1
|
Fu Y, Zhang H, Morris ED, Glide-Hurst CK, Pai S, Traverso A, Wee L, Hadzic I, Lønne PI, Shen C, Liu T, Yang X. Artificial Intelligence in Radiation Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:158-181. [PMID: 35992632 PMCID: PMC9385128 DOI: 10.1109/trpms.2021.3107454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. Since the introduction of deep neural networks, many AI-based methods have been proposed to address challenges in different aspects of radiotherapy. Commercial vendors have started to release AI-based tools that can be readily integrated to the established clinical workflow. To show the recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy including image reconstruction, image registration, image segmentation, image synthesis, and automatic treatment planning. In each section, we summarized and categorized the recently published methods, followed by a discussion of the challenges, concerns, and future development. Given the rapid development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the future could be substantially improved through intelligent automation of various aspects of radiotherapy.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Hao Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric D. Morris
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Carri K. Glide-Hurst
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Suraj Pai
- Maastricht University Medical Centre, Netherlands
| | | | - Leonard Wee
- Maastricht University Medical Centre, Netherlands
| | | | - Per-Ivar Lønne
- Department of Medical Physics, Oslo University Hospital, PO Box 4953 Nydalen, 0424 Oslo, Norway
| | - Chenyang Shen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75002, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Yu S, Xu H, Sinclair A, Zhang X, Langner U, Mak K. Dosimetric and planning efficiency comparison for lung SBRT: CyberKnife vs VMAT vs knowledge-based VMAT. Med Dosim 2020; 45:346-351. [DOI: 10.1016/j.meddos.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
|
3
|
Hussein M, Heijmen BJM, Verellen D, Nisbet A. Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations. Br J Radiol 2018; 91:20180270. [PMID: 30074813 DOI: 10.1259/bjr.20180270] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Radiotherapy treatment planning of complex radiotherapy techniques, such as intensity modulated radiotherapy and volumetric modulated arc therapy, is a resource-intensive process requiring a high level of treatment planner intervention to ensure high plan quality. This can lead to variability in the quality of treatment plans and the efficiency in which plans are produced, depending on the skills and experience of the operator and available planning time. Within the last few years, there has been significant progress in the research and development of intensity modulated radiotherapy treatment planning approaches with automation support, with most commercial manufacturers now offering some form of solution. There is a rapidly growing number of research articles published in the scientific literature on the topic. This paper critically reviews the body of publications up to April 2018. The review describes the different types of automation algorithms, including the advantages and current limitations. Also included is a discussion on the potential issues with routine clinical implementation of such software, and highlights areas for future research.
Collapse
Affiliation(s)
- Mohammad Hussein
- 1 Metrology for Medical Physics Centre, National Physical Laboratory , Teddington , UK
| | - Ben J M Heijmen
- 2 Division of Medical Physics, Erasmus MC Cancer Institute , Rotterdam , The Netherlands
| | - Dirk Verellen
- 3 Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB) , Brussels , Belgium.,4 Radiotherapy Department, Iridium Kankernetwerk , Antwerp , Belgium
| | - Andrew Nisbet
- 5 Department of Medical Physics, Royal Surrey County Hospital NHS Foundation Trust , Guildford , UK.,6 Department of Physics, University of Surrey , Guildford , UK
| |
Collapse
|
4
|
Chan LWC, Wong SCC, Chiau CC, Chan TM, Tao L, Feng J, Chiu KWH. Association Patterns of Ontological Features Signify Electronic Health Records in Liver Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:6493016. [PMID: 29065631 PMCID: PMC5563431 DOI: 10.1155/2017/6493016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/21/2017] [Indexed: 11/18/2022]
Abstract
Electronic Health Record (EHR) system enables clinical decision support. In this study, a set of 112 abdominal computed tomography imaging examination reports, consisting of 59 cases of hepatocellular carcinoma (HCC) or liver metastases (so-called HCC group for simplicity) and 53 cases with no abnormality detected (NAD group), were collected from four hospitals in Hong Kong. We extracted terms related to liver cancer from the reports and mapped them to ontological features using Systematized Nomenclature of Medicine (SNOMED) Clinical Terms (CT). The primary predictor panel was formed by these ontological features. Association levels between every two features in the HCC and NAD groups were quantified using Pearson's correlation coefficient. The HCC group reveals a distinct association pattern that signifies liver cancer and provides clinical decision support for suspected cases, motivating the inclusion of new features to form the augmented predictor panel. Logistic regression analysis with stepwise forward procedure was applied to the primary and augmented predictor sets, respectively. The obtained model with the new features attained 84.7% sensitivity and 88.4% overall accuracy in distinguishing HCC from NAD cases, which were significantly improved when compared with that without the new features.
Collapse
Affiliation(s)
- Lawrence W. C. Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - S. C. Cesar Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | - Liang Tao
- Philips Research China, Shanghai, China
| | | | - Keith W. H. Chiu
- Department of Diagnostic Radiology, University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|