1
|
Xu B, Luo X, Yang X, Zhang Y, Sebranek JG, Liang R. Comparative proteomic analyses to investigate premature browning in high‑oxygen modified atmosphere packaged beef patties. Food Chem 2024; 456:140022. [PMID: 38876067 DOI: 10.1016/j.foodchem.2024.140022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
This study compared the proteomics of beef patties under high‑oxygen modified atmosphere packaging (HiOx-MAP) and vacuum packaging (VP) during heating. The color and oxidation stability of fresh patties, and myoglobin denaturation of cooked patties were also measured. The results suggested that HiOx-MAP patties contained more oxymyoglobin in fresh meat and had higher myoglobin denaturation during heating than VP patties, resulting in premature browning (PMB) during cooking. Proteomic analysis found that the overabundance of proteasome subunit beta type-2 (PSMB2) and peroxiredoxin-2 (PRDX2) in HiOx-55 °C, which can remove the damaged proteins and inhibit oxidation respectively, are of benefit to meat color stability during storage, however, this was still insufficient to inhibit the occurrence of PMB during cooking. The high abundance of lamin B1 (LMNB1) in VP-55 °C can maintain the stability of meat color. This research provides greater understanding, based on proteomic perspectives, of the molecular mechanism of PMB.
Collapse
Affiliation(s)
- Baochen Xu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Joseph G Sebranek
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011-3150, USA.
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
2
|
Harr KM, Jewell N, Mafi GG, Pfeiffer MM, Ramanathan R. Nontargeted Metabolomics to Understand the Impact of Modified Atmospheric Packaging on Metabolite Profiles of Cooked Normal-pH and Atypical Dark-Cutting Beef. Metabolites 2024; 14:532. [PMID: 39452913 PMCID: PMC11509870 DOI: 10.3390/metabo14100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Limited knowledge is currently available on the effects of modified atmospheric packaging (MAP) on the metabolite profiles of cooked beef. The objective was to evaluate the impact of packaging on the cooked color and cooked metabolite profile of normal-pH (normal bright-red color) and atypical-dark-cutting beef (inherently slightly dark-colored) longissimus lumborum muscle. Methods: Normal-pH (pH 5.56) and atypical dark-cutting (pH 5.63) loins (n = 6) were procured from a commercial meat processor. Steaks were randomly assigned to one of three different packaging methods: vacuum packaging, carbon monoxide (CO-MAP), and high oxygen (HiOx-MAP). Following 5 d of retail display, steaks were cooked to 71 °C on a clamshell-style grill, and samples were collected for untargeted metabolites using gas-chromatography mass spectrometry. Results: Raw atypical dark-cutting steaks were less red (p < 0.05) than raw normal-pH steaks. However, there were no differences in internal cooked color between normal-pH and atypical dark-cutting steaks. Steaks packaged in HiOx-MAP steaks had a lower (p < 0.05) cooked redness than vacuum and CO-MAP steaks. A total of 129 metabolite features were identified in the study. Serine and tryptophan were over-abundant in cooked atypical dark-cutting beef compared to raw atypical samples. Citric acid levels were greater in HiOx-MAP packaged beef compared with VP both in normal and atypical dark-cutting beef after cooking, while no differentially abundant metabolites were shared between vacuum and CO-MAP steaks after cooking. Discussion: A slight increase in pH did not influence metabolite profiles in different packaging. However, there were packaging effects within normal and atypical dark-cutting beef. Conclusions: This study suggests that packaging conditions change metabolite profiles, which can influence cooked metabolites. Therefore, the metabolomics approach can be used to better understand cooked color defects such as premature browning.
Collapse
Affiliation(s)
| | | | | | | | - Ranjith Ramanathan
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (K.M.H.); (N.J.); (G.G.M.); (M.M.P.)
| |
Collapse
|
3
|
Mortazavi SMH, Kaur M, Farahnaky A, Torley PJ, Osborn AM. Microbial and Quality Attributes of Beef Steaks under High-CO 2 Packaging: Emitter Pads versus Gas Flushing. Foods 2024; 13:2913. [PMID: 39335842 PMCID: PMC11430822 DOI: 10.3390/foods13182913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Over 21 days of cold storage, the quality and microbial composition of beef steaks in response to different high-CO2 packaging conditions achieved by flushing gas mixtures or embedding gas emitters into the packages were studied. The results revealed that the high levels of CO2, achieved by either the gas flushing or the CO2 emitter pads, effectively controlled the number of aerobic counts. The headspace CO2 increased quickly in response to using the CO2 emitter pads, and the meat samples presented different pH levels and surface color (a* and b*) values compared to the samples packaged with the gas flushing technique. Excessive accumulation of gas in the packages that contained CO2 emitters resulted in package swelling and higher levels of drip loss. The longest overall quality and attractive red color of the meat samples were observed when the packages were initially flushed with the headspace gas mixture containing high levels of oxygen. Overall, using CO2 emitters for meat packaging can be suggested when a topfilm with proper permeability to O2 and CO2 gases is used to regulate the internal CO2/O2 and gas/product ratios.
Collapse
Affiliation(s)
| | - Mandeep Kaur
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne 3000, Australia
| | - Asgar Farahnaky
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne 3000, Australia
| | - Peter Joseph Torley
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne 3000, Australia
| | - Andrew Mark Osborn
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
4
|
Krell J, Poveda-Arteaga A, Weiss J, Witte F, Terjung N, Gibis M. Influence of different storage atmospheres in packaging on color stability of beef. J Food Sci 2024; 89:5774-5787. [PMID: 39126691 DOI: 10.1111/1750-3841.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
The influence of storage atmosphere on the color development and myoglobin (Mb) redox state of beef was investigated. Beef samples were packaged in 6 different atmospheres including different degrees of vacuum, levels of oxygen, nitrogen, and a mixture with 20% CO2 and stored at 2°C for 14 days. Over this time, color and reflection of the packaged samples were measured. The used method allows quick, easy, and non-invasive measurement of the packaged samples, without using time consuming chemical assays. The method could be implemented in beef production lines, with potential for automatization. The data was used to illustrate the L*a*b* values for insights regarding qualitative color changes. Quantitative color changes were analyzed by calculation of color difference ΔE2000. Additionally, the relative levels of the deoxymyoglobin (DMb), oxymyoglobin (OMb) and metmyoglobin (MMb) were calculated from reflection spectra. The most important findings are: there is a strong correlation (rsp = 0.80 to 0.99 with one exception at rsp = 0.69 (high vacuum), p ≤ 0.05) between a* values and relative OMb levels. Storage atmospheres containing high oxygen concentrations lead to an attractive meat color, but a decreased overall color and Mb stability (ΔE = 5.02 (synthetic air) and ΔE = 2.23 (high oxygen) after 14 days of storage). Vacuum packaged samples are most stable in regards of color and Mb stability (ΔE = 1.79 (high vacuum) and ΔE = 1.63 (low vacuum) after 14 days of storage), but lack in the vibrant red color desired for sale. The experiments showed that color measurement can be a fast, non-invasive marker for meat quality. PRACTICAL APPLICATION: In this research article, six different storage atmospheres are compared regarding their influence on color stability and color quality of beef during storage in packaging. The results suggest which atmospheres to use in various sales-related scenarios. The method described can easily be applied in the meat industry to quickly monitor changes during storage and wet-aging without damaging the meat or opening the meat packages.
Collapse
Affiliation(s)
- Johannes Krell
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | | | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Franziska Witte
- DIL, German Institute of Food Technology, Quakenbrück, Germany
| | - Nino Terjung
- DIL, German Institute of Food Technology, Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Yang J, Chen X, Duan X, Li K, Cheng H, Sun G, Luo X, Hopkins DL, Holman BWB, Zhang Y, Song E. Investigation of oxygen packaging to maintain beef color stability and microbiology safety after periods of long-term superchilled storage. Meat Sci 2024; 215:109548. [PMID: 38838568 DOI: 10.1016/j.meatsci.2024.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
This study aimed to develop an appropriate modified atmosphere packaging (MAP) system for displayed beef steaks following long-term superchilled (-1 °C) storage. After superchilled storage for 0, 2, 8, or 16 weeks, beef loins were fabricated into steaks and displayed with 20%, 50%, or 80% O2-MAP under chilled conditions. At each storage point, after display for 0, 3, 7, or 10 days, instrumental color, myoglobin redox forms percentage, lipid oxidation, total viable count (TVC), and total volatile basic nitrogen (TVB-N) were evaluated. Meat color stability decreased, with prolonged storage period and display time. When the storage period was within 8 weeks, under all the above MAP conditions, the display time for the beef steaks was up to 10 days. Considering 80% O2-MAP promoted lipid oxidation, 50% and 80% O2-MAP were not recommended for displaying steaks for more than 10 and 7 days respectively after 16 weeks of storage. However, 20%, 50%, or 80% O2-MAP could maintain 3 days of microbial shelf-life according to TVC and TVB-N results. Additionally, after long-term superchilled storage for 16 weeks, the various O2 concentrations had minimal impact on microbiota succession during the MAP display period. Furthermore, beef steaks packaged under various MAP systems exhibited similar microbial compositions, with the dominant bacteria alternating between Lactobacillus and Carnobacterium. This study provided practical guidance for improving beef color stability after long-term superchilled storage.
Collapse
Affiliation(s)
- Jun Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China
| | - Xue Chen
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, 252000, PR China
| | - Xinxin Duan
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ke Li
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong 250100, PR China
| | - Ge Sun
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China
| | - David L Hopkins
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Australian Capital Territory, Canberra 2903, Australia
| | - Benjamin W B Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, New South Wales 2650, Australia
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China.
| | - Enliang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong 250100, PR China.
| |
Collapse
|
6
|
Contreras-Lopez G, Garcia-Galicia IA, Carrillo-Lopez LM, Corral-Luna A, Buenabad-Carrasco L, Titulaer M, Villarreal-Balderrama JA, Alarcon-Rojo AD. Exploration of Microencapsulation of Arginine in Carnauba Wax ( Copernicia prunifera) and Its Dietary Effect on the Quality of Beef. Animals (Basel) 2024; 14:1857. [PMID: 38997969 PMCID: PMC11240376 DOI: 10.3390/ani14131857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The objective of this exploratory study was to assess if microencapsulated arginine influences the physicochemical quality of beef. The study included three genetic groups: Angus, Hereford, and Angus × Hereford crossbreed. Two encapsulation systems were used with carnauba wax, at ratios of 3:1 and 2:1, carnauba wax:core (arginine), respectively. A control treatment was also included with no arginine addition. Encapsulated arginine with a 3:1 ratio increased redness by 19.66 at 28 d aged beef compared to the control and 2:1 ratio with values of 18.55 and 16.77, respectively (p = 0.01). Encapsulated arginine at a 3:1 ratio showed the lowest meat shear force values with 24.32 N at 28 d of ageing (p < 0.001). The Angus breed also had a low value of 24.02 N (p < 0.001). Finally, the highest values of intramuscular fat were observed with the inclusion of arginine in a 3:1 ratio. The fat value reached 2.12% with a 3:1 ratio (p = 0.002), while in the Angus breed it was 1.59%. The addition of carnauba wax-encapsulated arginine can improve meat quality. It enhances red color, tenderness, and marbling in bovine meat.
Collapse
Affiliation(s)
- German Contreras-Lopez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - Ivan A. Garcia-Galicia
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
- C.E.I.E.G.T., Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, km. 5.5 Carr. Fed, Martínez de la Torre-Tlapacoyan, Tlapacoyan 93600, Mexico
| | - Luis Manuel Carrillo-Lopez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
- Consejo Nacional de Humanidades, Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico
| | - Agustin Corral-Luna
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - Lorenzo Buenabad-Carrasco
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - Mieke Titulaer
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - José A. Villarreal-Balderrama
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - Alma D. Alarcon-Rojo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| |
Collapse
|
7
|
Lian L, Gu F, Du M, Lin Y, Chang H, Wang J. The combination of high oxygen and nanocomposite packaging alleviated quality deterioration by promoting antioxidant capacity and phenylpropane metabolism in Volvariella volvacea. Food Chem 2024; 439:138092. [PMID: 38039611 DOI: 10.1016/j.foodchem.2023.138092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Volvariella volvacea is a highly perishable mushroom that severely affects its postharvest commercial value. This study aimed to investigate the impact of high oxygen (O2) levels combined with nanocomposite packaging on the shelf-life quality of V. volvacea. Results showed that treatment with high concentrations of O2 (80% and 100% O2) and nanocomposite packaging effectively delayed the quality deterioration of V. volvacea, resulting in better postharvest appearance, higher firmness, lower weight loss, malondialdehyde (MDA) content, and leakage of membrane electrolytes. Further analysis revealed the combination treatments ameliorated oxidative stress by inducing antioxidant enzymes and the glutathione-ascorbate (GSH-AsA) cycle at both enzymatic and transcriptional levels, thereby activating the antioxidant system. Additionally, the treatments enhanced activities of key enzymes in phenylpropane metabolism, leading to a reduction in the decrease of total phenolics and flavonoids. This work provides new insights into the development of postharvest technologies to prolong the storage life of V. volvacea.
Collapse
Affiliation(s)
- Lingdan Lian
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fengju Gu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Minru Du
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yimei Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Chang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jie Wang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
8
|
Liu R, Guan W, Lv W, Kang Z, Wang Q, Jin D, Zhao X, Ge Q, Wu M, Yu H. Oxidative Modification, Structural Conformation, and Gel Properties of Pork Paste Protein Mediated by Oxygen Concentration in Modified Atmosphere Packaging. Foods 2024; 13:391. [PMID: 38338526 PMCID: PMC10855563 DOI: 10.3390/foods13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The objective of this study was to investigate the effect of pork oxidation through modified atmosphere packaging (MAP) on gel characteristics of myofibrillar proteins (MP) during the heat-induced gelation process. The pork longissimus thoracis (LT) was treated by MAP at varying oxygen concentrations (0, 20, 40, 60, and 80% O2) with a 5-day storage at 4 °C for the detection of MP oxidation and gel properties. The findings showed the rise of O2 concentration resulted in a significant increase of carbonyl content, disulfide bond, and particle size, and a decrease of sulfhydryl content and MP solubility (p < 0.05). The gel textural properties and water retention ability were significantly improved in MAP treatments of 0-60% O2 (p < 0.05), but deteriorated at 80% O2 level. As the concentration of O2 increased, there was a marked decrease in the α-helix content within the gel, accompanied by a simultaneous increase in β-sheet content (p < 0.05). Additionally, a judicious oxidation treatment (60% O2 in MAP) proved beneficial for crafting dense and uniform gel networks. Our data suggest that the oxidation treatment of pork mediated by O2 concentration in MAP is capable of reinforcing protein hydrophobic interaction and disulfide bond formation, thus contributing to the construction of superior gel structures and properties.
Collapse
Affiliation(s)
- Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Wen Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Wei Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Zhuangli Kang
- School of Tourism and Cuisine, Engineering Technology Research Center of Yangzhou Prepared Cuisine, Yangzhou University, Yangzhou 225127, China;
| | - Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Duxin Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| |
Collapse
|
9
|
Krauskopf MM, de Araújo CDL, Dos Santos-Donado PR, Dargelio MDB, Manzi JAS, Venturini AC, de Carvalho Balieiro JC, Delgado EF, Contreras Castillo CJ. The effect of succinate on color stability of Bos indicus bull meat: pH-dependent effects during the 14-day aging period. Food Res Int 2024; 175:113688. [PMID: 38129031 DOI: 10.1016/j.foodres.2023.113688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Bos taurus indicus bulls are very susceptible to pre-slaughter stress, which directly impacts the decline in muscle pH, leading to darker meat. The aim was to investigate the effect of succinate and atmosphere on the color stability of Nellore (Bos taurus indicus) Longissimus lumborum steaks classified by ultimate pH (pHu): normal pHu (5.40 ≤ pHu ≤ 5.79) and high pHu (pHu ≥ 5.80). The experimental treatment systems were: (i) vacuum packaging without succinate injection, (ii) HiOx-MAP (80 % O2 + 20 % CO2), and (iii) HiOx-MAP (80 % O2 + 20 % CO2) enhanced with sodium succinate injection (pH 5.4). Steaks from all treatment systems were stored at 4 °C for 14 days and tested for instrumental color, myoglobin content, oxygen consumption (OC), metmyoglobin-reducing activity (MRA), lipid oxidation, and microbiological analysis. High and normal pHu vacuum-packaged steaks exhibited greater color stability due to higher MRA. High and normal pHu steaks packaged with HiOx-MAP or HiOx-MAP enhanced with succinate showed improved color due to lower deoxymyoglobin content (%DMb) and OC up to the eighth day of storage. Still, succinate injection promoted increased (P < 0.05) lipid oxidation in normal pHu steaks and reduced MRA after 14 days. These findings emphasize the intricate interplay between pHu and packaging systems on Bos taurus indicus meat quality. Further research in this area could contribute to a better understanding of meat color abnormalities and provide insights into potential meat preservation and enhancement strategies.
Collapse
Affiliation(s)
- Monique Marcondes Krauskopf
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Chimenes Darlan Leal de Araújo
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Priscila R Dos Santos-Donado
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Mariana Damiames Baccarin Dargelio
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - João Antônio Santos Manzi
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Anna Cecilia Venturini
- Department of Pharmaceutical Sciences, Federal University of Sao Paulo, Diadema, SP 099013-030, Brazil
| | | | - Eduardo Francisquine Delgado
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Carmen Josefina Contreras Castillo
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
10
|
Xu B, Zhang Q, Zhang Y, Yang X, Mao Y, Luo X, Hopkins DL, Niu L, Liang R. Sous vide cooking improved the physicochemical parameters of hot-boned bovine semimembranosus muscles. Meat Sci 2023; 206:109326. [PMID: 37774478 DOI: 10.1016/j.meatsci.2023.109326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
The physicochemical parameters of hot-boned bovine semimembranosus muscles after sous vide cooking were investigated. Hot-boned or wet-aged steaks were collected, and cooked by different cooking methods, including sous vide (57 °C, 11 h, SV), grilling (at 200 °C to the central temperature of 72 °C, GR) or boiling (100 °C, 2 h, BO). The meat color, tenderness, water-holding capacity, degree of oxidation, myoglobin denaturation and sensory quality traits were determined, as well as the changes in the microstructure. Compared to other cooking methods, SV reduced the degree of oxidation and muscle shortening, and significantly improved the water holding capacity (WHC), tenderness, connective tissue content and overall acceptability for both hot-boned and wet-aged steaks. The oxidation and muscle shortening were reduced in hot-boned SV steaks (P < 0.05), and the water-holding capacity and sensory scores for juiciness, connective tissue content and overall acceptability were increased (P < 0.05) compared to the wet-aged steaks. The combination of hot-boning and SV cooking resulted in an acceptable tenderness, better overall sensory acceptability and higher WHC than other combinations of muscle states and cooking methods. Therefore, it is a good choice to cook hot-boned semimembranosus muscles using SV to improve the eating quality, which can eliminate the need for aging, benefiting the beef industry.
Collapse
Affiliation(s)
- Baochen Xu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Qingwei Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | | | - Lebao Niu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
11
|
Cui Y, Qi J, Li J, Zhang Y, Yang X, Xin L, Niu L, Xu B, Qian Z, Zhu L, Liang R. Effects of dietary resveratrol supplementation in cattle on the anti-oxidative capacity and meat quality of beef steaks under high‑oxygen packaging. Meat Sci 2023; 204:109238. [PMID: 37301101 DOI: 10.1016/j.meatsci.2023.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The effects of dietary resveratrol supplementation on beef quality and antioxidant capacity under high‑oxygen packaging were studied. Twelve cattle were selected and fed a total mixed ration (Control, CON) or supplemented with resveratrol (5 g/cattle/day, RES) for 120 days. The antioxidant capacity and meat quality of beef under high‑oxygen modified atmosphere packaging (HiOx-MAP, 80%O2/20%CO2) and overwrap packaging (OW) were evaluated during storage. Compared to the CON, RES enhanced antioxidant enzyme activity in serum and muscle, and increased the expression of Nrf2 and its downstream target genes (P < 0.05), which decreased the lipid and protein oxidation of steaks during storage (P < 0.05). The RES resulted in a* values increasing throughout storage (P < 0.05) and lower MetMb% than CON steaks (P < 0.05) in HiOx-MAP. The water-holding capacity (WHC) was improved and Warner-Bratzler shear force (WBSF) was reduced (P < 0.05) in RES steaks during storage. Thus dietary resveratrol increased beef antioxidant capacity under HiOx-MAP and improved meat quality, and can be used as a potential method to elevate beef quality and reduce the oxidation under HiOx-MAP.
Collapse
Affiliation(s)
- Ying Cui
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Jiajing Qi
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Luo Xin
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lebao Niu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Baochen Xu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Zhanyu Qian
- Shangdu Hengchang Co., Ltd., Caoxian, Shandong 274400, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
12
|
Ruedt C, Gibis M, Weiss J. Meat color and iridescence: Origin, analysis, and approaches to modulation. Compr Rev Food Sci Food Saf 2023; 22:3366-3394. [PMID: 37306532 DOI: 10.1111/1541-4337.13191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Meat color is an important aspect for the meat industry since it strongly determines the consumers' perception of product quality and thereby significantly influences the purchase decision. Emergence of new vegan meat analogs has renewed interest in the fundamental aspects of meat color in order to replicate it. The appearance of meat is based on a complex interplay between the pigment-based meat color from myoglobin and its chemical forms and light scattering from the muscle's microstructure. While myoglobin biochemistry and pigment-based meat color have been extensively studied, research on the physicochemical contribution of light scattering to meat color and the special case of structural colors causing meat iridescence has received only little attention. Former review articles focused mostly on the biochemical or physical mechanisms rather than the interplay between them, in particular the role that structural colors play. While from an economic point of view, meat iridescence might be considered negligible, an enhanced understanding of the underlying mechanisms and the interactions of light with meat microstructures can improve our overall understanding of meat color. Therefore, this review discusses both biochemical and physicochemical aspects of meat color including the origin of structural colors, highlights new color measurement methodologies suitable to investigate color phenomena such as meat iridescence, and finally presents approaches to modulate meat color in terms of base composition, additives, and processing.
Collapse
Affiliation(s)
- Chiara Ruedt
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
High oxygen-modified packaging (HiOx-MAP) mediates HIF-1α regulation of tenderness changes during postmortem aging of yak meat. Food Chem X 2023; 17:100573. [PMID: 36845525 PMCID: PMC9945635 DOI: 10.1016/j.fochx.2023.100573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
In the present study, we studied the effect of high oxygen-modified packaging (HiOx-MAP) on yak meat tenderness and the underlying mechanism. HiOx-MAP significantly increased the myofibril fragmentation index (MFI) of yak meat. In addition, western blotting showed that the expression of hypoxia-inducible factor (HIF-1α) and ryanodine receptors (RyR) in the HiOx-MAP group was reduced. HiOx-MAP increased the activity of sarcoplasmic reticulum calcium-ATPase (SERCA). The energy disperse spectroscopy (EDS) mapping showed gradually reduced calcium distribution in the treated endoplasmic reticulum. Furthermore, HiOx-MAP treatment increased the caspase-3 activity and the apoptosis rate. The activity of calmodulin protein (CaMKKβ) and AMP-activated protein kinase (AMPK) was down-regulated leading to apoptosis. These results indicated that HiOx-MAP promoted apoptosis during postmortem aging to improve the tenderization of meat.
Collapse
|
14
|
CHEN X, YANG B, LI Y, LUO R, ZHANG M, ZHANG Q, WANG J, LI R, HU L. Study on meat color stability of Qinchuan cattle during post-slaughter storage. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Influence of low-energy electron beam irradiation on the quality and shelf-life of vacuum-packaged pork stored under chilled and superchilled conditions. Meat Sci 2023; 195:109019. [DOI: 10.1016/j.meatsci.2022.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
16
|
Yang X, Xu B, Zhang X, Luo X, Zhang Y, Mao Y, Liang R. Shelf-life extension of chilled and superchilled dark-cutting beef held under combined anoxic master packaging and high-oxygen packaging both enriched with carbon dioxide. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wang Z, Liu X, Ojangba T, Zhang L, Yu Q, Han L. Storage and Packaging Effects on the Protein Oxidative Stability, Functional and Digestion Characteristics of Yak Rumen Smooth Muscle. Foods 2022; 11:foods11142099. [PMID: 35885342 PMCID: PMC9319803 DOI: 10.3390/foods11142099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to investigate the effects on protein oxidative stability, functional and digestion characteristics of yak rumen smooth muscle with overwrap packaging using oxygen-permeable film (OWP) and vacuum packaging bag (VP) during storage (0, 7, 14, 28, 42, 56, 84, 168 and 364 days) at −18 °C. The results show that yak rumen smooth muscle was oxidized with frozen storage through the formation of protein carbonyls and disulfide bonds, the loss of total sulfhydryl. The emulsifying activity of yak rumen smooth muscle protein (SMP) under VP began to perform a higher level than that under OWP after 14 days, and the foaming capacity under VP showed the highest level on the 28th day of 111.23%. The turbidity under VP reached the minimum 0.356 on the 28th day as well, followed by significantly increasing on the 56th day compared with OWP. The digestibility of yak rumen SMP under both OWP and VP reached the maximum on the 28th day of frozen storage. Moreover, yak rumen under VP at 28–56 days of frozen storage had good functional properties and high digestibility of SMP, which showed better edible value.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
| | - Xiaobo Liu
- Gansu Research Institute of Light Industry Co., Ltd., Lanzhou 730070, China;
| | - Theodora Ojangba
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
- Correspondence: ; Tel.: +86-937-7631-201
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (T.O.); (Q.Y.); (L.H.)
| |
Collapse
|