1
|
Tu KY, Huang YS, Lau J, Lee HH. Adaptive Tomotherapy for locally advanced unresectable pancreatic neuroendocrine tumor: Case report and literature review. Front Oncol 2022; 12:1045752. [PMID: 36452486 PMCID: PMC9702327 DOI: 10.3389/fonc.2022.1045752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pancreatic neuroendocrine tumor (NET) is rare, and the majority presents late in their clinical course. Here, we present a huge locally advanced pancreatic NET having Hi-Art helical Tomotherapy that resulted in a 68% reduction in target volume during adaptive image-guided radiotherapy (IGRT). CASE SUMMARY A 63-year-old man without any history of systemic disease developed voiding difficulty for several months. Associated symptoms included poor appetite, nausea, distended abdomen, and body weight loss. Further magnetic resonance imaging showed a large multilobulated tumor in the left upper abdomen. Tumor biopsy revealed well-differentiated, grade 2, neuroendocrine tumor. Complete resection was unattainable. Therefore, Lanreotide was prescribed initially. However, tumor progression up to the greatest diameter of 18 cm was noted on computed tomography 5 months later. Thus, he stopped Lanreotide and commenced on concurrent chemoradiotherapy (CCRT). With a total dose of 70 Gy in 35 fractions, we generated two adaptive treatment plans during the whole course. Laparoscopic subtotal pancreatectomy with spleen preservation was performed after neoadjuvant CCRT. It has been more than 3 years after IGRT, and he remains cancer free and reports no side effects during regular follow-ups. CONCLUSION Tomotherapy caused tumor size reduction and hence facilitated surgical possibility for this originally unresectable pancreatic NET. Neoadjuvant IGRT incorporated with adaptive treatment planning enhanced delivery accuracy. In this case of pancreatic NET resistant to Lanreotide, inter-fractional tumor regression from 1910 to 605 cc (68%) was documented.
Collapse
Affiliation(s)
- Kuan-Yi Tu
- School of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Shuo Huang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Juntiong Lau
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Hua Lee
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Park JW, Yea JW, Park J, Oh SA. Setup uncertainties and appropriate setup margins in the head-tilted supine position of whole-brain radiotherapy (WBRT). PLoS One 2022; 17:e0271077. [PMID: 35925916 PMCID: PMC9352041 DOI: 10.1371/journal.pone.0271077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Various applications of head-tilting techniques in whole-brain radiotherapy (WBRT) have been introduced. However, a study on the setup uncertainties and margins in head-tilting techniques has not been reported. This study evaluated the setup uncertainties and determined the appropriate planning target volume (PTV) margins for patients treated in the head-tilted supine (ht-SP) and conventional supine position (c-SP) in WBRT. Thirty patients who received WBRT at our institution between October 2020 and May 2021 in the c-SP and ht-SP were investigated. The DUON head mask (60124, Orfit Industries, Wijnegem, Belgium) was used in the c-SP, and a thermoplastic U-Frame Mask (R420U, Klarity Medical & Equipment Co. Ltd., Lan Yu, China) was used in the ht-SP. Daily setup verification using planning computed tomography (CT) and cone-beam CT was corrected for translational (lateral, longitudinal, and vertical) and rotational (yaw) errors. In the c-SP, the means of systematic errors were -0.80, 0.79, and 0.37 mm and random errors were 0.27, 0.54, and 0.39 mm in the lateral, longitudinal, and vertical translational dimensions, respectively. Whereas, for the ht-SP, the means of systematic errors were -0.07, 0.73, and -0.63 mm, and random errors were 0.75, 1.39, 1.02 mm in the lateral, longitudinal, and vertical translational dimensions, respectively. The PTV margins were calculated using Stroom et al.’s [2Σ+0.7σ] and van Herk et al.’s recipe [2.5Σ+0.7σ]. Appropriate PTV margins with van Herk et al.’s recipe in WBRT were <2 mm and 1.5° in the c-SP and <3 mm and 2° in the ht-SP in the translational and rotational directions, respectively. Although the head tilt in the supine position requires more margin, it can be applied as a sufficiently stable and effective position in radiotherapy.
Collapse
Affiliation(s)
- Jae Won Park
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Ji Woon Yea
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jaehyeon Park
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Se An Oh
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
- * E-mail:
| |
Collapse
|
3
|
Residual positioning errors and uncertainties for pediatric craniospinal irradiation and the impact of image guidance. Radiat Oncol 2020; 15:149. [PMID: 32522233 PMCID: PMC7285717 DOI: 10.1186/s13014-020-01588-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Optimal alignment is of utmost importance when treating pediatric patients with craniospinal irradiation (CSI), especially with regards to field junctions and multiple isocenters and techniques applying high dose gradients. Here, we investigated the setup errors and uncertainties for pediatric CSI using different setup verification protocols. METHODS A total of 38 pediatric patients treated with CSI were identified for whom treatment records and setup images were available. The setup images were registered retrospectively to the reference image using an automated tool and matching on bony anatomy, subsequently, the impact of different correction protocols was simulated. RESULTS For an action-level (AL)-protocol and a non-action level (NAL)-protocol, the translational residual setup error can be as large as 24 mm for an individual patient during a single fraction, and the rotational error as large as 6.1°. With daily IGRT, the maximum setup errors were reduced to 1 mm translational and 5.4° rotational versus 1 mm translational and 2.4° rotational for 3- and 6- degrees of freedom (DoF) couch shifts, respectively. With a daily 6-DoF IGRT protocol for a wide field junction irradiation technique, the residual positioning uncertainty was below 1 mm and 1° for translational and rotational directions, respectively. The largest rotational uncertainty was found for the patients' roll even though this was the least common type of rotational error, while the largest translational uncertainty was found in the patients' anterior-posterior-axis. CONCLUSIONS These results allow for informed margin calculation and robust optimization of treatments. Daily IGRT is the superior choice for setup of pediatric patients treated with CSI, although centers that do not have this option could use the results presented here to improve their margins and uncertainty estimates for a more accurate treatment alignment.
Collapse
|
4
|
Famulari G, Duclos M, Enger SA. A novel
169
Yb‐based dynamic‐shield intensity modulated brachytherapy delivery system for prostate cancer. Med Phys 2019; 47:859-868. [DOI: 10.1002/mp.13959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gabriel Famulari
- Medical Physics Unit McGill University Montréal Québec H4A 3J1Canada
| | - Marie Duclos
- Department of Oncology McGill University Montréal Québec H4A 3J1Canada
| | - Shirin A. Enger
- Medical Physics Unit McGill University Montréal Québec H4A 3J1Canada
- Department of Oncology McGill University Montréal Québec H4A 3J1Canada
- Research Institute of the McGill University Health Centre Montréal Québec H3H 2R9Canada
| |
Collapse
|
5
|
Sarkar B, Munshi A, Ganesh T, Manikandan A, Krishnankutty S, Chitral L, Pradhan A, Kalyan Mohanti B. Technical Note: Rotational positional error corrected intrafraction set-up margins in stereotactic radiotherapy: A spatial assessment for coplanar and noncoplanar geometry. Med Phys 2019; 46:4749-4754. [PMID: 31495931 DOI: 10.1002/mp.13810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study is to calculate setup margin based on six-dimensional (6D) corrected residual positional errors from kV cone beam computed tomography (CBCT) and from intrafraction projection kV imaging in coplanar and in noncoplanar couch positions in stereotactic radiotherapy. METHODS Six dimensional positional corrections were carried out before patient treatments, using a robotic couch and CBCT matching. A CBCT and stereoscopic ExacTrac image were acquired post-table position correction. Further, a series of intrafraction ExacTrac images were obtained for the variable couch position. Translational and rotational errors were identified as lateral (X), longitudinal (Y), vertical (Z); roll (Ɵ°), pitch (Φ°) and yaw (Ψ°). A total of 699 intrafraction image sets (361 coplanar and 338 noncoplanar) for 51 SRS/SRT patients were analysed. Rotational errors were corrected in terms of translational coordinates. Residual set-up margins were calculated from CBCT shifts. ExacTrac shifts give residual + intrafraction setup margins as a function of coplanar and noncoplanar couch positions. RESULTS The average residual positional error obtained from CBCT in X, Y, Z, Ɵ, Φ, Ψ were 0.1 ± 0.4 mm, 0.0 ± 0.6 mm, 0.0 ± 0.5 mm, 0.2 ± 0.8°, 0.1 ± 0.6° and -0.1 ± 0.7° respectively. For ExacTrac, the shits were -0.5 ± 0.9 mm, -0.0 ± 1mm, -0.6 ± 1.0mm, 0.4 ± 0.9°, -0.2 ± 0.6°, and -0.0 ± 0.8°. CBCT calculated linear setup margins in X, Y, Z direction were 0.5, 1.2, and 1 mm respectively. ExacTrac yielded coplanar and noncoplanar linear setup margins were 1.2, 1.3, 1.5, 1.4, 1.5, and 2.1 mm respectively. CONCLUSION CBCT-based gross residual set-up margin is equal to 1 mm. ExacTrac calculated residual plus intrafraction setup margin falls within a 2 mm range; attributed to intrafraction patient movement, table position inaccuracies, and poor image fusion in noncoplanar geometry. There could be variations in the required additional margin between centers and between machines, which require further studies.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Anusheel Munshi
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Tharmarnadar Ganesh
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Arjunan Manikandan
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | - Saneg Krishnankutty
- Department of Radiation Oncology, Fortis Memorial Research Institute, Gurgaon, 122002, Haryana, India
| | - Latika Chitral
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| | - Anirudh Pradhan
- Department of Mathematics, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Bidhu Kalyan Mohanti
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, 110070, India
| |
Collapse
|
6
|
Zhu J, Bai T, Gu J, Sun Z, Wei Y, Li B, Yin Y. Effects of megavoltage computed tomographic scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy. Radiat Oncol 2018; 13:80. [PMID: 29699582 PMCID: PMC5921977 DOI: 10.1186/s13014-018-0989-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/02/2018] [Indexed: 11/26/2022] Open
Abstract
Background To evaluate the effect of pretreatment megavoltage computed tomographic (MVCT) scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy. Methods Both anthropomorphic heterogeneous chest and pelvic phantoms were planned with virtual targets by TomoTherapy Physicist Station and were scanned with TomoTherapy megavoltage image-guided radiotherapy (IGRT) system consisted of six groups of options: three different acquisition pitches (APs) of ‘fine’, ‘normal’ and ‘coarse’ were implemented by multiplying 2 different corresponding reconstruction intervals (RIs). In order to mimic patient setup variations, each phantom was shifted 5 mm away manually in three orthogonal directions respectively. The effect of MVCT scan options was analyzed in image quality (CT number and noise), adaptive dose calculation deviations and positional correction variations. Results MVCT scanning time with pitch of ‘fine’ was approximately twice of ‘normal’ and 3 times more than ‘coarse’ setting, all which will not be affected by different RIs. MVCT with different APs delivered almost identical CT numbers and image noise inside 7 selected regions with various densities. DVH curves from adaptive dose calculation with serial MVCT images acquired by varied pitches overlapped together, where as there are no significant difference in all p values of intercept & slope of emulational spinal cord (p = 0.761 & 0.277), heart (p = 0.984 & 0.978), lungs (p = 0.992 & 0.980), soft tissue (p = 0.319 & 0.951) and bony structures (p = 0.960 & 0.929) between the most elaborated and the roughest serials of MVCT. Furthermore, gamma index analysis shown that, compared to the dose distribution calculated on MVCT of ‘fine’, only 0.2% or 1.1% of the points analyzed on MVCT of ‘normal’ or ‘coarse’ do not meet the defined gamma criterion. On chest phantom, all registration errors larger than 1 mm appeared at superior-inferior axis, which cannot be avoided with the smallest AP and RI. On pelvic phantom, craniocaudal errors are much smaller than chest, however, AP of ‘coarse’ presents larger registration errors which can be reduced from 2.90 mm to 0.22 mm by registration technique of ‘full image’. Conclusions AP of ‘coarse’ with RI of 6 mm is recommended in adaptive radiotherapy (ART) planning to provide craniocaudal longer and faster MVCT scan, while registration technique of ‘full image’ should be used to avoid large residual error. Considering the trade-off between IGRT and ART, AP of ‘normal’ with RI of 2 mm was highly recommended in daily practice. Electronic supplementary material The online version of this article (10.1186/s13014-018-0989-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong Province, People's Republic of China.
| | - Tong Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong Province, People's Republic of China
| | - Jiabing Gu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong Province, People's Republic of China
| | - Ziwen Sun
- Medical Department, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, 250031, People's Republic of China
| | - Yumei Wei
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong Province, People's Republic of China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong Province, People's Republic of China
| | - Yong Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Leitzen C, Wilhelm-Buchstab T, Müdder T, Heimann M, Koch D, Schmeel C, Simon B, Stumpf S, Vornholt S, Garbe S, Röhner F, Schoroth F, Schild HH, Schüller H. Patient positioning in head and neck cancer : Setup variations and safety margins in helical tomotherapy. Strahlenther Onkol 2018; 194:386-391. [PMID: 29372290 DOI: 10.1007/s00066-018-1265-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate the interfractional variations of patient positioning during intensity-modulated radiotherapy (IMRT) with helical tomotherapy in head and neck cancer and to calculate the required safety margins (sm) for bony landmarks resulting from the necessary table adjustments. MATERIALS AND METHODS In all, 15 patients with head and neck cancer were irradiated using the Hi-Art II tomotherapy system between April and September 2016. Before therapy sessions, patient position was frequently checked by megavolt computed tomography (MV-CT). Necessary table adjustments (ta) in the right-left (rl), superior-inferior (si) and anterior-posterior (ap) directions were recorded for four anatomical points: second, fourth and sixth cervical vertebral body (CVB), anterior nasal spine (ANS). Based upon these data sm were calculated for non-image-guided radiotherapy, image-guided radiotherapy (IGRT) and image guidance limited to a shortened area (CVB 2). RESULTS Based upon planning CT the actual treatment required ta from -0.05 ± 1.31 mm for CVB 2 (ap) up to 2.63 ± 2.39 mm for ANS (rl). Considering the performed ta resulting from image control (MV-CT) we detected remaining ta from -0.10 ± 1.09 mm for CVB 4 (rl) up to 1.97 ± 1.64 mm for ANS (si). After theoretical adjustment of patients position to CVB 2 the resulting ta ranged from -0.11 ± 2.44 mm for CVB6 (ap) to 2.37 ± 2.17 mm for ANS (si). These data imply safety margins: uncorrected patient position: 3.63-9.95 mm, corrected positioning based upon the whole target volume (IGRT): 1.85-6.63 mm, corrected positioning based upon CVB 2 (IGRT): 3.13-6.66 mm. CONCLUSIONS The calculated safety margins differ between anatomic regions. Repetitive and frequent image control of patient positioning is necessary that, however, possibly may be focussed on a limited region.
Collapse
Affiliation(s)
- Christina Leitzen
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | - Timo Wilhelm-Buchstab
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Thomas Müdder
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Martina Heimann
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - David Koch
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Christopher Schmeel
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Birgit Simon
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Sabina Stumpf
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Susanne Vornholt
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Stephan Garbe
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Fred Röhner
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Felix Schoroth
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Hans Heinz Schild
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Heinrich Schüller
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| |
Collapse
|
8
|
Tong Y, Gong G, Chen J, Lu J, Liu T, Cheng P, Yin Y. The heterogeneous CTV-PTV margins should be given for different parts of tumors during tomotherapy. Oncotarget 2017; 8:89086-89094. [PMID: 29179501 PMCID: PMC5687671 DOI: 10.18632/oncotarget.21631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
Objective The purpose of this study was to evaluate CTV-PTV margins of tumors for tomotherapy. Methods Setup errors were analyzed for 151 patients receiving helical tomotherapy treatment. 53 patients had head and neck tumors, 45 had thoracic tumors, 20 had abdominal tumors, and 33 had pelvic tumors. The setup errors were calculated in six directions, i.e. +X (left), -X (right), +Y (head), -Y (foot), +Z (ventral), and -Z (dorsal), after Megavoltage CT (MVCT) images were registered to simulation CT images. And then the CTV-PTV margins were calculated. Results The setup errors along the +Z direction were significantly higher than that along the –Z direction (p<0.05). The CTV-PTV margins on +X, -X, +Y, -Y, +Z, and -Z directions were asymmetric for all tumors, and the heterogeneity were more remarkable on the +Z and –Z directions. The CTV-PTV margins on +Z and –Z were 4.1 mm, 4.6 mm, 5.2 mm, and 8.4 mm; and 3.9 mm, 7.7 mm, 3.3 mm, and 7.7 mm for head and neck tumors, thoracic tumors, abdominal tumors, and pelvic tumors, respectively. Conclusions The CTV-PTV margins for patients with different types of tumors were heterogeneous during tomotherapy. The individual margins of six directions should be given for those patients who accept tomotherapy.
Collapse
Affiliation(s)
- Ying Tong
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Guanzhong Gong
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Jinhu Chen
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Lu
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Tonghai Liu
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Pinjing Cheng
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Yong Yin
- Radiation Physics Department of Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
9
|
Abstract
We reviewed the literature on the use of margins in radiotherapy of patients with prostate cancer, focusing on different options for image guidance (IG) and technical issues. The search in PubMed database was limited to include studies that involved external beam radiotherapy of the intact prostate. Post-prostatectomy studies, brachytherapy and particle therapy were excluded. Each article was characterized according to the IG strategy used: positioning on external marks using room lasers, bone anatomy and soft tissue match, usage of fiducial markers, electromagnetic tracking and adapted delivery. A lack of uniformity in margin selection among institutions was evident from the review. In general, introduction of pre- and in-treatment IG was associated with smaller planning target volume (PTV) margins, but there was a lack of definitive experimental/clinical studies providing robust information on selection of exact PTV values. In addition, there is a lack of comparative research regarding the cost-benefit ratio of the different strategies: insertion of fiducial markers or electromagnetic transponders facilitates prostate gland localization but at a price of invasive procedure; frequent pre-treatment imaging increases patient in-room time, dose and labour; online plan adaptation should improve radiation delivery accuracy but requires fast and precise computation. Finally, optimal protocols for quality assurance procedures need to be established.
Collapse
Affiliation(s)
- Slav Yartsev
- 1 London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,2 Departments of Oncology and Medical Biophysics, Western University, London, ON, Canada
| | - Glenn Bauman
- 1 London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,2 Departments of Oncology and Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
10
|
Oh SA, Yea JW, Kang MK, Park JW, Kim SK. Analysis of the Setup Uncertainty and Margin of the Daily ExacTrac 6D Image Guide System for Patients with Brain Tumors. PLoS One 2016; 11:e0151709. [PMID: 27019082 PMCID: PMC4809593 DOI: 10.1371/journal.pone.0151709] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
This study evaluated the setup uncertainties for brain sites when using BrainLAB's ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27-33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Optimal PTV margins were calculated based on van Herk et al.'s [margin recipe = 2.5∑ + 0.7σ - 3 mm] and Stroom et al.'s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.'s and Stroom et al.'s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.
Collapse
Affiliation(s)
- Se An Oh
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
| | - Ji Woon Yea
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Min Kyu Kang
- Department of Radiation Oncology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae Won Park
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
| | - Sung Kyu Kim
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
- * E-mail:
| |
Collapse
|
11
|
Shimizu H, Sasaki K, Iwata M, Kawai M, Nakashima K, Kubota T, Osaki H, Nakayama M, Yoshimoto M, Kodaira T. Rotational output and beam quality evaluations for helical tomotherapy with use of a third-party quality assurance tool. Radiol Phys Technol 2016; 9:53-9. [DOI: 10.1007/s12194-015-0333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
12
|
Goossens S, Descampe A, Orban de Xivry J, Lee JA, Delor A, Janssens G, Geets X. Impact of motion induced artifacts on automatic registration of lung tumors in Tomotherapy. Phys Med 2015; 31:963-968. [DOI: 10.1016/j.ejmp.2015.07.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 06/11/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
|
13
|
Jung JH, Cho KH, Moon SK, Bae SH, Min CK, Kim ES, Yeo SG, Choi JH, Jung JY, Choe BY, Suh TS. Rotation Errors of Breast Cancer on 3D-CRT in TomoDirect. ACTA ACUST UNITED AC 2015. [DOI: 10.14316/pmp.2015.26.1.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jae Hong Jung
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea, Bucheon, Korea
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul, Korea
| | - Kwang Hwan Cho
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea, Bucheon, Korea
| | - Seong Kwon Moon
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea, Bucheon, Korea
| | - Sun Hyun Bae
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea, Bucheon, Korea
| | - Chul Kee Min
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea, Bucheon, Korea
| | - Eun Seog Kim
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea, Bucheon, Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea, Bucheon, Korea
| | - Jin Ho Choi
- Department of Radiation Oncology, Gachon University Gil Medical Center of Korea, Incheon, Korea
| | - Joo-Yong Jung
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul, Korea
| | - Bo Young Choe
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul, Korea
| | - Tae Suk Suh
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Sánchez-Rubio P, Rodríguez-Romero R, Castro-Tejero P. A retrospective tomotherapy image-guidance study: analysis of more than 9,000 MVCT scans for ten different tumor sites. J Appl Clin Med Phys 2014; 15:4663. [PMID: 25493505 PMCID: PMC5711128 DOI: 10.1120/jacmp.v15i6.4663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 06/24/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to quantify the systematic and random errors for various disease sites when daily MVCT scans are acquired, and to analyze alterna- tive off-line verification protocols (OVP) with respect to the patient setup accuracy achieved. Alignment data from 389 patients (9,418 fractions) treated at ten differ- ent anatomic sites with daily image-guidance (IG) on a helical tomotherapy unit were analyzed. Moreover, six OVP were retrospectively evaluated. For each OVP, the frequency of the residual setup errors and additional margins required were calculated for the treatment sessions without image guidance. The magnitude of the three-dimensional vector displacement and its frequency were evaluated for all OVP. From daily IG, the main global systematic error was in the vertical direction (4.4-9.4 mm), and all rotations were negligible (less than 0.5°) for all anatomic sites. The lowest systematic and random errors were found for H&N and brain patients. All OVP were effective in reducing the mean systematic error to less than 1 mm and 0.2° in all directions and roll corrections for almost all treatment sites. The treatment margins needed to adapt the residual errors should be increased by 2-5 mm for brain and H&N, around 8 mm in the vertical direction for the other anatomic sites, and up to 19 mm in the longitudinal direction for abdomen patients. Almost 70% of the sessions presented a setup error of 3 mm for OVPs with an imaging frequency above 50%. Only for brain patients it would be feasible to apply an OVP because the residual setup error could be compensated for with a slight margin increase. However, daily imaging should be used for anatomic sites of difficult immobilization and/or large interfraction movement.
Collapse
|
15
|
Schiller K, Petrucci A, Geinitz H, Schuster T, Specht H, Kampfer S, Duma MN. Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer. Strahlenther Onkol 2014; 190:722-6. [DOI: 10.1007/s00066-014-0629-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
|
16
|
Wu J, Betzing C, He TT, Fuss M, D'Souza WD. Dosimetric comparison of patient setup strategies in stereotactic body radiation therapy for lung cancer. Med Phys 2013; 40:051709. [PMID: 23635257 DOI: 10.1118/1.4801926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In this work, the authors retrospectively compared the accumulated dose over the treatment course for stereotactic body radiation therapy (SBRT) of lung cancer for three patient setup strategies. METHODS Ten patients who underwent lung SBRT were selected for this study. At each fraction, patients were immobilized using a vacuum cushion and were CT scanned. Treatment plans were performed on the simulation CT. The planning target volume (PTV) was created by adding a 5-mm uniform margin to the internal target volume derived from the 4DCT. All plans were normalized such that 99% of the PTV received 60 Gy. The plan parameters were copied onto the daily CT images for dose recalculation under three setup scenarios: skin marker, bony structure, and soft tissue based alignments. The accumulated dose was calculated by summing the dose at each fraction along the trajectory of a voxel over the treatment course through deformable image registration of each CT with the planning CT. The accumulated doses were analyzed for the comparison of setup accuracy. RESULTS The tumor volume receiving 60 Gy was 91.7 ± 17.9%, 74.1 ± 39.1%, and 99.6 ± 1.3% for setup using skin marks, bony structures, and soft tissue, respectively. The isodose line covering 100% of the GTV was 55.5 ± 7.1, 42.1 ± 16.0, and 64.3 ± 7.1 Gy, respectively. The corresponding average biologically effective dose of the tumor was 237.3 ± 29.4, 207.4 ± 61.2, and 258.3 ± 17.7 Gy, respectively. The differences in lung biologically effective dose, mean dose, and V20 between the setup scenarios were insignificant. CONCLUSIONS The authors' results suggest that skin marks and bony structure are insufficient for aligning patients in lung SBRT. Soft tissue based alignment is needed to match the prescribed dose delivered to the tumors.
Collapse
Affiliation(s)
- Jianzhou Wu
- Radiation Oncology, Swedish Cancer Institute, Seattle, Washington 98104, USA.
| | | | | | | | | |
Collapse
|
17
|
Dzintars E, Papanikolaou N, Mavroidis P, Sadeghi A, Stathakis S. Application of an independent dose calculation software for estimating the impact of inter-fractional setup shifts in Helical Tomotherapy treatments. Phys Med 2013; 29:615-23. [PMID: 23044458 DOI: 10.1016/j.ejmp.2012.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study is to validate the capability of in-house independent point dose calculation software to be used as a second check for Helical Tomotherapy treatment plans. The software performed its calculations in homogenous conditions (using the Cheese phantom, which is a cylindrical phantom with radius 15 cm and length 18 cm) using a factor-based algorithm. Fifty patients, who were treated for pelvic (10), prostate (14), lung (10), head & neck (12) and brain (4) cancers, were used. Based on the individual patient kVCT images and the pretreatment MVCT images for each treatment fraction, the corresponding daily patient setup shifts in the IEC-X, IEC-Y, and IEC-Z directions were registered. For each patient, the registered fractional setup shifts were grouped into systematic and random shifts. The average systematic dosimetric variations showed small dose deviation for the different cancer types (1.0%-3.0%) compared to the planned dose. Of the fifty patients, only three had percent differences larger than 5%. The average random dosimetric variations showed relatively small dose deviations (0.2%-1.1%) compared to the planned dose. None of the patients had percent differences larger than 5%. By examining the individual fractions of each patient, it is observed that only in 31 out of 1358 fractions the percent differences exceeded the border of 5%. These results indicate that the overall dosimetric impact from systematic and random variations is small and that the software is a capable platform for independent point dose validation for the Helical Tomotherapy modality.
Collapse
Affiliation(s)
- Erik Dzintars
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
18
|
Avanzo M, Drigo A, Ren Kaiser S, Roggio A, Sartor G, Chiovati P, Franchin G, Mascarin M, Capra E. Dose to the skin in helical tomotherapy: Results of in vivo measurements with radiochromic films. Phys Med 2013; 29:304-11. [DOI: 10.1016/j.ejmp.2012.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 04/10/2012] [Accepted: 04/14/2012] [Indexed: 12/21/2022] Open
|
19
|
Chung Y, Yoon HI, Kim JH, Nam KC, Koom WS. Is helical tomotherapy accurate and safe enough for spine stereotactic body radiotherapy? J Cancer Res Clin Oncol 2012; 139:243-8. [PMID: 23052695 DOI: 10.1007/s00432-012-1321-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE We assessed the accuracy and safety of spine stereotactic body radiation therapy (SBRT) using helical tomotherapy (HT) via evaluating intrafractional patient movement. METHODS From July 2009 to April 2011, 22 patients with spine lesions received SBRT using HT, with a total of 61 fractions. To evaluate intrafractional movement, we compared post-treatment megavoltage CT scans with planning CT images and obtained translational [lateral (X), craniocaudal (Y), anterioposterior (Z)] offsets and total displacements (R). We analyzed the correlation of intrafractional motion with patient and treatment characteristics. We also analyzed dosimetric change to the target and spinal cord, resulting from intrafractional movement, in the three patients that showed the greatest R values. RESULTS Intrafractional movements were 0.7 ± 0.6 mm (X), 1.1 ± 0.7 mm (Y), 0.9 ± 0.6 mm (Z), and 1.8 ± 0.6 mm (R). This movement did not correlate with age, pain score, treatment time, or treatment site. Only patients with lower BMIs have a tendency to move more during treatment. Patient immobilization using wrapping form (thermoplastic mask and BodyFIX(®) system) resulted in less lateral movement and total displacement than others (0.498 ± 0.409 vs. 1.138 ± 0.637 mm, P < 0.001 for X; and 1.638 ± 0.691 vs. 1.976 ± 0.495 mm, P = 0.032 for R). However, this intrafractional motion did not affect the dose delivery to the target and spinal cord. CONCLUSION SBRT using HT can be a safe treatment modality for spine metastasis with enhanced targeting accuracy.
Collapse
Affiliation(s)
- Yoonsun Chung
- Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | | | | | | | | |
Collapse
|
20
|
Jia MX, Zhang X, Li N, Han CB. Impact of different CBCT imaging monitor units, reconstruction slice thicknesses, and planning CT slice thicknesses on the positioning accuracy of a MV-CBCT system in head-and-neck patients. J Appl Clin Med Phys 2012; 13:3766. [PMID: 22955643 PMCID: PMC5718243 DOI: 10.1120/jacmp.v13i5.3766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 06/05/2012] [Accepted: 06/04/2012] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to investigate the impact of different CBCT imaging monitor units (MUs), reconstruction slice thicknesses, and planning CT slice thicknesses on the positioning accuracy of a megavoltage cone-beam computed tomography (MV-CBCT) system in image-guided radiation therapy (IGRT) in head-and-neck patients. The MV-CBCT system was a Siemens MVision, a commercial system integrated into the Siemens ONCOR linear accelerator. The positioning accuracy of the MV-CBCT system was determined using an anthropomorphic phantom while varying the MV-CBCT imaging MU, reconstruction slice thickness, and planning CT slice thickness. A total of 240 CBCT images from six head-and-neck patients who underwent intensity-modulated radiotherapy (IMRT) treatment were acquired and reconstructed using different MV-CBCT scanning protocols. The interfractional setup errors of the patients were retrospectively analyzed for different imaging MUs, reconstruction slice thicknesses, and planning CT slice thicknesses. Using the anthropomorphic phantom, the largest measured mean deviation component and standard deviation of the MVision in 3D directions were 1.3 and 1.0 mm, respectively, for different CBCT imaging MUs, reconstruction slice thicknesses, and planning CT slice thicknesses. The largest setup group system error (M), system error (Σ), and random error (σ) from six head-and-neck patients were 0.6, 1.2, and 1.7 mm, respectively. No significant difference was found in the positioning accuracy of the MV-CBCT system between the 5 and 8 MUs, and between the 1 and 3 mm reconstruction slice thicknesses. A thin planning CT slice thickness may achieve higher positioning precision using the phantom measurement, but no significant difference was found in clinical setup precision between the 1 and 3 mm planning CT slice thicknesses.
Collapse
Affiliation(s)
- Ming X Jia
- Department of Radiation Oncology, Shengjing Hospital of China Medial University, Shenyang 110022, China.
| | | | | | | |
Collapse
|
21
|
Yoon WS, Yang DS, Lee JA, Lee S, Park YJ, Kim CY. The extent and serial pattern of interfractional variation in patients with whole pelvic irradiation: a study using a kilovoltage orthogonal on-board imager. J Appl Clin Med Phys 2012; 13:3636. [PMID: 22402382 PMCID: PMC5716416 DOI: 10.1120/jacmp.v13i2.3636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study is to assess the extent and serial pattern of setup error of conventional fractionated whole pelvic irradiation using a kilovoltage on-board imager. The daily on-board images of 69 patients were matched with the digitally reconstructed radiographs of simulation on the basis of pelvic bony structure. The shifts along x- (lateral), y- (longitudinal), and z- (vertical) axes, and the 3D vector, were measured. The shift between an origin of the first fraction and each fraction (Δshift(1st)) and the shift between an isocenter of simulation and each fraction (Δshift(Sim)) were calculated. To evaluate serial changes, the shifts of each fraction were classified into four consecutive sessions, and an ANOVA and chi-square test were used. The systematic error of the Δshift(Sim) and Δshift(1st) were 2.72 and 1.43 mm along the x-axis, 2.98 and 1.28 mm along the y-axis, and 4.26 and 2.39 mm along the z-axis, respectively. The Δshift(Sim) and Δshift(1st) ≥ 5 mm of the 3D vector occurred in 54.3% and 23.1%, respectively. The recommended margins to cover setup error in case of using Δshift(1st) were 3.81, 3.54, and 6.01 mm along x-, y-, and z-axes, whereas those using Δshift(Sim) were 6.39, 6.95, and 9.95 mm, respectively. With the passage of time, the Δshift(1st) ≥ 5 mm of 3D vector and along any axis in supine setup increased from 14.1% for first session to 22.5% for fourth session (p=0.027) and from 10.8% to 18.5% (p = 0.034), respectively. In prone setup, first session was better than others in the Δshift(1st) ≥ 5 mm of 3D vector and along any axis. It is expected that the correction using the on-board images on the first fraction improves geometrical uncertainties and reduces the margin for target coverage. Daily continuous OBI follow-up during conventional fractionated pelvic irradiation can increase the reproducibility and be more effective in the late period.
Collapse
Affiliation(s)
- Won Sup Yoon
- Department of Radiation Oncology, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Ishiyama H, Teh BS, Lo SS, Mathews T, Blanco AI, Amato RJ, Ellis RJ, Mayr NA, Paulino AC, Xu B, Butler EB. Stereotactic body radiation therapy for prostate cancer. Future Oncol 2011; 7:1077-86. [DOI: 10.2217/fon.11.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) is a promising treatment option for prostate cancer. Hypofractionation regimens, such as SBRT, may be more advantageous compared with conventional regimens because low α:β ratio of prostate cancer has high sensitivity to dose per fraction. In addition, a smaller and tighter margin with SBRT is expected to provide a low toxicity rate without reducing tumor control. The purpose of this article is to examine radiobiological, technical and clinical aspects of SBRT for prostate cancer.
Collapse
Affiliation(s)
- Hiromichi Ishiyama
- Department of Radiation Oncology, The Methodist Hospital & Research Institute, Houston, TX, USA; The Methodist Hospital Cancer Center, 6565 Fannin, Ste#DB1–077, Houston, Texas 77030, USA
- Department of Radiology & Radiation Oncology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | - Simon S Lo
- Department of Radiation Oncology, Case Western Reserve University, UH Seidman Cancer Center, Cleveland, OH 44106, USA
| | - Thomas Mathews
- Department of Radiation Oncology, The Methodist Hospital & Research Institute, Houston, TX, USA; The Methodist Hospital Cancer Center, 6565 Fannin, Ste#DB1–077, Houston, Texas 77030, USA
| | - Angel I Blanco
- Department of Radiation Oncology, The Methodist Hospital & Research Institute, Houston, TX, USA; The Methodist Hospital Cancer Center, 6565 Fannin, Ste#DB1–077, Houston, Texas 77030, USA
| | - Robert J Amato
- Division of Oncology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Rodney J Ellis
- Department of Radiation Oncology, Case Western Reserve University, UH Seidman Cancer Center, Cleveland, OH 44106, USA
| | - Nina A Mayr
- Department of Radiation Oncology, Arthur G James Cancer Hospital, Columbus, OH 43210, USA
| | - Arnold C Paulino
- Department of Radiation Oncology, The Methodist Hospital & Research Institute, Houston, TX, USA; The Methodist Hospital Cancer Center, 6565 Fannin, Ste#DB1–077, Houston, Texas 77030, USA
| | - Bo Xu
- Department of Radiation Oncology, The Methodist Hospital & Research Institute, Houston, TX, USA; The Methodist Hospital Cancer Center, 6565 Fannin, Ste#DB1–077, Houston, Texas 77030, USA
| | - E Brian Butler
- Department of Radiation Oncology, The Methodist Hospital & Research Institute, Houston, TX, USA; The Methodist Hospital Cancer Center, 6565 Fannin, Ste#DB1–077, Houston, Texas 77030, USA
| |
Collapse
|