1
|
Li C, Wang X, Li H, Ahmed Z, Luo Y, Qin M, Yang Q, Long Z, Lei C, Yi K. Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat. Anim Genet 2024; 55:575-587. [PMID: 38806279 DOI: 10.1111/age.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.
Collapse
Affiliation(s)
- Chuanqing Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianglin Wang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Mao Qin
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Qiong Yang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Zhangcheng Long
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| |
Collapse
|
2
|
Shi M, Huang L, Meng S, Wang H, Zhang J, Miao Z, Li Z. Identification of several lncRNA-mRNA pairs associated with marbling trait between Nanyang and Angus cattle. BMC Genomics 2024; 25:696. [PMID: 39014336 PMCID: PMC11250971 DOI: 10.1186/s12864-024-10590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The marbling trait of cattle muscles, being a key indicator, played an important role in evaluating beef quality. Two breeds of cattle, namely a high-marbling (Angus) and a low-marbling (Nanyang) one, with their cattle muscles selected as our samples for transcriptome sequencing, were aimed to identify differentially expressed long non-coding RNAs (lncRNAs) and their targets associated with the marbling trait. RESULTS Transcriptome sequencing identified 487 and 283 differentially expressed mRNAs and lncRNAs respectively between the high-marbling (Angus) and low-marbling (Nanyang) cattle muscles. Twenty-seven pairs of differentially expressed lncRNAs-mRNAs, including eighteen lncRNAs and eleven target genes, were found to be involved in fat deposition and lipid metabolism. We established a positive correlation between fourteen up-regulated (NONBTAT000849.2, MSTRG.9591.1, NONBTAT031089.1, MSTRG.3720.1, NONBTAT029718.1, NONBTAT004228.2, NONBTAT007494.2, NONBTAT011094.2, NONBTAT015080.2, NONBTAT030943.1, NONBTAT021005.2, NONBTAT021004.2, NONBTAT025985.2, and NONBTAT023845.2) and four down-regulated (NONBTAT000850.2, MSTRG.22188.3, MSTRG.22188.4, and MSTRG.22188.5) lncRNAs and eleven genes related to adiponectin family protein (ADIPOQ), cytochrome P450 family (CYP4V2), 3-hydroxyacyl-CoA dehydratase family (HACD4), kinesin family (KIF5C), lipin family (LPIN2), perilipin family (PLIN1), prostaglandin family (PTGIS), solute carrier family (SLC16A7, SLC2213, and SLCO4C1), and containing a transmembrane domain protein family (VSTM1). CONCLUSIONS These candidate genes and lncRNAs can be regarded as being responsible for regulating the marbling trait of cattle. lncRNAs along with the variations in intramuscular fat marbling established a foundation for elucidating the genetic basis of high marbling in cattle.
Collapse
Affiliation(s)
- Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Luyao Huang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China
| | - Shuaitao Meng
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China
| | - Heming Wang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, 453003, China.
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
He L, Feng X, Hu C, Liu S, Sheng H, Cai B, Ma Y. HOXA9 gene inhibits proliferation and differentiation and promotes apoptosis of bovine preadipocytes. BMC Genomics 2024; 25:358. [PMID: 38605318 PMCID: PMC11007997 DOI: 10.1186/s12864-024-10231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.
Collapse
Affiliation(s)
- Lixia He
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Xue Feng
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Chunli Hu
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Shuang Liu
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Hui Sheng
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Bei Cai
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Yun Ma
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
4
|
Xiong L, Yao X, Pei J, Wang X, Guo S, Cao M, Bao P, Wang H, Yan P, Guo X. Do microbial-gut-muscle mediated by SCFAs, microbial-gut-brain axis mediated by insulin simultaneously regulate yak IMF deposition? Int J Biol Macromol 2024; 257:128632. [PMID: 38061511 DOI: 10.1016/j.ijbiomac.2023.128632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
Ruminant rumen plays an important role in the digestibility of cellulose, hemicellulose, starch and fat. In this study, the yaks under graze and stall feeding were chosen as the models of different rumen bacteria and intramuscular fat (IMF). The characteristics of IMF deposition, serum indexes in yaks were detected; the bacteria, metabolites in rumen was explored by 16S rRNA sequencing technology, untargeted metabolomics based on liquid chromatography-mass spectrometer and gas chromatography, respectively; the transcriptome of longissimus thoracis was identified by RNA-Sequencing analysis. Based on above results, a hypothesis that yak IMF deposition is regulated by the combined action of microbiome-gut-brain and muscle axis was proposed. The short-chain fatty acids (SCFAs) and neurotransmitters precursors like acetylcholine produced in yak rumen promoted insulin secretion via central nervous system. These insulin resulted in the high expression of SREBF1 gene by gut-brain axis; SCFAs can directly arrive to muscular tissue via blood circulation system, then activated the expression of PPARγ gene by gut-muscle axis. The expression of lipogenesis gene SCD, FABP3, CPT1, FASN and ACC2 was accordingly up-regulated. This study firstly introduce the theory of microbiome-gut-brain/muscle axis into the study of ruminant, and comprehensively expounded the regulatory mechanism of yak IMF deposition.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xixi Yao
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China; Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China.
| |
Collapse
|
5
|
You W, Liu S, Ji J, Ling D, Tu Y, Zhou Y, Chen W, Valencak TG, Wang Y, Shan T. Growth arrest and DNA damage-inducible alpha regulates muscle repair and fat infiltration through ATP synthase F1 subunit alpha. J Cachexia Sarcopenia Muscle 2023; 14:326-341. [PMID: 36511343 PMCID: PMC9891974 DOI: 10.1002/jcsm.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage-inducible alpha (GADD45A), a stress-inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. METHODS To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte-specific GADD45A knock-in (KI) mice and high IMAT-infiltrated muscle model by glycerol injection (50 μL of 50% v/v GLY) were generated. RNA-sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin-3-gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. RESULTS The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2 = 0.20, P < 0.05) and animals (correlation: wild-type [WT] vs. mdx mice, Gadd45a and Cebpa, r2 = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2 = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: -57%, Adipoq: -35%, P < 0.001; Fabp4: -37%, P < 0.01; Leptin: -28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: -40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: -23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: -36%, P < 0.01; decreased phospho-PKA and phospho-LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: -64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). CONCLUSIONS Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Shiqi Liu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Jianfei Ji
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Defeng Ling
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yuang Tu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yanbing Zhou
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Wentao Chen
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | | | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Tizhong Shan
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| |
Collapse
|
6
|
Identification of Key Genes and Biological Pathways Associated with Skeletal Muscle Maturation and Hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals (Basel) 2022; 12:ani12243471. [PMID: 36552391 PMCID: PMC9774933 DOI: 10.3390/ani12243471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The aim of the current study was to identify the major genes and pathways involved in the process of hypertrophy and skeletal muscle maturation that is common for Bos taurus, Ovis aries, and Sus scrofa species. Gene expression profiles related to Bos taurus, Ovis aries, and Sus scrofa muscle, with accession numbers GSE44030, GSE23563, and GSE38518, respectively, were downloaded from the GEO database. Differentially expressed genes (DEGs) were screened out using the Limma package of R software. Genes with Fold Change > 2 and an adjusted p-value < 0.05 were identified as significantly different between two treatments in each species. Subsequently, gene ontology and pathway enrichment analyses were performed. Moreover, hub genes were detected by creating a protein−protein interaction network (PPI). The results of the analysis in Bos taurus showed that in the period of 280 dpc−3-months old, a total of 1839 genes showed a significant difference. In Ovis aries, however, during the period of 135dpc−2-months old, a total of 486 genes were significantly different. Additionally, in the 91 dpc−adult period, a total of 2949 genes were significantly different in Sus scrofa. The results of the KEGG pathway enrichment analysis and GO function annotation in each species separately revealed that in Bos taurus, DEGs were mainly enriched through skeletal muscle fiber development and skeletal muscle contraction, and the positive regulation of fibroblast proliferation, positive regulation of skeletal muscle fiber development, PPAR signaling pathway, and HIF-1 signaling pathway. In Ovis aries, DEGs were mainly enriched through regulating cell growth, skeletal muscle fiber development, the positive regulation of fibroblast proliferation, skeletal muscle cell differentiation, and the PI3K-Akt signaling, HIF-1 signaling, and Rap1 signaling pathways. In Sus scrofa, DEGs were mainly enriched through regulating striated muscle tissue development, the negative regulation of fibroblast proliferation and myoblast differentiation, and the HIF-1 signaling, AMPK signaling, and PI3K-Akt signaling pathways. Using a Venn diagram, 36 common DEGs were identified between Bos taurus, Ovis aries, and Sus scrofa. A biological pathways analysis of 36 common DEGs in Bos taurus, Ovis aries, and Sus scrofa allowed for the identification of common pathways/biological processes, such as myoblast differentiation, the regulation of muscle cell differentiation, and positive regulation of skeletal muscle fiber development, that orchestrated the development and maturation of skeletal muscle. As a result, hub genes were identified, including PPARGC1A, MYOD1, EPAS1, IGF2, CXCR4, and APOA1, in all examined species. This study provided a better understanding of the relationships between genes and their biological pathways in the skeletal muscle maturation process.
Collapse
|
7
|
Xu Z, Wu J, Zhou J, Zhang Y, Qiao M, Sun H, Li Z, Li L, Chen N, Oyelami FO, Peng X, Mei S. Integration of ATAC-seq and RNA-seq analysis identifies key genes affecting intramuscular fat content in pigs. Front Nutr 2022; 9:1016956. [PMID: 36276837 PMCID: PMC9581296 DOI: 10.3389/fnut.2022.1016956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Meat quality is one of the most important economic traits in pig breeding and production, and intramuscular fat (IMF) content is the major factor in improving meat quality. The IMF deposition in pigs is influenced by transcriptional regulation, which is dependent on chromatin accessibility. However, how chromatin accessibility plays a regulatory role in IMF deposition in pigs has not been reported. Xidu black is a composite pig breed with excellent meat quality, which is an ideal research object of this study. In this study, we used the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) analysis to identify the accessible chromatin regions and key genes affecting IMF content in Xidu black pig breed with extremely high and low IMF content. First, we identified 21,960 differential accessible chromatin peaks and 297 differentially expressed genes. The motif analysis of differential peaks revealed several potential cis-regulatory elements containing binding sites for transcription factors with potential roles in fat deposition, including Mef2c, CEBP, Fra1, and AP-1. Then, by integrating the ATAC-seq and RNA-seq analysis results, we found 47 genes in the extremely high IMF (IMF_H) group compared with the extremely low IMF (IMF_L) group. For these genes, we observed a significant positive correlation between the differential gene expression and differential ATAC-seq signal (r2 = 0.42). This suggests a causative relationship between chromatin remodeling and the resulting gene expression. We identified several candidate genes (PVALB, THRSP, HOXA9, EEPD1, HOXA10, and PDE4B) that might be associated with fat deposition. Through the PPI analysis, we found that PVALB gene was the top hub gene. In addition, some pathways that might regulate fat cell differentiation and lipid metabolism, such as the PI3K-Akt signaling pathway, MAPK signaling pathway, and calcium signaling pathway, were significantly enriched in the ATAC-seq and RNA-seq analysis. To the best of our knowledge, our study is the first to use ATAC-seq and RNA-seq to examine the mechanism of IMF deposition from a new perspective. Our results provide valuable information for understanding the regulation mechanism of IMF deposition and an important foundation for improving the quality of pork.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Nanqi Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | | | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China,*Correspondence: Xianwen Peng,
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China,Shuqi Mei,
| |
Collapse
|
8
|
Chen D, Su M, Zhu H, Zhong G, Wang X, Ma W, Wanapat M, Tan Z. Using Untargeted LC-MS Metabolomics to Identify the Association of Biomarkers in Cattle Feces with Marbling Standard Longissimus Lumborum. Animals (Basel) 2022; 12:2243. [PMID: 36077963 PMCID: PMC9455031 DOI: 10.3390/ani12172243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To improve the grade of beef marbling has great economic value in the cattle industry since marbling has the traits of high quality and comprehensive nutrition. And because of the marbling’s importance and complexity, it is indispensable to explore marbled beef at multiple levels. This experiment studied the relationship between fecal metabolites and marbling characters, and further screened biomarkers. Results: We performed fecal metabolomics analysis on 30 individuals selected from 100 crossbreed cattle (Luxi Yellow cattle ♀ × Japanese Wagyu cattle ♂), 15 with an extremely high-grade marbling beef and 15 with an extremely low-grade marbling beef. A total of 9959 and 8389 m/z features were detected in positive ionization and negative ionization mode by liquid chromatography-mass spectrometry (LC-MS). Unfortunately, the sample separation in the PCA is not obvious, and the predictive ability of the orthogonal partial least squares discrimination analysis (OPLS-DA) model is not good. However, we got six differential metabolites filtered by VIP > 1 and p < 0.05. After that, we used weighted correlation network analysis (WGCNA) and found out a module in each positive and negative mode most related to the trait of marbling beef, and then identified three metabolites in positive mode. By further annotation of the Kyoto encyclopedia of genes and genomes (KEGG), it was found that these metabolites involved a variety of metabolic ways, including sphingomyelin metabolism, linoleic acid metabolism, glycerophospholipid metabolism, and so on. Finally, receiver operating characteristic (ROC) analysis was used to evaluate the predictability of metabolites, and the result showed that SM(d18:0/16:1(9Z)) (AUC = 0.72), PC(15:0/18:2(9Z,12Z)) (AUC = 0.72), ADP (AUC = 0.71), PC(16:0/16:0) (AUC = 0.73), and 3-O-Sulfogalactosylceramide (d18:1/18:0) (AUC = 0.69) have an accuracy diagnosis. Conclusions: In conclusion, this study supports new opinions for the successive evaluation of marbling beef through metabolites. Furthermore, six non-invasive fecal metabolites that can evaluate beef marbling grade were found, including SM(d18:0/16:1(9Z)), PC(15:0/18:2(9Z,12Z)), ADP, PC(16:0/16:0), and 3-O-Sulfogalactosylceramide.
Collapse
Affiliation(s)
- Dong Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Minchao Su
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - He Zhu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, Zibo 255000, China
| | - Gang Zhong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weimin Ma
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, Zibo 255000, China
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Facully of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Zhiliang Tan
- Institute of Subtropical Agriculture of the Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
9
|
A human adipose tissue cell-type transcriptome atlas. Cell Rep 2022; 40:111046. [PMID: 35830816 DOI: 10.1016/j.celrep.2022.111046] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
The importance of defining cell-type-specific genes is well acknowledged. Technological advances facilitate high-resolution sequencing of single cells, but practical challenges remain. Adipose tissue is composed primarily of adipocytes, large buoyant cells requiring extensive, artefact-generating processing for separation and analysis. Thus, adipocyte data are frequently absent from single-cell RNA sequencing (scRNA-seq) datasets, despite being the primary functional cell type. Here, we decipher cell-type-enriched transcriptomes from unfractionated human adipose tissue RNA-seq data. We profile all major constituent cell types, using 527 visceral adipose tissue (VAT) or 646 subcutaneous adipose tissue (SAT) samples, identifying over 2,300 cell-type-enriched transcripts. Sex-subset analysis uncovers a panel of male-only cell-type-enriched genes. By resolving expression profiles of genes differentially expressed between SAT and VAT, we identify mesothelial cells as the primary driver of this variation. This study provides an accessible method to profile cell-type-enriched transcriptomes using bulk RNA-seq, generating a roadmap for adipose tissue biology.
Collapse
|
10
|
Jin Y, Yuan X, Zhao W, Li H, Zhao G, Liu J. The SLC27A1 Gene and Its Enriched PPAR Pathway Are Involved in the Regulation of Flavor Compound Hexanal Content in Chinese Native Chickens. Genes (Basel) 2022; 13:genes13020192. [PMID: 35205238 PMCID: PMC8872575 DOI: 10.3390/genes13020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The role of hexanal in flavor as an indicator of the degree of oxidation of meat products is undeniable. However, the genes and pathways of hexanal formation have not been characterized in detail. In this study, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) on groups of Tiannong partridge chickens with different relative hexanal content in order to find the genes involved in the formation of hexanal and the specific pathways of hexanal formation. Then we confirmed the relationship of these candidate genes with hexanal using Jingxing Yellow chicken and Wenchang chicken. In this study, WGCNA revealed a module of co-expressed genes that were highly associated with the volatile organic compound hexanal. We also compared transcriptome gene expression data of samples from chicken groups with high and low relative contents of hexanal and identified a total of 651 differentially expressed genes (DEGs). Among them, 356 genes were up regulated, and 295 genes were downregulated. The different biological functions associated with the DEGs, hub genes and hexanal were identified by functional analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. Among all the hub genes in the significant module identified by WGCNA, more were enriched in the PPAR signaling pathway, the proteasome pathway, etc. Additionally, we found that DEGs and hub genes, including SLC27A1, ACOX3, NR4A1, VEGFA, JUN, EGR1, CACNB1, GADD45A and DUSP1, were co-enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, p53 signaling pathway and mitogen-activated protein kinases (MAPK) signaling pathway, etc. Transcriptome results of the Jingxing Yellow chicken population showed that the SLC27A1 gene was significantly associated with hexanal and enriched in the PPAR pathway. Our study provides a comprehensive insight into the key genes related to hexanal content, and can be further explored by functional and molecular studies.
Collapse
Affiliation(s)
- Yuxi Jin
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xiaoya Yuan
- State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Science, Beijing 100193, China;
| | - Wenjuan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (W.Z.); (H.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (W.Z.); (H.L.)
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Science, Beijing 100193, China;
- Correspondence: (G.Z.); (J.L.)
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (G.Z.); (J.L.)
| |
Collapse
|
11
|
Shang G, Han L, Wang Z, Song M, Wang D, Tan Y, Li Y, Li Y, Zhang W, Zhong M. Pim1 knockout alleviates sarcopenia in aging mice via reducing adipogenic differentiation of PDGFRα + mesenchymal progenitors. J Cachexia Sarcopenia Muscle 2021; 12:1741-1756. [PMID: 34435457 PMCID: PMC8718082 DOI: 10.1002/jcsm.12770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sarcopenia widely exists in elderly people and triggers numerous age-related events. The essential pathologic change lies in the increased intramuscular adipose tissue after aging with no exception to non-obese objects. Pim1 appears to be associated with adipogenic differentiation in recent studies, inspiring us to explore whether it regulates adipogenesis in aging muscles and affects sarcopenia. METHODS Wild-type and Pim1 knockout C57/BL6J mice were randomized into young and old groups. Histo-pathological and molecular biological methods were applied to assess the intramuscular adipose tissue content, the atrophy and regeneration, and the expressions of Pim1 and adipogenic transcription factors. PDGFRα+ mesenchymal progenitors were separated and their replicative aging model were established. Different time of adipogenic induction and different amounts of Pim1 inhibitor were applied, after which the adipogenic potency were evaluated. The expressions of Pim1 and adipogenic transcription factors were measured through western blotting. RESULTS The aging mice demonstrated decreased forelimb grip strength (P = 0.0003), hanging impulse (P < 0.0001), exhaustive running time (P < 0.0001), tetanic force (P = 0.0298), lean mass (P = 0.0008), and percentage of gastrocnemius weight in body weight (P < 0.0001), which were improved by Pim1 knockout (P = 0.0015, P = 0.0222, P < 0.0001, P = 0.0444, P = 0.0004, and P = 0.0003, respectively). To elucidate the mechanisms, analyses showed that Pim1 knockout decreased the fat mass (P = 0.0005) and reduced the intramuscular adipose tissue content (P = 0.0008) by inhibiting the C/EBPδ pathway (P = 0.0067) in aging mice, resulting in increased cross-sectional area of all and fast muscle fibres (P = 0.0017 and 0.0024 respectively), decreased levels of MuRF 1 and atrogin 1 (P = 0.0001 and 0.0329 respectively), and decreased content of Pax7 at the basal state (P = 0.0055). In vitro, senescent PDGFRα+ mesenchymal progenitors showed significantly increased the intracellular adipose tissue content (OD510) compared with young cells after 6 days of adipogenic induction (P < 0.0001). The Pim1 expression was elevated during adipogenic differentiation, and Pim1 inhibition significantly reduced the OD510 in senescent cells (P = 0.0040) by inhibiting the C/EBPδ pathway (P = 0.0047). CONCLUSIONS Pim1 knockout exerted protective effects in sarcopenia by inhibiting the adipogenic differentiation of PDGFRα+ mesenchymal progenitors induced by C/EBPδ activation and thus reducing the intramuscular adipose tissue content in aging mice. These results provide a potential target for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Guo‐kai Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of General Practice, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Zhi‐hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong University; Shandong key Laboratory of Cardiovascular ProteomicsJinanShandongChina
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Di Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yan‐min Tan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi‐hui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yu‐lin Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| |
Collapse
|
12
|
Huang K, Wang Y, Zhu J, Xiong Y, Lin Y. Regulation of fibroblast growth factor 9 on the differentiation of goat intramuscular adipocytes. Anim Sci J 2021; 92:e13627. [PMID: 34477270 DOI: 10.1111/asj.13627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022]
Abstract
It has been found that fibroblast growth factor receptor (FGF-FGFR) signaling can regulate the expression of adipocyte differentiation genes. FGF9 is one of the members of FGFs that mainly binds receptors FGFR2 and FGFR3. FGF9 is highly expressed in the adipose tissue of humans and mice, but there are few reports on the role of FGF9 in goat intramuscular adipocyte differentiation. Therefore, this study explored the effect of FGF9 on adipocyte differentiation through cell culture, interference, and overexpression. The expression of receptors FGFR1-FGFR4 in adipocyte differentiation and their effects on differentiation were detected to screen receptor gene of FGF9. Finally, the interaction between FGF9 and the receptor was tested by cotransfection. Our results showed that FGF9 interacts with FGFR2 to inhibit goat intramuscular adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma (PPARγ) and preadipocyte factor 1 (Pref1), which is a data support for subsequent pathway research.
Collapse
Affiliation(s)
- Kai Huang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| |
Collapse
|
13
|
Xiong L, Pei J, Kalwar Q, Wu X, Yan P, Guo X. Fat deposition in yak during different phenological seasons. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Xiong L, Pei J, Wu X, Kalwar Q, Yan P, Guo X. Effect of Gender to Fat Deposition in Yaks Based on Transcriptomic and Metabolomics Analysis. Front Cell Dev Biol 2021; 9:653188. [PMID: 34504837 PMCID: PMC8421605 DOI: 10.3389/fcell.2021.653188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Fat deposition in yaks plays an important part in survival, multiplication, and meat quality. In this work, the characteristic of fat deposition in male yaks (MYs) and female yaks (FYs) and the regulations of gender to yak fat deposition were explored by mRNA-Seq and non-targeted metabolomics analyses. FYs possessed a higher body fat rate (BFR) of visceral fat, fat content in longissimus dorsi (LD) and liver, and subcutaneous fat thickness (p < 0.05). The fat and cholesterol synthesis in liver and the fat transport in FY blood increased. The fat metabolism in yaks is the combined effect of carbohydrate, fatty acid, and amino acid metabolism by tricarboxylic acid (TCA) cycle, and an increase of triglyceride (TG) synthesis was accompanied by an increase of steroid synthesis. The high levels of myo-inositol and cortisol (COR) (p < 0.01) activated the calcium signaling in FY subcutaneous fat, followed by the increase of adipocyte secretion, and resulted in more leptin (LEP) secretion (p < 0.01). Then peroxisome proliferator-activated receptor (PPAR) signaling was activated by the focal adhesions and ECM-receptor interaction. Finally, the TG and steroid synthesis increased by the expression regulation of ME1, SCD, ELOVL6, DGAT2, DBI, LPL, CPT1, PLIN1, LIPA, DHCR24, and SQLE gene. The above genes can be considered as the candidate genes for yak with higher fat amount in molecular breeding in the future. This study can provide a theoretical basis for improving the meat quality and breeding of yaks.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Qudratullah Kalwar
- Department of Animal Reproduction, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
15
|
Bta-miR-376a Targeting KLF15 Interferes with Adipogenesis Signaling Pathway to Promote Differentiation of Qinchuan Beef Cattle Preadipocytes. Animals (Basel) 2020; 10:ani10122362. [PMID: 33321855 PMCID: PMC7763857 DOI: 10.3390/ani10122362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Intramuscular fat (IMF) is a quality index associated with the taste and juiciness of meat. The deposition of IMF is affected by genetic and non-genetic factors, such as age, slaughter location, gender of the animal, and diet. Micro-ribonucleic acids (miRNA) are transcriptional regulators involved in adipogenesis, but the specific role of miR-376a in regulation of bovine adipocytes remains unknown. Our findings indicated that miR-376a was a potential negative regulator of bovine adipocyte differentiation. A bta-miR-376a mimic inhibited mRNA and protein expression of the marker genes, CDK1, CDK2, PCNA, C/EBPα, FAS, and PPAR γ, and significantly reduced ratios (%) of S-phase cells, the number of cells stained with 5-ethynyl-2'-deoxyuridine, and adipocyte proliferation. Oil red O staining and triglyceride content analysis also confirmed that bta-miR-376a was involved in adipocyte differentiation. Luciferase activities confirmed that Krüppel-like transcription factor 15 (KLF15) was a direct target gene of bta-miR-376a, and that KLF15 was a key transcription factor in adipogenesis. Therefore, bta-miR-376a might be a target for increasing beef IMF.
Collapse
|
16
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic profile of semitendinosus muscle of bulls of different breed and performance. J Appl Genet 2020; 61:581-592. [PMID: 32851594 PMCID: PMC7652804 DOI: 10.1007/s13353-020-00577-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The aim of the study was to compare the transcriptomic profiles of fully differentiated skeletal muscle derived from bulls belonging to different breeds of varying performance. Microarray analyses were performed to determine the differences in the expression profiles of genes between semitendinosus muscles of 15-month-old beef-breed bulls (Limousin—LIM and Hereford—HER) and dairy-breed bulls (Holstein Friesian—HF). These analyses allowed for the identification of those genes the expression of which is similar and characteristic of fully differentiated muscle in beef breeds, but differs in skeletal muscle of a typical dairy breed. The analysis revealed 463 transcripts showing similar expression in the semitendinosus muscle of beef breeds (LIM/HER), in comparison with the dairy breed (HF). Among the identified genes, 227 were upregulated and 236 were downregulated in beef breeds. The ontological analyses revealed that the largest group of genes similarly expressed in LIM and HER was involved in the processes of protein metabolism and development of muscle organ. In beef breeds, some genes involved in protein synthesis and proteolysis showed an upregulation, including ctsd, ctsf, fhl2, fhl3, fst, sirt1, and trim63, whereas some were downregulated, including bmpr1a, bmpr2, mstn, smad2, hspa8, gsk3β, and tgfβ2. The expression of the chosen genes was confirmed by RT-qPCR technique. Thus, it can be assumed that the identified genes involved in the regulation of growth and development of muscle tissue and the processes of protein metabolism in the examined cattle breeds may be responsible for the greater gain of muscle mass in beef-breed bulls.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
17
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic Profile of Primary Culture of Skeletal Muscle Cells Isolated from Semitendinosus Muscle of Beef and Dairy Bulls. Int J Mol Sci 2020; 21:E4794. [PMID: 32645861 PMCID: PMC7369917 DOI: 10.3390/ijms21134794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to identify differences in the transcriptomic profiles of primary muscle cell cultures derived from the semitendinosus muscle of bulls of beef breeds (Limousin (LIM) and Hereford (HER)) and a dairy breed (Holstein-Friesian (HF)) (n = 4 for each breed). Finding a common expression pattern for proliferating cells may point to such an early orientation of the cattle beef phenotype at the transcriptome level of unfused myogenic cells. To check this hypothesis, microarray analyses were performed. The analysis revealed 825 upregulated and 1300 downregulated transcripts similar in both beef breeds (LIM and HER) and significantly different when compared with the dairy breed (HF) used as a reference. Ontological analyses showed that the largest group of genes were involved in muscle organ development. Muscle cells of beef breeds showed higher expression of genes involved in myogenesis (including erbb-3, myf5, myog, des, igf-1, tgfb2) and those encoding proteins comprising the contractile apparatus (acta1, actc1, myh3, myh11, myl1, myl2, myl4, tpm1, tnnt2, tnnc1). The obtained results confirmed our hypothesis that the expression profile of several groups of genes is common in beef breeds at the level of proliferating satellite cells but differs from that observed in typical dairy breeds.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
18
|
Roudbari Z, Coort SL, Kutmon M, Eijssen L, Melius J, Sadkowski T, Evelo CT. Identification of Biological Pathways Contributing to Marbling in Skeletal Muscle to Improve Beef Cattle Breeding. Front Genet 2020; 10:1370. [PMID: 32117419 PMCID: PMC7019052 DOI: 10.3389/fgene.2019.01370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Red meat is an important dietary source that provides part of the nutritional requirements. Intramuscular fat, known as marbling, is located throughout skeletal muscle. Marbling is a trait of major economic relevance that positively influences sensory quality aspects. The aim of the present study was to identify and better understand biological pathways defining marbling in beef cattle. Pathway analysis was performed in PathVisio with publicly available transcriptomic data from semitendinosus muscle of well-marbled and lean-marbled beef. Moreover, for Bos taurus we created a gene identifier mapping database with bridgeDb and a pathway collection in WikiPathways. The regulation of marbling is possibly the result of the interplay between signaling pathways in muscle, fat, and intramuscular connective tissue. Pathway analysis revealed 17 pathways that were significantly different between well-marbled and lean-marbled beef. The MAPK signaling pathway was enriched, and the signaling pathways that play a role in tissue development were also affected. Interestingly, pathways related to immune response and insulin signaling were enriched.
Collapse
Affiliation(s)
- Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.,Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Susan L Coort
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Martina Kutmon
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Lars Eijssen
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jonathan Melius
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Chris T Evelo
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
19
|
You W, Xu Z, Shan T. Regulatory Roles of GADD45α in Skeletal Muscle and Adipocyte. Curr Protein Pept Sci 2020; 20:918-925. [PMID: 31232235 DOI: 10.2174/1389203720666190624143503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
GADD45α, a member of the GADD45 family proteins, is involved in various cellular processes including the maintenance of genomic integrity, growth arrest, apoptosis, senescence, and signal transduction. In skeletal muscle, GADD45α plays an important role in regulating mitochondrial biogenesis and muscle atrophy. In adipocytes, GADD45α regulates preadipocyte differentiation, lipid accumulation, and thermogenesis metabolism. Moreover, it has been recently demonstrated that GADD45α promotes gene activation by inducing DNA demethylation. The epigenetic function of GADD45α is important for preadipocyte differentiation and transcriptional regulation during development. This article mainly reviews and discusses the regulatory roles of GADD45α in skeletal muscle development, adipocyte progenitor differentiation, and DNA demethylation.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
20
|
Neudesin Neurotrophic Factor Promotes Bovine Preadipocyte Differentiation and Inhibits Myoblast Myogenesis. Animals (Basel) 2019; 9:ani9121109. [PMID: 31835509 PMCID: PMC6940881 DOI: 10.3390/ani9121109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Neudesin neurotrophic factor (NENF) is a secreted protein that was significantly inhibited in the fat-muscle co-culture system in our previous study. However, studies on NENF regulation of bovine muscle development and involvement in the cross-talk between adipose tissue and skeletal muscle have not been reported. Hence, the aim of this study was to clarify the roles of NENF in bovine myoblast and preadipocyte differentiation. In this study, we first examined the spatial expression patterns of NENF in different tissues and found that NENF was highly expressed in the muscle of four-day-old and 24-month-old Qinchuan cattle. Compared with 4-day-old Qinchuan cattle, the expression level of NENF was significantly up-regulated in 24-month-old bovine adipose tissue. Then, we detected the expression pattern of the NENF gene in bovine preadipocyte and myoblast differentiation and found that the expression of NENF mRNA peaks at day 6 during preadipocyte differentiation and peaks at day 4 during myoblast differentiation. Furthermore, we found that the endogenous knockdown of NENF inhibited the differentiation of preadipocytes and promoted the differentiation of myoblasts. These findings not only lay the foundation for the construction of regulatory pathways during fat and muscle differentiation but also provide a theoretical basis for molecular breeding of beef cattle. Abstract Neudesin neurotrophic factor (NENF) is a secreted protein that is essential in multiple biological processes, including neural functions, adipogenesis, and tumorigenesis. In our previous study, NENF was significantly inhibited in the bovine adipocytes-myoblasts co-culture system. However, studies on NENF regulation of bovine muscle development and involvement in the cross-talk between adipose tissue and skeletal muscle have not been reported. Hence, the aim of this study was to clarify the functional roles of NENF in bovine preadipocytes and myoblasts. Real-time quantitative PCR (RT-qPCR) was performed to examine the spatial expression patterns of NENF in different tissues, and the results showed that NENF was highly expressed in the muscle of four-day-old and 24-month-old Qinchuan cattle. Compared with four-day-old Qinchuan cattle, the expression level of NENF was significantly up-regulated in 24-month-old bovine adipose tissue. To explore the roles of NENF in bovine myoblast and preadipocyte differentiation, small interfering RNA (siRNA) targeting the NENF gene were transfected into bovine preadipocytes and myoblasts to knock down the expression of the NENF gene. The results showed that the knockdown of NENF in differentiating adipocytes attenuated lipid accumulation, decreased the mRNA expression of adipogenic key marker genes PPARγ, CEBPα, CEBPβ, FASN, and SCD1, and decreased the protein expression of PPARγ, CEBPα, and FASN. The formation of myotubes was significantly accelerated, and the mRNA expression levels of myogenic marker genes MYOD1, MYF5, MYF6, MEF2A, MEF2C, and CKM, and the protein expression levels of MYOD1, MYF6, MEF2A, and CKM were up-regulated in myoblasts where NENF was knocked down. In short, the knockdown of NENF inhibited preadipocyte differentiation and promoted myoblast myogenesis.
Collapse
|
21
|
Li J, Wu J, Liu Y, Li Y, Xiao Z, Jiang X, Tang Y, Xu H. HOXA9 rs3801776 G>A polymorphism increases congenital talipes equinovarus risk in a Chinese population. J Gene Med 2019; 21:e3119. [PMID: 31424148 DOI: 10.1002/jgm.3119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Congenital talipes equinovarus (CTEV) is the most common congenital deformity in children, and muscular dysplasia plays a potential role in the etiology of CTEV. Notably, previous studies have found that HOXA9 rs3801776 and TPM2 rs2025126 genetic polymorphisms play important roles in regulating muscle development in Caucasian children; however, there is a lack of investigations conducted in Chinese children. METHODS We conducted a hospital-based, case-control study of 189 children with CTEV and 457 CTEV-free children aiming to examine the associations between these two polymorphisms and CTEV susceptibility. The rs3801776 (G>A) and rs2025126 (G>A) polymorphisms were genotyped using TaqMan. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to measure the associations between the selected polymorphisms and CTEV susceptibility. RESULTS We found that rs3801776A was associated with increased CTEV risk (GA versus GG: adjusted OR = 1.81, 95% CI = 1.22-2.69, p = 0.0031; AA versus GG: adjusted OR = 2.19, 95% CI = 1.28-3.73, p = 0.0041; GA/AA versus GG: adjusted OR = 1.89, 95% CI = 1.29-2.76, p = 0.0010). In a stratified analysis, the risk effect of rs3801776 GA/AA was observed in both unilateral and bilateral patients. CONCLUSIONS The present study suggests that the rs3801776 G>A polymorphism is associated with CTEV risk in Chinese children; however, this conclusion should be validated in larger studies.
Collapse
Affiliation(s)
- Jingchun Li
- Department of Paediatric Orthopaedics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianping Wu
- Department of Paediatric Orthopaedics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanhan Liu
- Department of Paediatric Orthopaedics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiqiang Li
- Department of Paediatric Orthopaedics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhilan Xiao
- Department of Paediatric Surgery, Guangzhou Institute of Paediatrics, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Jiang
- Department of Paediatric Surgery, Guangzhou Institute of Paediatrics, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaping Tang
- Department of Paediatric Surgery, Guangzhou Institute of Paediatrics, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongwen Xu
- Department of Paediatric Orthopaedics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Fu YY, Hu BH, Chen KL, Li HX. Chemerin induces lipolysis through ERK1/2 pathway in intramuscular mature adipocytes of dairy bull calves. J Cell Biochem 2019; 120:1122-1132. [PMID: 30256444 DOI: 10.1002/jcb.27506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
The adipokine Chemerin has been reported to regulate differentiation and metabolism of adipocytes, but the mechanism underlying lipolysis is still largely unknown. The purpose of this study was to explore whether ERK1/2 pathway is involved in regulating Chemerin during bovine intramuscular mature adipocyte lipolysis. Intramuscular mature adipocytes of dairy bull calves were cultured in vitro and were treated with Chemerin or U0126, which is an inhibitor of ERK1/2 pathway. The results showed that TG content in cells was significantly decreased, glycerol and free fatty acid were significantly increased in cell culture media, and the expression of phosphorylated ERK1/2 in cells was increased in Chemerin-treated group, suggested that ERK1/2 pathway was involved in regulation of lipolysis by Chemerin. In addition, the expression of lipolytic-related critical factors ATGL, HSL, LPL, PPARα, UCP3, and CPT1 were upregulated, but the expression of adipogenic key factors, including PPARγ and C/EBPα were downregulated by Chemerin. Interestingly, all the effects of Chemerin on genes expression in intramuscular mature adipocytes or fat tissue were inhibited by U0126, showed that the function of Chemerin to promote adipose decomposition will be significantly weakened if the ERK1/2 pathway is suppressed, and confirmed that ERK1/2 pathway is involved in mediate Chemerin-enhanced lipolysis. In conclusion, the study demonstrated that Chemerin induce intramuscular mature adipocytes lipolysis through activation of the ERK1/2 pathway. Our research at least provide partial mechanisms of Chemerin on lipolysis and deposition of intramuscular fat tissue of dairy bull calves.
Collapse
Affiliation(s)
- Yuan-Yuan Fu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bian-Hong Hu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun-Lin Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hui-Xia Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Sentürklü S, Landblom DG, Maddock R, Petry T, Wachenheim CJ, Paisley SI. Effect of yearling steer sequence grazing of perennial and annual forages in an integrated crop and livestock system on grazing performance, delayed feedlot entry, finishing performance, carcass measurements, and systems economics. J Anim Sci 2018; 96:2204-2218. [PMID: 29688425 DOI: 10.1093/jas/sky150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a 2-yr study, spring-born yearling steers (n = 144), previously grown to gain <0.454 kg·steer-1·d-1, following weaning in the fall, were stratified by BW and randomly assigned to three retained ownership rearing systems (three replications) in early May. Systems were 1) feedlot (FLT), 2) steers that grazed perennial crested wheatgrass (CWG) and native range (NR) before FLT entry (PST), and 3) steers that grazed perennial CWG and NR, and then field pea-barley (PBLY) mix and unharvested corn (UC) before FLT entry (ANN). The PST and ANN steers grazed 181 d before FLT entry. During grazing, ADG of ANN steers (1.01 ± SE kg/d) and PST steers (0.77 ± SE kg/d) did not differ (P = 0.31). But even though grazing cost per steer was greater (P = 0.002) for ANN vs. PST, grazing cost per kg of gain did not differ (P = 0.82). The ANN forage treatment improved LM area (P = 0.03) and percent i.m. fat (P = 0.001). The length of the finishing period was greatest (P < 0.001) for FLT (142 d), intermediate for PST (91 d), and least for ANN (66 d). Steer starting (P = 0.015) and ending finishing BW (P = 0.022) of ANN and PST were greater than FLT steers. Total FLT BW gain was greater for FLT steers (P = 0.017), but there were no treatment differences for ADG, (P = 0.16), DMI (P = 0.21), G: F (P = 0.82), and feed cost per kg of gain (P = 0.61). However, feed cost per steer was greatest for FLT ($578.30), least for ANN ($276.12), and intermediate for PST ($381.18) (P = 0.043). There was a tendency for FLT steer HCW to be less than ANN and PST, which did not differ (P = 0.076). There was no difference between treatments for LM area (P = 0.094), backfat depth (P = 0.28), marbling score (P = 0.18), USDA yield grade (P = 0.44), and quality grade (P = 0.47). Grazing steer net return ranged from an ANN system high of $9.09/steer to a FLT control system net loss of -$298 and a PST system that was slightly less than the ANN system (-$30.10). Ten-year (2003 to 2012) hedging and net return sensitivity analysis revealed that the FLT treatment underperformed 7 of 10 yr and futures hedging protection against catastrophic losses were profitable 40, 30, and 20% of the time period for ANN, PST, and FLT, respectively. Retained ownership from birth through slaughter coupled with delayed FLT entry grazing perennial and annual forages has the greatest profitability potential.
Collapse
Affiliation(s)
- Songul Sentürklü
- Dickinson Research Extension Center, North Dakota State University, Dickinson, ND.,Department of Animal Science, Canakkale Onsekiz Mart Universitesi, Canakkale, Turkey
| | - Douglas G Landblom
- Dickinson Research Extension Center, North Dakota State University, Dickinson, ND
| | - Robert Maddock
- Animal Science Department, North Dakota State University, Fargo, ND
| | - Tim Petry
- Department of Agribusiness and Applied Economics, North Dakota State University, Fargo, ND
| | - Cheryl J Wachenheim
- Department of Agribusiness and Applied Economics, North Dakota State University, Fargo, ND
| | - Steve I Paisley
- Department of Animal Science, University of Wyoming, Laramie, WY
| |
Collapse
|
25
|
Gomez AR, Garmyn A, O'Quinn T, Bueso ME, Brooks JC, Brashears MM, Miller MF. Honduran and U.S. Consumer Assessment of Beef from Various Production Systems with or Without Marinating. MEAT AND MUSCLE BIOLOGY 2018. [DOI: 10.22175/mmb2018.03.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our objective was to evaluate the effects of different Honduran cattle production systems, enhancement, and country of origin on palatability of the longissimus muscle aged 21 d postmortem as determined by U.S. and Honduran consumers (n = 240/country). U.S.-sourced strip loins (n = 10/treatment) were selected: USDA Select (SE) and Top (upper 2/3) Choice (TC). Honduran-sourced strip loins (n = 10/treatment) included: 1) dual-purpose bulls, raised on native pasture (HDP), 2) F1 crossbred Brahman bulls finished on a corn-based grain diet for 180 d (HCF), and 3) purebred Brahman bulls finished on a sugarcane-based diet for 180 d (HSC). Ten additional strip loins from each Honduran treatment were selected and enhanced (E; 112% ± 3.5%) with water, salt, and tripolyphosphate, resulting in EHDP, EHCF, and EHSC. Steaks were cooked to 77°C prior to consumer evaluation of tenderness, juiciness, and flavor and overall liking, with classification of each trait as acceptable or unacceptable. Consumers indicated if they were willing to pay 0, 3, 6, or 10 USD/0.45 kg. Consumer data were analyzed using the GLIMMIX procedure of SAS as a split plot design, with treatment as the whole plot factor and country and the country × treatment interaction as the subplot factors, including panel as a random effect. The EHCF had greater (P < 0.05) scores for tenderness, juiciness, flavor and overall liking. No differences (P > 0.05) were found between TC and SE when scoring palatability traits, but more (P < 0.05) consumers found TC acceptable for juiciness compared to SE. Honduran consumers ranked all palatability traits greater than U.S consumers and found a greater percentage of samples acceptable for tenderness (P < 0.05). Enhancement of Honduran treatments had a positive effect on palatability traits, as well as the acceptability of those traits. Regardless of the differences in breeds, using high-energy diets and enhancement resulted in greater palatability scores.
Collapse
Affiliation(s)
- A. R. Gomez
- Texas Tech University Department of Animal and Food Sciences
| | | | - Travis O'Quinn
- Kansas State University Department of Animal Sciences and Industry
| | - M. E. Bueso
- Texas Tech University Department of Animal and Food Sciences
| | - J. C. Brooks
- Texas Tech University Department of Animal and Food Sciences
| | | | - M. F. Miller
- Texas Tech University Department of Animal and Food Sciences
| |
Collapse
|
26
|
The effect of QTL-rich region polymorphisms identified by targeted DNA-seq on pig production traits. Mol Biol Rep 2018; 45:361-371. [PMID: 29623566 PMCID: PMC5966500 DOI: 10.1007/s11033-018-4170-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/24/2018] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to analyse the effect of PLCD4, PECR, FN1 and PNKD mutations on pig productive traits and tested the usefulness of targeted enrichment DNA sequencing method as tool for preselection of genetic markers. The potential genetic markers for pig productive traits were identified by using targeted enrichment DNA sequencing of chromosome 15 region that is QTL-rich. The selected mutations were genotyped by using HRM, Sanger sequencing and PCR-ACRS methods. The association study was performed by using GLM model in SAS program and included over 500 pigs of 5 populations maintained in Poland. The variation (C/T) of PLCD4 gene affected feed conversion, intramuscular fat and water exudation. The PNKD mutations were associated with texture parameters measured after cooking. In turn, the variation rs792423408 (C/T) in the FN1 gene influenced toughness measured in semimembranosus muscle and growth traits that was observed particularly in Duroc breed. Summarizing, the investigated gene variants delivered valuable information that could be used during developing SNP microarray for genomic estimated breeding value procedure in pigs. Moreover, the study showed that the TEDNA-seq method could be used to preselect the molecular markers associated with pig traits. However, the further association study that included large number animal populations is necessary.
Collapse
|
27
|
Liu Y, Albrecht E, Schering L, Kuehn C, Yang R, Zhao Z, Maak S. Agouti Signaling Protein and Its Receptors as Potential Molecular Markers for Intramuscular and Body Fat Deposition in Cattle. Front Physiol 2018; 9:172. [PMID: 29559925 PMCID: PMC5845533 DOI: 10.3389/fphys.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Transcriptome analyses of bovine muscle tissue differing in intramuscular fat (IMF) content identified agouti signaling protein (ASIP) as a promising candidate gene for fat deposition. The protein is secreted from adipocytes and may serve as a signaling molecule in cross-talk between adipocytes and muscle fibers or other cells. Known receptors for ASIP are the melanocortin receptors (e.g., MC4R) and attractin (ATRN). The present study was conducted to determine relationships between the expression of ASIP and its receptors in different bovine tissues with fat deposition. Adipose tissues, liver, and longissimus muscle tissue were collected from 246 F2-generation bulls (Charolais × Holstein cross) and gene expression was measured with RT-qPCR. During analysis of subcutaneous fat (SCF) of all bulls, 17 animals were identified with a transposon-derived transcript (Exon2C) inserted in the ASIP gene and dramatically increased ASIP mRNA levels. Significant correlations between normalized mRNA values of SCF and phenotypic traits related to fat deposition were found in bulls without Exon2C. Three retrospectively assigned groups [Exon2C, n = 17; high carcass fat (HCF), n = 20; low carcass fat (LCF), n = 20] were further analyzed to verify expression differences and elucidate molecular reasons. Expression of ASIP could be detected in isolated muscle fibers and adipocytes of Exon2C bulls in contrast to HCF and LCF bulls, indicating ectopic ASIP expression if the transposon is present. Among adipose tissues, highest ASIP mRNA levels were measured in SCF with significantly higher values in HCF compared to LCF bulls (1.6-fold, P < 0.05). However, the protein abundance was below the detection limit in all bulls. Potential ASIP receptors were detected in most investigated tissues. The expression of MC4R was higher and of ATRN was lower in several tissues of LCF compared to HCF bulls, whereas MC1R was not differentially expressed. Bulls of the Exon2C group had lower ATRN mRNA values than HCF and LCF bulls in perirenal fat (PF), but higher (P < 0.05) values in muscle. Receptors were also expressed in tissues where ASIP mRNA was not detected. Consequently, those tissues could be targets for ASIP if it circulates.
Collapse
Affiliation(s)
- Yinuo Liu
- College of Animal Science, Jilin University, Changchun, China.,Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Lisa Schering
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Christa Kuehn
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Runjun Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun, China
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
28
|
Bogdanowicz J, Cierach M, Żmijewski T. Effects of aging treatment and freezing/thawing methods on the quality attributes of beef from Limousin × Holstein-Friesian and Hereford × Holstein-Friesian crossbreeds. Meat Sci 2018; 137:71-76. [DOI: 10.1016/j.meatsci.2017.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 11/27/2022]
|
29
|
Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation. BMC Genomics 2018; 19:109. [PMID: 29390965 PMCID: PMC5793348 DOI: 10.1186/s12864-018-4492-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background Skeletal muscle in livestock develops into meat, an important source of protein and other nutrients for human consumption. The muscle is largely composed of a fixed number of multinucleated myofibers determined during late gestation and remains constant postnatally. A population of postnatal muscle stem cells, called satellite cells, gives rise to myoblast cells that can fuse with the existing myofibers, thus increasing their size. This requires a delicate balance of transcription and growth factors and specific microRNA (miRNA) expressed by satellite cells and their supporting cells from the muscle stem cell niche. The role of transcription and growth factors in bovine myogenesis is well-characterized; however, very little is known about the miRNA activity during this process. We have hypothesized that the expression of miRNA can vary between primary cultures of skeletal muscle cells isolated from the semitendinosus muscles of different cattle breeds and subjected to myogenic differentiation. Results After a 6-day myogenic differentiation of cells isolated from the muscles of the examined cattle breeds, we found statistically significant differences in the number of myotubes between Hereford (HER)/Limousine (LIM) beef breeds and the Holstein-Friesian (HF) dairy breed (p ≤ 0.001). The microarray analysis revealed differences in the expression of 23 miRNA among the aforementioned primary cultures. On the basis of a functional analysis, we assigned 9 miRNA as molecules responsible for differentiation progression (miR-1, -128a, -133a, -133b, -139, -206, -222, -486, and -503). The target gene prediction and functional analysis revealed 59 miRNA-related genes belonging to the muscle organ development process. Conclusion The number of myotubes and the miRNA expression in the primary cultures of skeletal muscle cells derived from the semitendinosus muscles of the HER/LIM beef cattle breeds and the HF dairy breed vary when cells are subjected to myogenic differentiation. The net effect of the identified miRNA and their target gene action should be considered the result of the breed-dependent activity of satellite cells and muscle stem cell niche cells and their mutual interactions, which putatively can be engaged in the formation of a larger number of myotubes in beef cattle-related cells (HER/LIM) during in vitro myogenesis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4492-5) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Dalrymple BP, Guo B. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Intramuscular fat deposition in ruminants and pigs: A transcriptomics perspective. J Anim Sci 2017; 95:2272-2283. [PMID: 28727003 DOI: 10.2527/jas.2016.1112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genomics era has led to an explosion in the study of gene expression in production animals. Intramuscular fat (IMF) content (both high and low) and composition are major quality attributes of meat, and more than 90 transcriptomic studies of IMF deposition have been undertaken in the ruminants and pigs since 2001, with the majority since 2008. The studies have implicated many genes involved in the control of adipogenesis, lipogenesis, and deposition of IMF, but there is relatively little consistency between the different studies. However, the genes encoding the synthesis enzymes acetyl-CoA carboxylase α, fatty acid synthase, and stearoyl-CoA desaturase; the fatty acid binding protein 4; the potential signaling protein thyroid hormone responsive; and the regulators C/EBPα, PPARγ, and sterol regulatory element binding transcription factor 1 are supported by 5 or more of the 90 studies. By combining the results of all the studies, complete pathways for long-chain fatty acid (LCFA) and triacylglyceride (TAG) synthesis are identified, as are a number of genes encoding proteins probably associated with the storage of TAG and genes encoding a number of known and potential adipokines. In contrast, support for the association of lipolytic pathways with IMF percentage is less strong. Differences in experimental design-in particular, the age of the animals, the rate of IMF deposition at sampling, the past nutritional history of the animals used, and the complexities of using a tissue with mixed cell types-have contributed to the differences in results and interpretation. Biomarkers predictive of future IMF percentage, facilitating reaching optimal IMF content at slaughter, may have industry utility, but to be useful in animal biopsy and postslaughter samples, where multiple cell types are present, genes must be carefully chosen to ensure that they are informative about the expected processes. Despite these problems, candidate biomarkers for estimation of de novo intramuscular adipocyte LCFA synthesis, LCFA uptake rate by intramuscular adipocytes, and IMF deposition rate have been identified and examples of their utility have been published. However, further work is required to demonstrate how best to apply the assays for the benefit of the relevant livestock production industries.
Collapse
|
31
|
Chadwick JA, Bhattacharya S, Lowe J, Weisleder N, Rafael-Fortney JA. Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. Am J Physiol Cell Physiol 2016; 312:C155-C168. [PMID: 27881412 PMCID: PMC5336592 DOI: 10.1152/ajpcell.00269.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023]
Abstract
Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD.
Collapse
Affiliation(s)
- Jessica A Chadwick
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and.,Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Noah Weisleder
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and.,Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
32
|
Gonzalez-Pena D, Gao G, Baranski M, Moen T, Cleveland BM, Kenney PB, Vallejo RL, Palti Y, Leeds TD. Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout ( Oncorhynchus mykiss). Front Genet 2016; 7:203. [PMID: 27920797 PMCID: PMC5118429 DOI: 10.3389/fgene.2016.00203] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022] Open
Abstract
Fillet yield (FY, %) is an economically-important trait in rainbow trout aquaculture that affects production efficiency. Despite that, FY has received little attention in breeding programs because it is difficult to measure on a large number of fish and cannot be directly measured on breeding candidates. The recent development of a high-density SNP array for rainbow trout has provided the needed tool for studying the underlying genetic architecture of this trait. A genome-wide association study (GWAS) was conducted for FY, body weight at 10 (BW10) and 13 (BW13) months post-hatching, head-off carcass weight (CAR), and fillet weight (FW) in a pedigreed rainbow trout population selectively bred for improved growth performance. The GWAS analysis was performed using the weighted single-step GBLUP method (wssGWAS). Phenotypic records of 1447 fish (1.5 kg at harvest) from 299 full-sib families in three successive generations, of which 875 fish from 196 full-sib families were genotyped, were used in the GWAS analysis. A total of 38,107 polymorphic SNPs were analyzed in a univariate model with hatch year and harvest group as fixed effects, harvest weight as a continuous covariate, and animal and common environment as random effects. A new linkage map was developed to create windows of 20 adjacent SNPs for use in the GWAS. The two windows with largest effect for FY and FW were located on chromosome Omy9 and explained only 1.0-1.5% of genetic variance, thus suggesting a polygenic architecture affected by multiple loci with small effects in this population. One window on Omy5 explained 1.4 and 1.0% of the genetic variance for BW10 and BW13, respectively. Three windows located on Omy27, Omy17, and Omy9 (same window detected for FY) explained 1.7, 1.7, and 1.0%, respectively, of genetic variance for CAR. Among the detected 100 SNPs, 55% were located directly in genes (intron and exons). Nucleotide sequences of intragenic SNPs were blasted to the Mus musculus genome to create a putative gene network. The network suggests that differences in the ability to maintain a proliferative and renewable population of myogenic precursor cells may affect variation in growth and fillet yield in rainbow trout.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Guangtu Gao
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | | | | | - Beth M. Cleveland
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - P. Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia UniversityMorgantown, WV, USA
| | - Roger L. Vallejo
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Yniv Palti
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Timothy D. Leeds
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| |
Collapse
|
33
|
|
34
|
Vergara EJS, Dela Cruz J, Kim CM, Hwang SG. Increased adipocyte differentiation may be mediated by extracellular calcium levels through effects on calreticulin and peroxisome proliferator activated receptor gamma expression in intramuscular stromal vascular cells isolated from Hanwoo beef cattle. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1080/1828051x.2016.1186503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Review: Animal model and the current understanding of molecule dynamics of adipogenesis. Animal 2016; 10:927-32. [DOI: 10.1017/s1751731115002992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
36
|
ProteINSIDE to Easily Investigate Proteomics Data from Ruminants: Application to Mine Proteome of Adipose and Muscle Tissues in Bovine Foetuses. PLoS One 2015; 10:e0128086. [PMID: 26000831 PMCID: PMC4441380 DOI: 10.1371/journal.pone.0128086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022] Open
Abstract
Genomics experiments are widely acknowledged to produce a huge amount of data to be analysed. The challenge is to extract meaningful biological context for proteins or genes which is currently difficult because of the lack of an integrative workflow that hinders the efficiency and the robustness of data mining performed by biologists working on ruminants. Thus, we designed ProteINSIDE, a free web service (www.proteinside.org) that (I) provides an overview of the biological information stored in public databases or provided by annotations according to the Gene Ontology, (II) predicts proteins that are secreted to search for proteins that mediate signalisation between cells or tissues, and (III) analyses protein-protein interactions to identify proteins contributing to a process or to visualize functional pathways. Using lists of proteins or genes as a unique input, ProteINSIDE is an original all-in-one tool that merges data from these searches to present a fast overview and integrative analysis of genomic and proteomic data from Bovine, Ovine, Caprine, Human, Rat, and Murine species. ProteINSIDE was bench tested with 1000 proteins identifiers from each species by comparison with DAVID, BioMyn, AgBase, PrediSi, and Phobius. Compared to DAVID or BioMyn, identifications and annotations provided by ProteINSIDE were similar from monogastric proteins but more numerous and relevant for ruminants proteins. ProteINSIDE, thanks to SignalP, listed less proteins potentially secreted with a signal peptide than PrediSi and Phobius, in agreement with the low false positive rate of SignalP. In addition ProteINSIDE is the only resource that predicts proteins secreted by cellular processes that do not involve a signal peptide. Lastly, we reported the usefulness of ProteINSIDE to bring new biological hypotheses of research from proteomics data: the biological meaning of the uptake of adiponectin by the foetal muscle and a role for autophagy during ontogenesis of adipose and muscle tissues.
Collapse
|
37
|
Rothammer S, Kremer PV, Bernau M, Fernandez-Figares I, Pfister-Schär J, Medugorac I, Scholz AM. Genome-wide QTL mapping of nine body composition and bone mineral density traits in pigs. Genet Sel Evol 2014; 46:68. [PMID: 25359100 PMCID: PMC4210560 DOI: 10.1186/s12711-014-0068-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022] Open
Abstract
Background Since the pig is one of the most important livestock animals worldwide, mapping loci that are associated with economically important traits and/or traits that influence animal welfare is extremely relevant for efficient future pig breeding. Therefore, the purpose of this study was a genome-wide mapping of quantitative trait loci (QTL) associated with nine body composition and bone mineral traits: absolute (Fat, Lean) and percentage (FatPC, LeanPC) fat and lean mass, live weight (Weight), soft tissue X-ray attenuation coefficient (R), absolute (BMC) and percentage (BMCPC) bone mineral content and bone mineral density (BMD). Methods Data on the nine traits investigated were obtained by Dual-energy X-ray absorptiometry for 551 pigs that were between 160 and 200 days old. In addition, all pigs were genotyped using Illumina’s PorcineSNP60 Genotyping BeadChip. Based on these data, a genome-wide combined linkage and linkage disequilibrium analysis was conducted. Thus, we used 44 611 sliding windows that each consisted of 20 adjacent single nucleotide polymorphisms (SNPs). For the middle of each sliding window a variance component analysis was carried out using ASReml. The underlying mixed linear model included random QTL and polygenic effects, with fixed effects of sex, housing, season and age. Results Using a Bonferroni-corrected genome-wide significance threshold of P < 0.001, significant peaks were identified for all traits except BMCPC. Overall, we identified 72 QTL on 16 chromosomes, of which 24 were significantly associated with one trait only and the remaining with more than one trait. For example, a QTL on chromosome 2 included the highest peak across the genome for four traits (Fat, FatPC, LeanPC and R). The nearby gene, ZNF608, is known to be associated with body mass index in humans and involved in starvation in Drosophila, which makes it an extremely good candidate gene for this QTL. Conclusions Our QTL mapping approach identified 72 QTL, some of which confirmed results of previous studies in pigs. However, we also detected significant associations that have not been published before and were able to identify a number of new and promising candidate genes, such as ZNF608. Electronic supplementary material The online version of this article (doi:10.1186/s12711-014-0068-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivica Medugorac
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, Munich, 80539, Germany.
| | | |
Collapse
|
38
|
Matsumoto H, Nogi T, Tabuchi I, Oyama K, Mannen H, Sasazaki S. The SNPs in the promoter regions of the bovine FADS2 and FABP4 genes are associated with beef quality traits. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|