1
|
De Smet S, Van Hecke T. Meat products in human nutrition and health - About hazards and risks. Meat Sci 2024; 218:109628. [PMID: 39216414 DOI: 10.1016/j.meatsci.2024.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Meat processing has a long history and involves a wide and ever-increasing range of chemical and physical processes, resulting in a heterogeneous food category with a wide variability in nutritional value. Despite the known benefits of meat consumption, observational epidemiological studies have shown associations between consumption of red and processed meat - but not white meat - and several non-communicable diseases, with higher relative risks for processed meat compared to unprocessed red meat. This has led global and regional nutrition and health organisations to recommend reducing consumption of unprocessed red meat and avoiding processed meat. A plethora of potentially implicated hazardous compounds present in meat or formed during processing or gastrointestinal digestion have been reported in the literature. However, our mechanistic understanding of the impact of meat consumption on human health is still very incomplete and is complicated by the simultaneous occurrence of multiple hazards and interactions with other food compounds and host factors. This narrative review briefly discusses hazards, risks and their assessment in the context of dietary guidelines. It is argued that more mechanistic studies of the interactive effects of meat products with other foods and food compounds in different dietary contexts are needed to refine and increase the evidence base for dietary guidelines. Importantly, the great diversity in the composition and degree of processing of processed meats should be better understood in terms of their impact on human health in order to develop a more nuanced approach to dietary guidelines for this food category.
Collapse
Affiliation(s)
- Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
García-Gimeno RM, Palomo-Manzano E, Posada-Izquierdo GD. Salmonella Inactivation Model by UV-C Light Treatment in Chicken Breast. Microorganisms 2024; 12:1805. [PMID: 39338479 PMCID: PMC11434193 DOI: 10.3390/microorganisms12091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
This study aims to evaluate the effectiveness of inactivating Salmonella enteritidis in fresh chicken breast by irradiation using a combination of short-wave UV (0, 3, 6, 9, 12, and 15 J/cm2) and a natural antimicrobial such as caffeine (0, 5, 10, 15, and 20 nM/g) at 14 °C as alternative proposals to conventional techniques to reduce pathogens in food. The effect of temperature was studied in an initial phase (2 to 22 °C). The most suitable models were double Weibull in 60% of cases, with an adjustment of R2 0.9903-0.9553, and Weibull + tail in 46.67%, with an adjustment of R2 of 0.9998-0.9981. The most effective combination for the reduction in Salmonella was 12 J/cm2 of UV light and 15 nM/g of caffeine, with a reduction of 6 CFU/g and an inactivation rate of 0.72. The synergistic effect was observed by increasing caffeine and UV light. Furthermore, the physico-chemical characteristics of the food matrix were not affected by the combination of both technologies. Therefore, these results suggest that this combination can be used in the food industry to effectively inactivate Salmonella enteritidis without deteriorating product quality.
Collapse
|
3
|
Jangir A, Kumar Biswas A, Arsalan A, Faslu Rahman CK, Swami S, Agrawal R, Bora B, Kumar Mendiratta S, Talukder S, Chand S, Kumar D, Ahmad T, Ratan Sen A, Naveena BM, Singh Yadav A, Jaywant Rokade J. Development of superoxide dismutase based visual and spectrophotometric method for rapid differentiation of fresh and frozen-thawed buffalo meat. Food Chem 2024; 444:138659. [PMID: 38325091 DOI: 10.1016/j.foodchem.2024.138659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Study aimed to develop biomarker-based assay for rapid detection of fresh and frozen-thawed buffalo meat in the supply chain. The method is based on development of a solvent system and identification of suitable substrate and developer for screening of biomarkers. For the confirmation column chromatography, gel electrophoresis and Western Blotting were carried out. Validation was done by intra- and inter-day validation, storability study, and determination of thermal history. Best results were shown with pH 8.0 Tris-HCl; extraction buffer, 205 µM nicotinamide adenine dinucleotide hydrogen; substrate, 184 µM Nitroblue tetrazolium, and 1.9 µM phenazine methosulfate; developer. The thermal history ranged from 0.14 to 0.17 during storage at -20 °C. The intra- and inter-day assay precision (CV %) ranged from 5.3 to 6.5 %; in chilled and 14.1 - 9.2 % in frozen-thawed samples. The study confirmed SOD as a viable biomarker. Developed method using SOD has significant potential for rapidly differentiating chilled or frozen-thawed meat.
Collapse
Affiliation(s)
- Apeksha Jangir
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Ashim Kumar Biswas
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India.
| | - Abdullah Arsalan
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - C K Faslu Rahman
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Shalu Swami
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Ravikant Agrawal
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Bedika Bora
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Suman Talukder
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Sagar Chand
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Devendra Kumar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Tanbir Ahmad
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Arup Ratan Sen
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Basappa M Naveena
- ICAR-National Meat Research Institute, Chengicherla, Boduppal 500 092, A.P., India
| | - Ajit Singh Yadav
- Division of Post-Harvest Technology, ICAR-Central Avian Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Jaydip Jaywant Rokade
- Division of Post-Harvest Technology, ICAR-Central Avian Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| |
Collapse
|
4
|
Siddiqui SA, Adli DN, Nugraha WS, Yudhistira B, Lavrentev FV, Shityakov S, Feng X, Nagdalian A, Ibrahim SA. Social, ethical, environmental, economic and technological aspects of rabbit meat production - A critical review. Heliyon 2024; 10:e29635. [PMID: 38699749 PMCID: PMC11063435 DOI: 10.1016/j.heliyon.2024.e29635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Rabbit (RM) has become a valuable source of nutrients since the 1970s, helping to transform the European food industry into the largest RM producer in the world. However, the RM industry is experiencing a critical period of ethical imbalance. This trend, described as feed conversion ratio, impacts the environmental and financial performance of RM farms, which could lead to an increase production of industrial waste. In addition, the loss of corporate ethical responsibility and sustainable development by RM-oriented companies has further exacerbated the situation. Our objective was to summarize current trends in the RM industry and markets, highlighting possible strengths and weaknesses. This review shows current approaches in sustainable techniques in RM production processes, ethical issue, environmental and processing responsibility of RM producers, as well as social responsibilities and ethical practices of slaughterhouses and RM producers, sustainable environmental practices of slaughterhouses, technological aspects and safety of RM and social drivers in RM market. The analysis of reviewed literature revealed the potential strategies for sustainable RM production.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610-D, Quakenbrück, Germany
| | - Danung Nur Adli
- Faculty of Animal Science, Universitas Brawijaya, 65145, Malang, Indonesia
| | - Widya Satya Nugraha
- Department of Agricultural Socio-Economics, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences (MATE), 1118, Budapest, Hungary
| | - Bara Yudhistira
- Department of Food Science and Technology, Faculty of Agriculture, Sebelas Maret University, Surakarta City, 57126, Indonesia
| | - Filipp V. Lavrentev
- Infochemistry Scientific Center, ITMO University, 197101, Saint-Petersburg, Russia
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101, Saint-Petersburg, Russia
| | - Xi Feng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, CA 95192, USA
| | - Andrey Nagdalian
- Scientific Department, Saint-Petersburg State Agrarian University, 196601, Saint-Petersburg, Russia
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC, 27411, USA
| |
Collapse
|
5
|
Zhang J, Wei Z, Lu T, Qi X, Xie L, Vincenzetti S, Polidori P, Li L, Liu G. The Research Field of Meat Preservation: A Scientometric and Visualization Analysis Based on the Web of Science. Foods 2023; 12:4239. [PMID: 38231689 DOI: 10.3390/foods12234239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Meat plays a significant role in human diets, providing a rich source of high-quality protein. With advancements in technology, research in the field of meat preservation has been undergoing dynamic evolution. To gain insights into the development of this discipline, the study conducted an analysis and knowledge structure mapping of 1672 papers related to meat preservation research within the Web of Science Core Collection (WOSCC) spanning from 2001 to 2023. And using software tools such as VOSviewer 1.6.18 and CiteSpace 5.8.R3c allowed for the convenient analysis of the literature by strictly following the software operation manuals. Moreover, the knowledge structure of research in the field of meat preservation was synthesized within the framework of "basic research-technological application-integration of technology with fundamental research," aligning with the research content. Co-cited literature analysis indicated that meat preservation research could be further categorized into seven collections, as well as highlighting the prominent role of the antibacterial and antioxidant properties of plant essential oils in ongoing research. Subsequently, the future research direction and focus of the meat preservation field were predicted and prospected. The findings of this study could offer valuable assistance to researchers in swiftly comprehending the discipline's development and identifying prominent research areas, thus providing valuable guidance for shaping research topics.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, MC, Italy
| | - Zixiang Wei
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Ting Lu
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xingzhen Qi
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lan Xie
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, MC, Italy
| | - Paolo Polidori
- School of Pharmacy, University of Camerino, Via Gentile da Varano, 62032 Camerino, MC, Italy
| | - Lanjie Li
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
- Office of International Programs, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
6
|
Popa EE, Ungureanu EL, Geicu-Cristea M, Mitelut AC, Draghici MC, Popescu PA, Popa ME. Trends in Food Pathogens Risk Attenuation. Microorganisms 2023; 11:2023. [PMID: 37630583 PMCID: PMC10459359 DOI: 10.3390/microorganisms11082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne pathogens represent one of the most dangerous threats to public health along the food chain all over the world. Over time, many methods were studied for pathogen inhibition in food, such as the development of novel packaging materials with enhanced properties for microorganisms' growth inhibition (coatings, films) and the use of emerging technologies, like ultrasound, radio frequency or microwave. The aim of this study was to evaluate the current trends in the food industry for pathogenic microorganisms' inhibition and food preservation in two directions, namely technology used for food processing and novel packaging materials development. Five technologies were discussed in this study, namely high-voltage atmospheric cold plasma (HVACP), High-Pressure Processing (HPP), microwaves, radio frequency (RF) heating and ultrasound. These technologies proved to be efficient in the reduction of pathogenic microbial loads in different food products. Further, a series of studies were performed, related to novel packaging material development, by using a series of antimicrobial agents such as natural extracts, bacteriocins or antimicrobial nanoparticles. These materials proved to be efficient in the inhibition of a wide range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and yeasts.
Collapse
Affiliation(s)
- Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Elena Loredana Ungureanu
- National Research and Development Institute for Food Bioresources, 6 Dinu Vintila Str., 021102 Bucharest, Romania
| | - Mihaela Geicu-Cristea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Amalia Carmen Mitelut
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mihaela Cristina Draghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Paul Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| |
Collapse
|
7
|
De Devitiis B, Viscecchia R, Seccia A, Nardone G, Carlucci D, Albenzio M, Sevi A, Marino R. Improving meat tenderness using exogenous process: The consumer response. Meat Sci 2023; 200:109164. [PMID: 36933498 DOI: 10.1016/j.meatsci.2023.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
The aim of this paper is to investigate purchase intention (PI) for meat obtained through a tenderization process based on a treatment with exogenous proteolytic enzymes. Particularly, perceived risks and perceived benefits on the consumer acceptance of tender meat produced through this emerging technology have been evaluated. In order to achieve the stated objective, a survey was conducted on a national representative sample of Italian consumers (N = 1006), who received information about the traditional and the emerging tenderization processes. Principal Component Analysis and Structural Equation Model were applied to the collected data. Results show that consumer purchase intention for meat treated with exogenous proteolytic enzymes was strongly influenced by perceived benefits and weakly influenced by perceived risks. Another important result is that perceived benefits are mainly affected by trust in science. Finally, a Cluster Analysis was performed to distinguish consumer segments with different response patterns.
Collapse
Affiliation(s)
- Biagia De Devitiis
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Rosaria Viscecchia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy.
| | - Antonio Seccia
- Department of Humanities, University of Foggia, Via Arpi, 176-71122 Foggia, Italy
| | - Gianluca Nardone
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Domenico Carlucci
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, Bari 70126, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| | - Rosaria Marino
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy
| |
Collapse
|
8
|
Koczoń P, Hołaj-Krzak JT, Palani BK, Bolewski T, Dąbrowski J, Bartyzel BJ, Gruczyńska-Sękowska E. The Analytical Possibilities of FT-IR Spectroscopy Powered by Vibrating Molecules. Int J Mol Sci 2023; 24:ijms24021013. [PMID: 36674526 PMCID: PMC9860999 DOI: 10.3390/ijms24021013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
This paper discusses the state of advancement in the development of spectroscopic methods based on the use of mid (proper) infrared radiation in the context of applications in various fields of science and technology. The authors drew attention to the most important solutions specific to both spectroscopy itself (ATR technique) and chemometric data processing tools (PCA and PLS models). The objective of the current paper is to collect and consistently present information on various aspects of FT-IR spectroscopy, which is not only a well-known and well-established method but is also continuously developing. The innovative aspect of the current review is to show FT-IR's great versatility that allows its applications to solve and explain issues from both the scientific domain (e.g., hydrogen bonds) and practical ones (e.g., technological processes, medicine, environmental protection, and food analysis). Particular attention was paid to the issue of hydrogen bonds as key non-covalent interactions, conditioning the existence of living matter and determining the number of physicochemical properties of various materials. Since the role of FT-IR spectroscopy in the field of hydrogen bond research has great significance, a historical outline of the most important qualitative and quantitative hydrogen bond theories is provided. In addition, research on selected unconventional spectral effects resulting from the substitution of protons with deuterons in hydrogen bridges is presented. The state-of-the-art and originality of the current review are that it presents a combination of uses of FT-IR spectroscopy to explain the way molecules vibrate and the effects of those vibrations on macroscopic properties, hence practical applications of given substances.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Jakub T. Hołaj-Krzak
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Bharani K. Palani
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Tymoteusz Bolewski
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Jarosław Dąbrowski
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|
9
|
Hassoun A, Jagtap S, Garcia-Garcia G, Trollman H, Pateiro M, Lorenzo JM, Trif M, Rusu AV, Aadil RM, Šimat V, Cropotova J, Câmara JS. Food quality 4.0: From traditional approaches to digitalized automated analysis. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Ojangba T, Boamah S, Zhang L, Wang Z, Osei R. Effects of sodium chloride (NaCl) partial substitution by potassium chloride (KCl) in combination with high pressure on sensory and chemical properties of beef sausage during cold storage at 4°C. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Theodora Ojangba
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Food Science and Technology, University for Development Studies, Tamale, Ghana
| | - Solomon Boamah
- Department of Food Science and Technology, University for Development Studies, Tamale, Ghana
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhuo Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Richard Osei
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
12
|
Impact of ultraviolet light and cold plasma on fatty acid profile of raw chicken and pork meat. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Bhatnagar P, Gururani P, Bisht B, Kumar V, Kumar N, Joshi R, Vlaskin MS. Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review. Heliyon 2022; 8:e10918. [PMID: 36247116 PMCID: PMC9557900 DOI: 10.1016/j.heliyon.2022.e10918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/17/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Fruits and vegetables are healthy because they contain good nutrients and secondary metabolites that keep the body healthy and disease-free. Post-harvest losses of fresh fruits and vegetables limit access and availability as a result of foodborne infections and poor storage technologies. The selection of fruits and vegetables depend on the starting microbial load, the size of fruits and vegetables, and the type of infrastructure. Scope and approach Despite the positive impacts of conventional thermal (roasting, boiling, blanching) and some non-thermal processing techniques such as High Pressure Processing (HPP), Pulse Electric Field (PEF), Cold Plasma Technology (CPT) on shelf-life extension, their use is commonly associated with a number of negative consequences on product quality such as cold plasma treatment increases the acidity and rate of lipid oxidation and further decrease the colour intensity and firmness of products. Similarly, in high pressure processing and pulse electric field there is no spore inactivation and they further limit their application to semi-moist and liquid foods. On that account, food irradiation, a non-thermal technique, is currently being used for post-harvest preservation, which could be very useful in retaining the keeping quality of various fresh and dehydrated products without negatively affecting their versatility and physico-chemical, nutritional and sensory properties. Conclusion Existing studies have communicated the effective influence of irradiation technology on nutritional, sensory, and physico-chemical properties of multiple fruits and vegetables accompanying consequential deduction in microbial load throughout the storage period. Food irradiation can be recognized as a prevalent, safe and promising technology however, still is not fully exploited on a magnified scale. The consumer acceptance of processed products has always been a significant challenge for innovative food processing technologies such as food irradiation. Therefore, owing to current review, additional scientific evidences and efforts are still demanded for increasing its technological request.
Collapse
Affiliation(s)
- Pooja Bhatnagar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India,Corresponding author.
| | - Bhawna Bisht
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India,Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation,Corresponding author.
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Raja Joshi
- School of Agriculture, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Mikhail S. Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, 117198, Russian Federation
| |
Collapse
|
14
|
An J, Li Y, Zhang C, Zhang D. Rapid Nondestructive Prediction of Multiple Quality Attributes for Different Commercial Meat Cut Types Using Optical System. Food Sci Anim Resour 2022; 42:655-671. [PMID: 35855268 PMCID: PMC9289799 DOI: 10.5851/kosfa.2022.e28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Abstract
There are differences of spectral characteristics between different types of meat cut, which means the model established using only one type of meat cut for meat quality prediction is not suitable for other meat cut types. A novel portable visible and near-infrared (Vis/NIR) optical system was used to simultaneously predict multiple quality indicators for different commercial meat cut types (silverside, back strap, oyster, fillet, thick flank, and tenderloin) from Small-tailed Han sheep. The correlation coefficients of the calibration set (R c) and prediction set (R p) of the optimal prediction models were 0.82 and 0.81 for pH, 0.88 and 0.84 for L*, 0.83 and 0.78 for a*, 0.83 and 0.82 for b*, 0.94 and 0.86 for cooking loss, 0.90 and 0.88 for shear force, 0.84 and 0.83 for protein, 0.93 and 0.83 for fat, 0.92 and 0.87 for moisture contents, respectively. This study demonstrates that Vis/NIR spectroscopy is a promising tool to achieve the predictions of multiple quality parameters for different commercial meat cut types.
Collapse
Affiliation(s)
- Jiangying An
- Mechanical and Electrical Engineering College, Beijing Polytechnic College, Beijing 100042, China
| | - Yanlei Li
- Mechanical and Electrical Engineering College, Beijing Polytechnic College, Beijing 100042, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunzhi Zhang
- Mechanical and Electrical Engineering College, Beijing Polytechnic College, Beijing 100042, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
15
|
Li H, Huang YY, Addo KA, Yu YG, Xiao XL. Effects of cuminaldehyde on toxins production of Staphylococcus aureus and its application in sauced beef. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Saleem A, Sahar A, Pasha I, Shahid M. Determination of Adulteration of Chicken Meat into Minced Beef Mixtures using Front Face Fluorescence Spectroscopy Coupled with Chemometric. Food Sci Anim Resour 2022; 42:672-688. [PMID: 35855273 PMCID: PMC9289803 DOI: 10.5851/kosfa.2022.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to explore the potential of front face fluorescence spectroscopy (FFFS) as rapid, non-destructive and inclusive technique along with multi-variate analysis for predicting meat adulteration. For this purpose (FFFS) was used to discriminate pure minced beef meat and adulterated minced beef meat containing (1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) of chicken meat as an adulterant in uncooked beef meat samples. Fixed excitation (290 nm, 322 nm, and 340 nm) and fixed emission (410 nm) wavelengths were used for performing analysis. Fluorescence spectra were acquired from pure and adulterated meat samples to differentiate pure and binary mixtures of meat samples. Principle component analysis, partial least square regression and hierarchical cluster analysis were used as chemometric tools to find out the information from spectral data. These chemometric tools predict adulteration in minced beef meat up to 10% chicken meat but are not good in distinguishing adulteration level from 1% to 5%. The results of this research provide baseline for future work for generating spectral libraries using larger datasets for on-line detection of meat authenticity by using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Asima Saleem
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Corresponding author: Amna Sahar, National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture Faisalabad 38000, Pakistan, Tel: +92-03326959611, E-mail:
| | - Imran Pasha
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
17
|
Zhang L, Liu F, Jin Y, Wu S, Xu X, Yang N. Current Applications and Challenges of Induced Electric Fields for the Treatment of Foods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Serpa-Fajardo JG, Hernández-Ramos EJ, Fernández-Lambert G, Sandoval-Herazo LC, Andrade-Pizarro RD. Post-industrial context of cassava bagasse and trend of studies towards a sustainable industry: A scoping review - Part I. F1000Res 2022; 11:562. [PMID: 36606117 PMCID: PMC9772581 DOI: 10.12688/f1000research.110429.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 01/13/2023] Open
Abstract
Background: The cassava starch industry is recognized as a source of negative externalities caused by the agroindustrial waste 'cassava bagasse'. Even though options for bioconversion of cassava bagasse have been introduced, it is also true that hundreds of tons of this waste are produced annually with the consequent negative environmental impact. This agroindustrial context highlights the need for further research in technological proposals aimed at lowering the water contained in cassava bagasse. Methods: We report a scoping review of studies from 2010-2021 that mention the uses of cassava bagasse, as well as the technological options that have become effective for drying fruits and vegetables. The method used for selecting articles was based on the Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) method. Articles selected were taken from the databases of ScienceDirect, Google Scholar, Scopus and Springer. Results : This review highlights fruit and vegetable osmotic dehydration and drying studies assisted by the combination of emerging technologies of osmotic pressure, ultrasound, and electrical pulses. Studies that take advantage of cassava bagasse have focused on biotechnological products, animal and human food industry, and development of biofilms and biomaterials. Conclusions: In this review, we found 60 studies out of 124 that show the advantages of the residual components of cassava bagasse for the development of new products. These studies do not mention any potential use of bagasse fiber for post-industrial purposes, leaving this end products' final use/disposal unaddressed. A viable solution is osmotic dehydration and drying assisted with electrical pulse and ultrasound that have been shown to improve the drying efficiency of fruits, vegetables and tubers. This greatly improves the drying efficiency of agro-industrial residues such as husks and bagasse, which in turn, directly impacts its post-industrial use.
Collapse
Affiliation(s)
- José Gabriel Serpa-Fajardo
- Tecnológico Nacional de México-Campus Misantla, Misantla, Veracruz, 93821, Mexico
- Departamento de Ingeniería Agroindustrial, Universidad de Sucre, Sincelejo, Sucre, 700001, Colombia
| | | | | | | | - Ricardo David Andrade-Pizarro
- Facultad de Ingenierías, Departamento de Ingeniería de Alimentos, Universidad de Córdoba, Montería, Córdoba, 230002, Colombia
| |
Collapse
|
19
|
Discrimination of Stressed and Non-Stressed Food-Related Bacteria Using Raman-Microspectroscopy. Foods 2022; 11:foods11101506. [PMID: 35627076 PMCID: PMC9141442 DOI: 10.3390/foods11101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
As the identification of microorganisms becomes more significant in industry, so does the utilization of microspectroscopy and the development of effective chemometric models for data analysis and classification. Since only microorganisms cultivated under laboratory conditions can be identified, but they are exposed to a variety of stress factors, such as temperature differences, there is a demand for a method that can take these stress factors and the associated reactions of the bacteria into account. Therefore, bacterial stress reactions to lifetime conditions (regular treatment, 25 °C, HCl, 2-propanol, NaOH) and sampling conditions (cold sampling, desiccation, heat drying) were induced to explore the effects on Raman spectra in order to improve the chemometric models. As a result, in this study nine food-relevant bacteria were exposed to seven stress conditions in addition to routine cultivation as a control. Spectral alterations in lipids, polysaccharides, nucleic acids, and proteins were observed when compared to normal growth circumstances without stresses. Regardless of the involvement of several stress factors and storage times, a model for differentiating the analyzed microorganisms from genus down to strain level was developed. Classification of the independent training dataset at genus and species level for Escherichia coli and at strain level for the other food relevant microorganisms showed a classification rate of 97.6%.
Collapse
|
20
|
Schwartz M, Marais J, Strydom PE, Hoffman LC. Effects of increasing internal end‐point temperatures on physicochemical and sensory properties of meat: A review. Compr Rev Food Sci Food Saf 2022; 21:2843-2872. [DOI: 10.1111/1541-4337.12948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Marbi Schwartz
- Department of Food Science Stellenbosch University Stellenbosch South Africa
| | - Jeannine Marais
- Department of Food Science Stellenbosch University Stellenbosch South Africa
| | | | - Louwrens Christiaan Hoffman
- Department of Animal Sciences Stellenbosch University Stellenbosch South Africa
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct Coopers Plains Australia
| |
Collapse
|
21
|
Hao G, Lin S, Jiang Y, Cao W, Liu Y, Chen Z. Enhancing processed quality of roasted eel with ultrasound treatment: Effect on texture, taste and flavor. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gengxin Hao
- College of Food and Biological Engineering Jimei University Xiamen China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Zhanjiang China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education China
| | - Shuting Lin
- Central Laboratory The Second Affiliated Hospital of Xiamen Medical College Xiamen China
| | - Yafei Jiang
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Wenhong Cao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Zhanjiang China
- College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Ya Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Zhanjiang China
- College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Zhaohua Chen
- College of Food and Biological Engineering Jimei University Xiamen China
| |
Collapse
|
22
|
Can ultrasound treatment replace conventional high temperature short time pasteurization of milk? A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fish and other seafood products are essential dietary components that are highly appreciated and consumed worldwide. However, the high perishability of these products has driven the development of a wide range of processing, preservation, and analytical techniques. This development has been accelerated in recent years with the advent of the fourth industrial revolution (Industry 4.0) technologies, digitally transforming almost every industry, including the food and seafood industry. The purpose of this review paper is to provide an updated overview of recent thermal and nonthermal processing and preservation technologies, as well as advanced analytical techniques used in the seafood industry. A special focus will be given to the role of different Industry 4.0 technologies to achieve smart seafood manufacturing, with high automation and digitalization. The literature discussed in this work showed that emerging technologies (e.g., ohmic heating, pulsed electric field, high pressure processing, nanotechnology, advanced mass spectrometry and spectroscopic techniques, and hyperspectral imaging sensors) are key elements in industrial revolutions not only in the seafood industry but also in all food industry sectors. More research is still needed to explore how to harness the Industry 4.0 innovations in order to achieve a green transition toward more profitable and sustainable food production systems.
Collapse
|
24
|
Novel Techniques for Microbiological Safety in Meat and Fish Industries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The consumer tendency towards convenient, minimally processed meat items has placed extreme pressure on processors to certify the safety of meat or meat products without compromising the quality of product and to meet consumer’s demand. This has prompted difficulties in creating and carrying out novel processing advancements, as the utilization of more up-to-date innovations may influence customer decisions and assessments of meat and meat products. Novel advances received by the fish and meat industries for controlling food-borne microbes of huge potential general wellbeing concern, gaps in the advancements, and the requirement for improving technologies that have been demonstrated to be effective in research settings or at the pilot scale shall be discussed. Novel preparing advancements in the meat industries warrant microbiological approval before being named as industrially suitable alternatives and authorizing infra-structural changes. This miniature review presents the novel techniques for the microbiological safety of meat products, including both thermal and non-thermal methods. These technologies are being successfully implemented and rationalized in subsisting processing surroundings.
Collapse
|
25
|
Costello KM, Velliou E, Gutierrez-Merino J, Smet C, Kadri HE, Impe JFV, Bussemaker M. The effect of ultrasound treatment in combination with nisin on the inactivation of Listeria innocua and Escherichia coli. ULTRASONICS SONOCHEMISTRY 2021; 79:105776. [PMID: 34662803 PMCID: PMC8560821 DOI: 10.1016/j.ultsonch.2021.105776] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 05/21/2023]
Abstract
Ultrasound, alone or in combination with natural antimicrobials, is a novel food processing technology of interest to replace traditional food decontamination methods, as it is milder than classical sterilisation (heat treatment) and maintains desirable sensory characteristics. However, ultrasound efficacy can be affected by food structure/composition, as well as the order in which combined treatments are applied. More specifically, treatments which target different cell components could result in enhanced inactivation if applied in the appropriate order. The microbial properties i.e. Gram positive/Gram negative can also impact the treatment efficacy. This work presents a systematic study of the combined effect of ultrasound and nisin on the inactivation of the bacteria Listeria innocua (Gram positive) and Escherichia coli (Gram negative), at a range of cavitation conditions (44, 500, 1000 kHz). The order of treatment application was varied, and the impact of system structure was also investigated by varying the concentration of Xanthan gum used to create the food model systems (0 - 0.5% w/v). Microbial inactivation kinetics were monitored, and advanced microscopy and flow cytometry techniques were utilised to quantify the impact of treatment on a cellular level. Ultrasound was shown to be effective against E. coli at 500 kHz only, with L. innocua demonstrating resistance to all frequencies studied. Enhanced inactivation of E. coli was observed for the combination of nisin and ultrasound at 500 kHz, but only when nisin was applied before ultrasound treatment. The system structure negatively impacted the inactivation efficacy. The combined effect of ultrasound and nisin on E. coli was attributed to short-lived destabilisation of the outer membrane as a result of sonication, allowing nisin to penetrate the cytoplasmic membrane and facilitate cell inactivation.
Collapse
Affiliation(s)
- Katherine M Costello
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| | - Eirini Velliou
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK
| | | | - Cindy Smet
- BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven Campus Gent, Gent, Belgium
| | - Hani El Kadri
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven Campus Gent, Gent, Belgium
| | - Madeleine Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
26
|
Orlien V, Aalaei K, Poojary MM, Nielsen DS, Ahrné L, Carrascal JR. Effect of processing on in vitro digestibility (IVPD) of food proteins. Crit Rev Food Sci Nutr 2021; 63:2790-2839. [PMID: 34590513 DOI: 10.1080/10408398.2021.1980763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteins are important macronutrients for the human body to grow and function throughout life. Although proteins are found in most foods, their very dissimilar digestibility must be taking into consideration when addressing the nutritional composition of a diet. This review presents a comprehensive summary of the in vitro digestibility of proteins from plants, milk, muscle, and egg. It is evident from this work that protein digestibility greatly varies among foods, this variability being dependent not only upon the protein source, but also the food matrix and the molecular interactions between proteins and other food components (food formulation), as well as the conditions during food processing and storage. Different approaches have been applied to assess in vitro protein digestibility (IVPD), varying in both the enzyme assay and quantification method used. In general, animal proteins tend to show higher IVPD. Harsh technological treatments tend to reduce IVPD, except for plant proteins, in which thermal degradation of anti-nutritional compounds results in improved IVPD. However, in order to improve the current knowledge about protein digestibility there is a vital need for understanding dependency on a protein source, molecular interaction, processing and formulation and relationships between. Such knowledge can be used to develop new food products with enhanced protein bioaccessibility.
Collapse
Affiliation(s)
- Vibeke Orlien
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kataneh Aalaei
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jorge Ruiz Carrascal
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| |
Collapse
|
27
|
Leighton PL, Segura JD, Lam SD, Marcoux M, Wei X, Lopez-Campos OD, Soladoye P, Dugan ME, Juarez M, PRIETO NURIA. Prediction of carcass composition and meat and fat quality using sensing technologies: A review. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Consumer demand for high-quality healthy food is increasing, thus meat processors require the means toassess these rapidly, accurately, and inexpensively. Traditional methods forquality assessments are time-consuming, expensive, invasive, and have potentialto negatively impact the environment. Consequently, emphasis has been put onfinding non-destructive, fast, and accurate technologies for productcomposition and quality evaluation. Research in this area is advancing rapidlythrough recent developments in the areas of portability, accuracy, and machinelearning. The present review, therefore, critically evaluates and summarizes developmentsof popular non-invasive technologies (i.e., from imaging to spectroscopicsensing technologies) for estimating beef, pork, and lamb composition andquality, which will hopefully assist in the implementation of thesetechnologies for rapid evaluation/real-timegrading of livestock products in the nearfuture.
Collapse
|
28
|
Soro AB, Noore S, Hannon S, Whyte P, Bolton DJ, O’Donnell C, Tiwari BK. Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Warner RD, Wheeler TL, Ha M, Li X, Bekhit AED, Morton J, Vaskoska R, Dunshea FR, Liu R, Purslow P, Zhang W. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Sci 2021; 185:108657. [PMID: 34998162 DOI: 10.1016/j.meatsci.2021.108657] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Meat tenderness is an important quality trait critical to consumer acceptance, and determines satisfaction, repeat purchase and willingness-to-pay premium prices. Recent advances in tenderness research from a variety of perspectives are presented. Our understanding of molecular factors influencing tenderization are discussed in relation to glycolysis, calcium release, protease activation, apoptosis and heat shock proteins, the use of proteomic analysis for monitoring changes, proteomic biomarkers and oxidative/nitrosative stress. Each of these structural, metabolic and molecular determinants of meat tenderness are then discussed in greater detail in relation to animal variation, postmortem influences, and changes during cooking, with a focus on recent advances. Innovations in postmortem technologies and enzymes for meat tenderization are discussed including their potential commercial application. Continued success of the meat industry relies on ongoing advances in our understanding, and in industry innovation. The recent advances in fundamental and applied research on meat tenderness in relation to the various sectors of the supply chain will enable such innovation.
Collapse
Affiliation(s)
- Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia.
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - James Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Rozita Vaskoska
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rui Liu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Peter Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Khadhraoui B, Ummat V, Tiwari BK, Fabiano-Tixier AS, Chemat F. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. ULTRASONICS SONOCHEMISTRY 2021; 76:105625. [PMID: 34147916 PMCID: PMC8225985 DOI: 10.1016/j.ultsonch.2021.105625] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
Ultrasound has a significant effect on the rate of various processes in food, perfume, cosmetic, pharmaceutical, bio-fuel, materials, or fine chemical industries, despite some shortcomings. Combination with other conventional or innovative techniques can overcome these limitations, enhance energy, momentum and mass transfer, and has been successfully demonstrated in many recent studies. Various ultrasound combined hybrid and innovative techniques are systematically summarized in this review for the first time. Ultrasound can be combined with diverse conventional techniques including Soxhlet, Clevenger, enzyme, hydrotropes, ionic liquids, Deep Eutectic Solvents (DES) or Natural Deep Eutectic Solvents (NADES), to enhance mixing and micro-mixing, reduced thermal and concentration gradients, and selective extraction. Moreover, combinations of ultrasound with other innovative techniques such as microwave, extrusion, supercritical fluid, subcritical and pressure liquids, Instant controlled pressure drop (DIC), Pulsed Electric Field (PEF), Ultra-Violet (UV) or Infra-Red (IR) radiations, Counter-current chromatography (CCC), or centrifugal partition chromatographs (CPC) can enable reduced equipment size, faster response to process control, faster start-up, increased production, and elimination of process steps. The theories and applications of these ultrasound combined hybrid and innovative techniques as well as their advantages and limitations are compared, and further perspectives are proposed. This review provides new insights into advances in ultrasound combined techniques and their application at research, educational, and industrial level in modern food and plant-based chemistry.
Collapse
Affiliation(s)
- B Khadhraoui
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - V Ummat
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland
| | - B K Tiwari
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland.
| | - A S Fabiano-Tixier
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - F Chemat
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France.
| |
Collapse
|
31
|
Effect of high pressure processing and heat treatment on the gelation properties of blue crab meat proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
33
|
Hüppe R, Zander K. Consumer Perspectives on Processing Technologies for Organic Food. Foods 2021; 10:1212. [PMID: 34072073 PMCID: PMC8229621 DOI: 10.3390/foods10061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Over the last years, consumer demand for natural and healthy convenient food has increased, and with it the demand for organic convenience food. With convenience food, the processing level increases, which consumers are sceptical of. This holds especially for organic consumers who prefer natural, healthy, and sustainable food products. In the literature, consumer preferences are investigated for processed conventional food, but rarely for organic products. Therefore, this study investigates consumers' knowledge, expectations, and attitudes towards selected processing technologies for organic food. Nine focus groups with 84 organic consumers were conducted, discussing preservation technologies of organic milk and orange juice. Results showed that participants had little knowledge about processing technologies but were interested in their benefits. Organic processing technologies should include fewer processing steps, low environmental impact, while keeping the product as natural as possible. Since consumers want to know benefits but not details of processing, asking consumers for their specific preferences when developing new processing technologies remains challenging. This paper shows how consumers' benefit and risk perception including their want for naturalness, and scepticism for new technologies shape their evaluation of (organic) food processing technologies. Two consumer groups with different attitudes towards processing could be identified: 'organic traditionalists' and 'organic pragmatics'.
Collapse
Affiliation(s)
- Ronja Hüppe
- Section of Agricultural and Food Marketing, University of Kassel, 37213 Witzenhausen, Germany;
| | | |
Collapse
|
34
|
El Kadri H, Costello KM, Thomas P, Wantock T, Sandison G, Harle T, Fabris AL, Gutierrez-Merino J, Velliou EG. The antimicrobial efficacy of remote cold atmospheric plasma effluent against single and mixed bacterial biofilms of varying age. Food Res Int 2021; 141:110126. [PMID: 33641993 DOI: 10.1016/j.foodres.2021.110126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a minimal food processing technology of increasing interest in the food industry, as it is mild in nature compared to traditional methods (e.g. pasteurisation) and thus can maintain the food's desirable qualities. However, due to this mild nature, the potential exists for post-treatment microbial survival and/or stress adaptation. Furthermore, biofilm inactivation by CAP is underexplored and mostly studied on specific foods or on plastic/polymer surfaces. Co-culture effects, biofilm age, and innate biofilm-associated resistance could all impact CAP efficacy, while studies on real foods are limited to the food product investigated without accounting for structural complexity. The effect of a Remote and Enclosed CAP device (Fourth State Medicine Ltd) was investigated on Escherichia coli and Listeria innocua grown as planktonic cells and as single or mixed bacterial biofilms of variable age, on a biphasic viscoelastic food model of controlled rheological and structural complexity. Post-CAP viability was assessed by plate counts, cell sublethal injury was quantified using flow cytometry, and biofilms were characterised and assessed using total protein content and microscopy techniques. A greater impact of CAP on planktonic cells was observed at higher air flow rates, where the ReCAP device operates in a mode more favourable to reactive oxygen species than reactive nitrogen species. Although planktonic E. coli was more susceptible to CAP than planktonic L. innocua, the opposite was observed in biofilm form. The efficacy of CAP was reduced with increasing biofilm age. Furthermore, E. coli produced much higher protein content in both single and mixed biofilms than L. innocua. Consequently, greater survival of L. innocua in mixed biofilms was attributed to a protective effect from E. coli. These results show that biofilm susceptibility to CAP is age and bacteria dependent, and that in mixed biofilms bacteria may become less susceptible to CAP. These findings are of significance to the food industry for the development of effective food decontamination methods using CAP.
Collapse
Affiliation(s)
- Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Phillip Thomas
- Surrey Space Centre, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Wantock
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Gavin Sandison
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Thomas Harle
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | | | | | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
35
|
Zhang J, Zhang Y, Zou Y, Zhang W. Effects of ultrasound-assisted cooking on quality characteristics of spiced beef during cold storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Costello KM, Smet C, Gutierrez-Merino J, Bussemaker M, Van Impe JF, Velliou EG. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int J Food Microbiol 2020; 337:108948. [PMID: 33197682 DOI: 10.1016/j.ijfoodmicro.2020.108948] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Novel processing methods such as cold atmospheric plasma (CAP) and natural antimicrobials like nisin, are of interest to replace traditional food decontamination approaches as, due to their mild nature, they can maintain desirable food characteristics, i.e., taste, texture, and nutritional content. However, the microbial growth characteristics (planktonic growth/surface colonies) and/or the food structure itself (liquid/solid surface) can impact the inactivation efficacy of these novel processing methods. More specifically, cells grown as colonies on a solid(like) surface experience a completely different growth environment to cells grown planktonically in liquid, and thus could display a different response to novel processing treatments through stress adaptation and/or cross protection mechanisms. The order in which combined treatments are applied could also impact their efficacy, especially if the mechanisms of action are complementary. This work presents a fundamental study on the efficacy of CAP and nisin, alone and combined, as affected by food system structure. More specifically, Listeria innocua was grown planktonically (liquid broth) or on a viscoelastic Xanthan gum gel system (1.5% w/v) and treated with CAP, nisin, or a combination of the two. Both the inactivation system, i.e., liquid versus solid(like) surface and the growth characteristics, i.e., planktonic versus colony growth, were shown to impact the treatment efficacy. The combination of nisin and CAP was more effective than individual treatments, but only when nisin was applied before the CAP treatment. This study provides insight into the environmental stress response/adaptation of L. innocua grown on structured systems in response to natural antimicrobials and novel processing technologies, and is a step towards the faster delivery of these food decontamination methods from the bench to the food industry.
Collapse
Affiliation(s)
- Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Cindy Smet
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+), KU Leuven, Sustainable Chemical Process Technology, Ghent, Belgium
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
37
|
Monitoring Thermal and Non-Thermal Treatments during Processing of Muscle Foods: A Comprehensive Review of Recent Technological Advances. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscle food products play a vital role in human nutrition due to their sensory quality and high nutritional value. One well-known challenge of such products is the high perishability and limited shelf life unless suitable preservation or processing techniques are applied. Thermal processing is one of the well-established treatments that has been most commonly used in order to prepare food and ensure its safety. However, the application of inappropriate or severe thermal treatments may lead to undesirable changes in the sensory and nutritional quality of heat-processed products, and especially so for foods that are sensitive to thermal treatments, such as fish and meat and their products. In recent years, novel thermal treatments (e.g., ohmic heating, microwave) and non-thermal processing (e.g., high pressure, cold plasma) have emerged and proved to cause less damage to the quality of treated products than do conventional techniques. Several traditional assessment approaches have been extensively applied in order to evaluate and monitor changes in quality resulting from the use of thermal and non-thermal processing methods. Recent advances, nonetheless, have shown tremendous potential of various emerging analytical methods. Among these, spectroscopic techniques have received considerable attention due to many favorable features compared to conventional analysis methods. This review paper will provide an updated overview of both processing (thermal and non-thermal) and analytical techniques (traditional methods and spectroscopic ones). The opportunities and limitations will be discussed and possible directions for future research studies and applications will be suggested.
Collapse
|
38
|
Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09251-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Singh M, Novoa Rama E, Kataria J, Leone C, Thippareddi H. Emerging Meat Processing Technologies for Microbiological Safety of Meat and Meat Products. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.11180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A consumer trend toward convenient, minimally processed meat products has exerted tremendous pressure on meat processors to ensure the safety of meat and meat products without compromising product quality and the meeting of consumer demands. This has led to challenges in developing and implementing novel processing technologies as the use of newer technologies may affect consumer choices and opinions of meat and meat products. Novel technologies adopted by the meat industry for controlling foodborne pathogens of significant public health implications, gaps in the technologies, and the need for scaling up technologies that have been proven to be successful in research settings or at the pilot scale will be discussed. Novel processing technologies in the meat industry warrant microbiological validation prior to becoming commercially viable options and enacting infrastructural changes. This review presents the advantages and shortcomings of such technologies and provides an overview of technologies that can be successfully implemented and streamlined in existing processing environments.
Collapse
|
40
|
Nisar MF, Arshad MS, Yasin M, Khan MK, Afzaal M, Sattar S, Suleria HAR. Evaluation of gamma irradiation and moringa leaf powder on quality characteristics of meat balls under different packaging materials. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Faisal Nisar
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Yasin
- Food Science Division Nuclear Institute for Food and Agriculture, Pakistan Atomic Energy Commission Peshawar Pakistan
| | - Muhammad Kamran Khan
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Saira Sattar
- Department of Food Science, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | | |
Collapse
|
41
|
Kang D, Zhang W, Lorenzo JM, Chen X. Structural and functional modification of food proteins by high power ultrasound and its application in meat processing. Crit Rev Food Sci Nutr 2020; 61:1914-1933. [PMID: 32449370 DOI: 10.1080/10408398.2020.1767538] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the field of agricultural and food processing, high power ultrasound (HPUS) is recognized as a green, physical and non-thermal technology in improving the safety and quality of foods. The functional properties of food proteins are responsible for texture, yield and organoleptic of food products which are the theoretical basis for food processing optimizing. HPUS treatment could provide the possibility for creating novel functional properties of new foods with desirable properties due to the modification of protein structure. In this article, an overview of the previous studies and recent progress of the relationship between structure modification and functional properties of food proteins using the HPUS technique were presented. The research results revealed that HPUS could significantly affect the conformation and structure of protein due to the cavitation effect resulting in the improvement of solubility, interfacial, viscosity, gelation and flavor binding properties of proteins. During meat processing, HPUS can modify the structure and thereby improve the functional properties of myofibrillar protein (MP), leading to the quality enhancement, low fat and/or salt products development and the shelf life extending. In view of this review, the recent findings of applications of HPUS in the production of meat products based on the modification of MP including curing, freezing/thawing and thermal processing have been summarized. Finally, the future considerations were presented in order to facilitate the progress of HPUS in meat industry and provided the suggestions based on the advanced protein modification by HPUS for the commercial utilization of HPUS in producing the innovative meat products.
Collapse
Affiliation(s)
- Dacheng Kang
- School of Life Sciences, Linyi University, Linyi, Shandong, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Spain Ourense
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
42
|
Kim JH, Kim HJ, Jung SJ, Mizan MFR, Park SH, Ha SD. Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat. J Food Sci 2020; 85:526-534. [PMID: 32043599 DOI: 10.1111/1750-3841.15042] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Chicken breast meat is considered as the main source of Salmonella infection in humans. The aim of this study was to isolate lytic bacteriophages specific for Salmonella enterica serovars Enteritidis and examine their efficacy in a cocktail for the biocontrol of Salmonella spp. in raw chicken breast meat. Four lytic phages belonging to the Myoviridae and Siphoviridae families were isolated from a river proximate to a duck farm. They exhibited broad lytic activities against 11 strains of S. Enteritidis, 11 strains of S. Typhimurium, and one each of S. Paratyphi A, S. San Diego, and S. Typhi. The phages were determined to be stable, exhibited similar degrees of resistance to heat and pH, and had latent periods ranging from 5 to 30 min. In addition, the phage particles were 100% adsorbed within 18 to 40 min. Viable cell counts of bacteria were significantly reduced in raw chicken breast samples (P < 0.05) when treated with a cocktail of all four bacteriophages at 4 °C for 7 days (multiplicities of infection were from 104 to 106 ). These results indicate the potential efficacy of the bacteriophage cocktail as a biological agent against S. Enteritidis in raw chicken breast meat. PRACTICAL APPLICATION: Our findings demonstrate that the phages could be effective in reducing the viability of Salmonella spp. bacteria in chicken breast meat. Therefore, the phage cocktail is a potential bactericidal agent for the biocontrol of Salmonella spp. in raw chicken breast meat and could be used use in various poultry industries in the future.
Collapse
Affiliation(s)
- Jin Hee Kim
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| | - Hee Jeong Kim
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| | - Soo Jin Jung
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| | - Si Hong Park
- Dept. of Food Science and Technology, Oregon State Univ., Corvallis, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| |
Collapse
|
43
|
Li K, Fu L, Zhao YY, Xue SW, Wang P, Xu XL, Bai YH. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105275] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Inguglia ES, Burgess CM, Kerry JP, Tiwari BK. Ultrasound-Assisted Marination: Role of Frequencies and Treatment Time on the Quality of Sodium-Reduced Poultry Meat. Foods 2019; 8:foods8100473. [PMID: 31614455 PMCID: PMC6835530 DOI: 10.3390/foods8100473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate the influence of high-power ultrasound (US) to accelerate marination of chicken breast; the effect of ultrasonic frequencies and marination times were investigated on samples containing full sodium levels (FS) or 25% sodium reduction, either by reducing NaCl (R50) or by its partial substitution with KCl (SR). Chicken breasts were marinated in plastic bags immersed in an ultrasonic bath operating with a frequency of 25, 45 or 130 kHz for 1, 3 or 6 h at a temperature of 2.5 ± 0.5 °C. Chicken marinated using US had a significantly higher uptake (p < 0.05) of sodium compared to control samples (no US) marinated for the same amount of time. No significant changes were observed in the quality parameters of sonicated chicken samples compared to controls. However, significant decreases (p < 0.05) in lipid oxidation were observed in SR samples when treated by US. These results suggest the use of ultrasound in the meat processing industry as a novel technology for enhancing marination processes and formulation of reduced sodium meat products.
Collapse
Affiliation(s)
- Elena S Inguglia
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland.
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland.
| | - Catherine M Burgess
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland.
| | - Joseph P Kerry
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland.
| |
Collapse
|
45
|
Cafferky J, Sweeney T, Allen P, Sahar A, Downey G, Cromie AR, Hamill RM. Investigating the use of visible and near infrared spectroscopy to predict sensory and texture attributes of beef M. longissimus thoracis et lumborum. Meat Sci 2019; 159:107915. [PMID: 31470197 DOI: 10.1016/j.meatsci.2019.107915] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
The aim of this study was to calibrate chemometric models to predict beef M. longissimus thoracis et lumborum (LTL) sensory and textural values using visible-near infrared (VISNIR) spectroscopy. Spectra were collected on the cut surface of LTL steaks both on-line and off-line. Cooked LTL steaks were analysed by a trained beef sensory panel as well as undergoing WBSF analysis. The best coefficients of determination of cross validation (R2CV) in the current study were for textural traits (WBSF = 0.22; stringiness = 0.22; crumbly texture = 0.41: all 3 models calibrated using 48 h post-mortem spectra), and some sensory flavour traits (fatty mouthfeel = 0.23; fatty after-effect = 0.28: both calibrated using 49 h post-mortem spectra). The results of this experiment indicate that VISNIR spectroscopy has potential to predict a range of sensory traits (particularly textural traits) with an acceptable level of accuracy at specific post-mortem times.
Collapse
Affiliation(s)
- Jamie Cafferky
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Allen
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Amna Sahar
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Gerard Downey
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Andrew R Cromie
- Irish Cattle Breeding Federation, Shinagh House, Bandon, Co. Cork, Ireland
| | - Ruth M Hamill
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
46
|
Zhou J, Wu X, Chen Z, You J, Xiong S. Evaluation of freshness in freshwater fish based on near infrared reflectance spectroscopy and chemometrics. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Cafferky J, Hamill RM, Allen P, O'Doherty JV, Cromie A, Sweeney T. Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers. Foods 2019; 8:foods8050173. [PMID: 31117235 PMCID: PMC6560408 DOI: 10.3390/foods8050173] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/02/2022] Open
Abstract
The objective of this study was to determine whether sire breed and/or castration had an effect on meat quality of M. longissimus thoracis et lumborum (LTL) muscle from crossbred bulls and steers and to investigate the relationship amongst the traits examined. Warner–Bratzler shear force (WBSF), intramuscular fat (IMF)%, cook-loss%, drip-loss%, colour (L*, a*, b*) and ultimate pH (upH) were determined in the LTL muscle from eight beef sire breeds representative of the Irish herd (Aberdeen Angus, Belgian Blue, Charolais, Hereford, Limousin, Parthenaise, Salers and Simmental). The results indicate that IMF%, cook-loss% and drip-loss% were associated with breed (p < 0.05); while WBSF, IMF% and cook-loss% differ between genders (p < 0.05). Steer LTL had a greater IMF% and exhibited reduced WBSF and cook-loss% in comparison to the bull LTL (p < 0.05). This study provides greater insight into how quality traits in beef are influenced by breed and gender and will support the industry to produce beef with consistent eating quality.
Collapse
Affiliation(s)
- Jamie Cafferky
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland.
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland.
| | - Ruth M Hamill
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland.
| | - Paul Allen
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland.
| | - John V O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, 4 Dublin, Ireland.
| | - Andrew Cromie
- Irish Cattle Breeding Federation, Shinagh House, Bandon, P72 X050 Co. Cork, Ireland.
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland.
| |
Collapse
|
48
|
Hassoun A, Sahar A, Lakhal L, Aït-Kaddour A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Influence of Different Production Systems on the Quality and Shelf Life of Poultry Meat: A Case Study in the German Sector. J FOOD QUALITY 2019. [DOI: 10.1155/2019/3718057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Production-specific factors, such as breeding, diet, and stress, are known to influence meat quality, but the effect of different husbandry systems on the development of quality parameters and shelf life has hardly been investigated. Thus, the aim of the study was the investigation of an alternative production system based on a slow-growing, corn-fed, and antibiotics-free chicken line compared with conventional poultry production. Additionally, the effect on meat quality, microbiology, and spoilage was analyzed. In total, 221 breast filets from a German poultry meat producer were investigated. Nutritional, biochemical, and cooking loss analyses were conducted on a subset of samples 24 h after storage. The rest of the samples were stored aerobically at 4°C, and the spoilage process was characterized by investigating pH, color, lipid oxidation, microbiology, and sensory attributes subsequently every two days during storage. The alternative production line showed a significantly healthier nutritional profile with a higher protein and lower fat content. Additionally, the amount of L-lactic acid and D-glucose was significantly higher than in the conventional production line. The color values differed between both production lines, with the corn-fed line displaying more yellowish filets. The lipid oxidation and microbial spoilage were not affected by the production line. The shelf life did not differ between the investigation groups and was deemed 7 days in both cases. Despite the highest severity of white striping being observed most in the conventional production line, there was no overall difference in the incidence among groups. The purchase decision was affected by the occurrence of white striping and showed a tendency for a higher acceptance for the alternative production line.
Collapse
|
50
|
“As long as it is not irradiated” – Influencing factors of US consumers’ acceptance of food irradiation. Food Qual Prefer 2019. [DOI: 10.1016/j.foodqual.2018.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|