettler B, Carboni L, Ferraguti F. Protein Networks Associated with Native Metabotropic Glutamate 1 Receptors (mGlu 1) in the Mouse Cerebellum. Cells 2023; 12:1325. [PMID: 37174725 PMCID: PMC10177021 DOI: 10.3390/cells12091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The metabotropic glutamate receptor 1 (mGlu1) plays a pivotal role in synaptic transmission and neuronal plasticity. Despite the fact that several interacting proteins involved in the mGlu1 subcellular trafficking and intracellular transduction mechanisms have been identified, the protein network associated with this receptor in specific brain areas remains largely unknown. To identify novel mGlu1-associated protein complexes in the mouse cerebellum, we used an unbiased tissue-specific proteomic approach, namely co-immunoprecipitation followed by liquid chromatography/tandem mass spectrometry analysis. Many well-known protein complexes as well as novel interactors were identified, including G-proteins, Homer, δ2 glutamate receptor, 14-3-3 proteins, and Na/K-ATPases. A novel putative interactor, KCTD12, was further investigated. Reverse co-immunoprecipitation with anti-KCTD12 antibodies revealed mGlu1 in wild-type but not in KCTD12-knock-out homogenates. Freeze-fracture replica immunogold labeling co-localization experiments showed that KCTD12 and mGlu1 are present in the same nanodomain in Purkinje cell spines, although at a distance that suggests that this interaction is mediated through interposed proteins. Consistently, mGlu1 could not be co-immunoprecipitated with KCTD12 from a recombinant mammalian cell line co-expressing the two proteins. The possibility that this interaction was mediated via GABAB receptors was excluded by showing that mGlu1 and KCTD12 still co-immunoprecipitated from GABAB receptor knock-out tissue. In conclusion, this study identifies tissue-specific mGlu1-associated protein clusters including KCTD12 at Purkinje cell synapses.
Collapse
Affiliation(s)
- Mahnaz Mansouri
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | | | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| | - Laura Caberlotto
- Centre for Computational and Systems Biology (COSBI), The Microsoft Research University of Trento, 38068 Rovereto, Italy;
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland; (M.G.); (B.B.)
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | - Herbert Lindner
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland; (M.G.); (B.B.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| |
Collapse
|
5
|
Zha Y, Jin Y, Wang X, Chen L, Zhang X, Wang M. Long-term maintenance of synaptic plasticity by Fullerenol Ameliorates lead-induced-impaired learning and memory in vivo. J Nanobiotechnology 2022; 20:348. [PMID: 35909130 PMCID: PMC9341061 DOI: 10.1186/s12951-022-01550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Fullerenol, a functional and water-soluble fullerene derivative, plays an important role in antioxidant, antitumor and antivirus, implying its enormous potential in biomedical applications. However, the in vivo performance of fullerenol remains largely unclear. We aimed to investigate the effect of fullerenol (i.p., 5 mg/kg) on the impaired hippocampus in a rat model of lead exposure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a kind of newly developed soft-ionization mass spectrometry technology. In the present study, an innovative strategy for biological distribution analysis using MALDI-TOF-MS confirmed that fullerenol could across the blood-brain barrier and accumulate in the brain. Results from behavioral tests showed that a low dose of fullerenol could improve the impaired learning and memory induced by lead. Furthermore, electrophysiology examinations indicated that this potential repair effect of fullerenol was mainly due to the long-term changes in hippocampal synaptic plasticity, with enhancement lasting for more than 2-3 h. In addition, morphological observations and biochemistry analyses manifested that the long-term change in synaptic efficacy was accompanied by some structural alteration in synaptic connection. Our study demonstrates the therapeutic feature of fullerenol will be beneficial to the discovery and development as a new drug and lays a solid foundation for further biomedical applications of nanomedicines.
Collapse
Affiliation(s)
- Yingying Zha
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Xinxing Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Lin Chen
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xulai Zhang
- Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, 230022, Anhui, China.
| | - Ming Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
6
|
Proximity labeling methods for proteomic analysis of membrane proteins. J Proteomics 2022; 264:104620. [DOI: 10.1016/j.jprot.2022.104620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
7
|
Proteomics Reveals Molecular Changes in Insomnia Patients with More Dreams. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6181943. [PMID: 35432581 PMCID: PMC9012652 DOI: 10.1155/2022/6181943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Background Insomnia is a sleep disorder and the cause of many healthy problems. However, there are few studies on patients with insomnia and dreaminess at present. Therefore, this study is aimed at exploring the pathological molecular mechanisms and potential diagnostic and therapeutic targets related to insomnia patients with more dreams. Methods Sleep characteristics of 36 primary insomnia patients with more dreams and 36 well sleeping participants were assessed using polysomnography (PSG) and Pittsburgh Sleep Quality Index (PSQI). Serum samples from 9 insomnia patients and 9 controls were randomly selected for proteomic detection. Differentially expressed proteins (DEPs) between the two groups were identified; enrichment analysis and PPI network were performed. The top 10 most connected proteins in the PPI network were subjected to targeted drug prediction and screened key proteins. Proteins with targeted drugs were recognized as key proteins and subjected to ELISA detection. Results Insomnia patients had a distinct REM behavior disorder signature compared with controls. Proteomic sequencing identified 76 DEPs. Enrichment analysis found that DEPs were significantly enriched in the complement and coagulation cascades. Metabolic responses were also activated in insomnia patients. Among the hub proteins screened in the PPI network, APOA1, APOB, F2, and SPARC may be targeted by many herbal medicines and considered as key proteins. ELISA assays validated their differential expression between insomnia and controls. Conclusion In this study, we identified the potential key proteins of insomnia patients with more dreams. The pathological process may associate with inflammation and metabolic response. These results provide molecular targets for diagnostic and therapeutic targets. The results of our analysis suggest that the expression changes of key proteins have a good predictive diagnostic role for the occurrence of insomnia with more dreams in patients.
Collapse
|