1
|
Veličković1† Z, Pavlov Dolijanović S, Stojanović N, Janjić S, Kovačević L, Soldatović I, Radunović G. The short-term effect of glucosamine-sulfate, nonanimal chondroitin-sulfate, and S-adenosylmethionine combination on ultrasonography findings, inflammation, pain, and functionality in patients with knee osteoarthritis: A pilot, double-blind, randomized, placebo-controlled clinical trial. Arch Rheumatol 2023; 38:521-541. [PMID: 38125054 PMCID: PMC10728741 DOI: 10.46497/archrheumatol.2023.9994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives This study aimed to investigate the efficacy of glucosamine-sulfate (GS), nonanimal chondroitin-sulfate (naCS), and S-adenosylmethionine (SAMe) combination on ultrasound findings, inflammation, pain, and functionality in knee osteoarthritis. Patients and methods In the prospective, randomized, double-blind, placebo-controlled pilot study conducted between August 2019 and November 2019, 120 participants (28 males, 92 females; mean age: 66.4±7.9 years; range, 42.4 to 74.5 years) were randomized at a 1:1:1 ratio to the placebo group, the first experimental group (a combination of GS, naCS, and SAMe was administered to the experimental groups. The first experimental group received 375 mg of GS, 300 mg of naCS, and 100 mg of SAMe, whereas the second experimental group received 750 mg of GS, 600 mg of naCS, and 200 mg of SAMe). Laboratory (erythrocyte sedimentation rate, C-reactive protein, tumor necrosis factor alpha, interleukin [IL]-1β, IL-6, IL-17), clinical (Visual Analog Scale [VAS], short form health survey [SF-36], the Western Ontario and McMaster Universities Arthritis Index [WOMAC], and the Tegner Lysholm Knee Scoring Scale [TLKS]), and musculoskeletal ultrasound (MSUS) assessments were performed at baseline and after three and six months. Results A minor increase was observed in the second experimental group after six months using ultrasonography to evaluate articular cartilage thickness (p<0.05). The investigational product's superiority in reducing osteoarthritis ultrasonographic findings was not proven. A moderately negative association was found between cartilage thickness and VAS scores at baseline (ρ=-0.36, p<0.01), while the presence of massive osteophytes on MSUS showed a low to moderate association with all clinical outcomes. There was no difference in the delta changes between groups for the VAS, TLKS, WOMAC, and SF-36. The only serum inflammatory marker outside the reference range was IL-1β, but no significant changes were observed after six months. Conclusion According to the results of our investigation, treatment for knee osteoarthritis should be evaluated using more objective outcomes. The most important conclusion of our study is that IP may result in a slight increase in articular cartilage thickness, which was associated with a decrease in pain intensity at baseline. Clarification of the potential influence of this combination on radiographic progression and laboratory markers of inflammation requires further exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivan Soldatović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Medical Statistics and Informatics, Belgrade, Serbia
| | - Goran Radunović
- Institute of Rheumatology, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Lin S, Lai C, Wang J, Lin Y, Tu Y, Yang Y, Zhang R. Efficacy of ultrasound-guided acupotomy for knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e32663. [PMID: 36637945 PMCID: PMC9839278 DOI: 10.1097/md.0000000000032663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND This systematic review aimed to evaluate the effectiveness and safety of ultrasound-guided acupotomy (UGAT) therapy in the treatment of patients with knee osteoarthritis (KOA). METHODS We conducted online researches in the databases including PubMed, the Cochrane Library, EMBASE, China national knowledge infrastructure, China biomedical literature database, and Wan Fang data. All data were collected until January 1, 2022. Relevant randomized controlled trials on the effectiveness of UGAT for the treatment of KOA were included. Meta-analyses were carried out by RevMan 5.3 software. Evidence quality was evaluated by the grading of recommendations, assessment development, and evaluation. RESULTS Eight studies including 543 participants were analyzed in this study. The pooled analysis indicated that UGAT was significantly more efficient than the control group in decreasing the visual analogue scale score (mean difference = -0.81, 95% confidence interval (CI) = [-1.15, -0.47], P < .00001, 8 studies), improving knee function on the Lysholm knee score (mean difference = 8.26, 95% CI = [1.56, 14.97], P = .02, 2 studies), and increasing clinical effective rate (relative risk = 1.14, 95% CI = [1.06, 1.23], P = .0005, 6 studies). For adverse events, UGAT was also associated with lower incidence of adverse event (odds ratio = 0.27, 95% CI = [0.12, 0.63], P = .002, 4 studies) compared to traditional acupotomy. CONCLUSION Current evidence suggested that UGAT therapy was effective and safe in the clinical treatments of KOA, thus could be suggested in the clinical managements of KOA. However, considering the unsatisfactory quality of the available trials, more large-scale, and better quality randomized controlled trials were recommend in future.
Collapse
Affiliation(s)
- Sixiong Lin
- Quanzhou Osteopathic Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Quanzhou, Fujian Province, China
| | - Chuanshi Lai
- Quanzhou Osteopathic Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Quanzhou, Fujian Province, China
| | - Jinxin Wang
- Quanzhou Osteopathic Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Quanzhou, Fujian Province, China
| | - Yating Lin
- Quanzhou Osteopathic Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Quanzhou, Fujian Province, China
| | - Yinyong Tu
- Quanzhou Osteopathic Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Quanzhou, Fujian Province, China
| | - Yuanfang Yang
- Quanzhou Osteopathic Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Quanzhou, Fujian Province, China
| | - Renpan Zhang
- Quanzhou Osteopathic Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Quanzhou, Fujian Province, China
- * Correspondence: Renpan Zhang, Department of Pain, Quanzhou Osteopathic Hospital Affiliated to Fujian University of Traditional Chinese Medicine, No. 61, South Section of Citong West Road, Fengze District, Quanzhou, Fujian Province 362000, China (e-mail: )
| |
Collapse
|
3
|
Craciunescu O, Icriverzi M, Florian PE, Roseanu A, Trif M. Mechanisms and Pharmaceutical Action of Lipid Nanoformulation of Natural Bioactive Compounds as Efficient Delivery Systems in the Therapy of Osteoarthritis. Pharmaceutics 2021; 13:1108. [PMID: 34452068 PMCID: PMC8399940 DOI: 10.3390/pharmaceutics13081108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.
Collapse
Affiliation(s)
- Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Madalina Icriverzi
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Paula Ecaterina Florian
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Anca Roseanu
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Mihaela Trif
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| |
Collapse
|
4
|
Ma Y, Yang H, Zong X, Wu J, Ji X, Liu W, Yuan P, Chen X, Yang C, Li X, Chen Y, Xue W, Dai J. Artificial M2 macrophages for disease-modifying osteoarthritis therapeutics. Biomaterials 2021; 274:120865. [PMID: 33991950 DOI: 10.1016/j.biomaterials.2021.120865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is one of the most common joint diseases worldwide and the focus is shifting to disease prevention and the pharmaceutical and surgical treatment of early OA. However, at present few have proven ability to block or delay the progression of OA. Nevertheless, M2 macrophages present an anti-inflammatory function and promote cartilage repair, thereby alleviating OA in mice. However, it is a significant challenge to regulate the helpful secretion of M2 macrophages on demand toward disease-modifying osteoarthritis therapeutics. Here, artificial M2 macrophage (AM2M) with yolk-shell structure was proposed and fabricated to enhance the therapeutic efficacy of M2 macrophages in the treatment of OA. AM2M was composed of macrophage membrane as "shell" and inflammation-responsive nanogel as "yolk". The nanogel was prepared via physical interaction of gelatin and chondroitin sulfate (ChS) through ionic bond and hydrogen bond, achieving burst release to down-regulate inflammation during acute flares and sustainable release to repair cartilage during low inflammatory activity. Furthermore, AM2M exhibited the targeting and long-term residence in the inflamed area and blocked the immune stimulation of macrophages by ChS. Therefore, our fabrication provided a new insight that artificial M2 macrophages are expected to break a vicious and self-perpetuating cycle of OA.
Collapse
Affiliation(s)
- Yandong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Haiyuan Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Jinpei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Wen Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Pengfei Yuan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Xinjie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Caiqi Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Xiaodi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China
| | - Yuanfeng Chen
- Department of Orthopedics and Research Department of Medical Science Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou, PR China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China; MOE Key Laboratory of Tumor Molecular Biology Jinan University Guangzhou, 510632, China.
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering Jinan University Guangzhou, 510632, China.
| |
Collapse
|
5
|
Li C, Wang K, Li T, Zhou X, Ma Z, Deng C, He C, Wang B, Wang J. Patient-specific Scaffolds with a Biomimetic Gradient Environment for Articular Cartilage–Subchondral Bone Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:4820-4831. [DOI: 10.1021/acsabm.0c00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cuidi Li
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tao Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojun Zhou
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201600, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changxu Deng
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuanglong He
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201600, China
| | - Ben Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Acupuncture Therapy plus Hyaluronic Acid Injection for Knee Osteoarthritis: A Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4034105. [PMID: 32015753 PMCID: PMC6982364 DOI: 10.1155/2020/4034105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022]
Abstract
Objective This meta-analysis aimed to investigate the effectiveness of acupuncture therapy plus hyaluronic acid injection versus hyaluronic acid injection alone for patients with knee osteoarthritis. Methods Relevant randomized controlled trials that compared the combined effect of acupuncture therapy and hyaluronic acid injection with hyaluronic acid injection alone for knee osteoarthritis patients were included. 10 studies were included in this meta-analysis, and the relative risk (RR) and weight mean difference (MD) with 95% CI for the Lysholm knee score (LKSS), visual analogue scale (VAS), and effective rate (ER) were evaluated by using RevMan 5.3 software. Besides, the bias assessment of the included studies was evaluated using the Cochrane risk of bias tool, and the GRADE (Grading of Recommendations, Assessment Development, and Evaluation) system was applied to assess the overall quality of the evidence. Results A total of 10 studies involving 998 participants were included in this study. Compared to hyaluronic acid injection alone, the combined therapy significantly reduced pain on the visual analogue scale (VAS) and improved the ER and knee function on the Lysholm knee score (LKSS). Of these, the pooled LKSS (MD = 8.09, 95% CI = [7.02, 9.16], p < 0.00001, 7 studies) and ER (RR = 1.23, 95% CI 1.15 to 1.31, p < 0.00001, 8 studies) suggested that combination therapy yielded a significantly higher ER and improved the LKSS scores to a greater degree than hyaluronic acid injection alone in patients with KOA. The VAS (MD = −1.39, 95% CI = [−1.99, −0.79], p < 0.00001, 7 studies) showed that the combined therapy significantly reduced pain than hyaluronic acid injection alone. The quality of evidence for the main outcomes was from very low to low according to the GRADE system. Conclusion Current evidence suggests that acupuncture therapy combined with hyaluronic acid injection is more effective in alleviating pain, improving the ER and knee function compared with hyaluronic acid injection alone. However, considering the low quality, small size, and high risk of the studies identified in this meta-analysis, more higher methodological quality, rigorously designed randomized controlled trials with large sample sizes are needed to confirm the results.
Collapse
|
7
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
8
|
Pal D, Saha S. Chondroitin: a natural biomarker with immense biomedical applications. RSC Adv 2019; 9:28061-28077. [PMID: 35530463 PMCID: PMC9071010 DOI: 10.1039/c9ra05546k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022] Open
Abstract
Naturally extracted glycosaminoglycan chondroitin sulphate is the reactive product of N-acetylgalactosamine and d-glucuronic acid. Chondroitin sulfate (CS) extracted from Scophthalmus maximus, H. scabra, E. fraudatrix, M. magnum, and H. mexicana has shown remarkable anticoagulant, articular cartilage repair, corneal lesion healing, antidiabetic, and antiproliferative effects. Also, platinum and strontium nanoparticles of chondroitin sulfate are effective in osteoarthritis and exert anti-HSV2 and anti-angiogenic properties. A combination of chondroitin sulfate and RNA lipolexes demonstrates gene silencing effects in liver fibrosis. Chondroitin sulfate has also been used as a carrier for loxoprofen hydrogel preparation. Oligosaccharides of chondroitin sulfate showed effective inhibition of bovine testicular hyaluronidase enzyme as an antibacterial agent during pregnancy. Monoclonal antibody-recognized chondroitin sulfate A was effectively used to treat ameloblastoma. Selenium-chondroitin sulfate nanoparticles demonstrated positive effects in therapy of Kashin-Beck disease (KBD) and osteoarthritis.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur-495009 C.G. India +91-7389263761
| | - Supriyo Saha
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Dehradun-248161 Uttarakhand India
| |
Collapse
|
9
|
Li C, Wang K, Zhou X, Li T, Xu Y, Qiang L, Peng M, Xu Y, Xie L, He C, Wang B, Wang J. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Biomed Mater 2019; 14:025006. [DOI: 10.1088/1748-605x/aaf8ed] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|