1
|
Andratschke N, Willmann J, Appelt AL, Day M, Kronborg C, Massaccesi M, Ozsahin M, Pasquier D, Petric P, Riesterer O, De Ruysscher D, M Van der Velden J, Guckenberger M. Reirradiation - still navigating uncharted waters? Clin Transl Radiat Oncol 2024; 49:100871. [PMID: 39444538 PMCID: PMC11497423 DOI: 10.1016/j.ctro.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
With the emergence of high-precision radiotherapy technologies such as stereotactic ablative radiotherapy (SABR), MR guided brachytherapy, image guided intensity modulated photon and proton radiotherapy and most recently daily adaptive radiotherapy, reirradiation is increasingly recognized as a viable treatment option for many patients. This includes those with recurrent, metastatic or new malignancies post initial radiotherapy. The primary challenge in reirradiation lies in balancing tumor control against the risk of severe toxicity from cumulative radiation doses to previously irradiated normal tissue. Although technology for precise delivery has advanced at a fast pace, clinical practice of reirradiation still mostly relies on individual expertise, as prospective evidence is scarce, the level of reporting in clinical studies is not standardized and of low quality - especially with respect to cumulative doses received by organs at risk. A recent ESTRO/EORTC initiative proposed a standardized definition of reirradiation and formulated general requirements for minimal reporting in clinical studies [1]. As a consequence we found it timely to convene for an international and interdisciplinary meeting with experts in the field to summarize the current evidence, identify knowledge gaps and explore which best practices can be derived for safe reirradiation. The meeting was held on 15.06.2023 in Zurich and was endorsed by the scientific societies SASRO, DEGRO and ESTRO. Here, we report on available evidence and research priorities in the field of reirradiation, as discussed during the meeting.
Collapse
Affiliation(s)
- Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Ane L Appelt
- Leeds Institute of Medical Research at St James’s, University of Leeds, UK
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Madalyne Day
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Camilla Kronborg
- Danish Centre for Particle Therapy, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariangela Massaccesi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | | | - David Pasquier
- Academic Department of Radiation Oncology, Centre O Lambret, Lille, France
- University of Lille, Centrale Lille, CNRS, CRIStAL UMR 9189, Lille, France
| | - Primoz Petric
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | | | - Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro), GROW School and Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Joanne M Van der Velden
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| |
Collapse
|
2
|
Hardcastle N, Vasquez Osorio E, Jackson A, Mayo C, Aarberg AE, Ayadi M, Belosi F, Ceylan C, Davey A, Dupuis P, Handley JC, Hemminger T, Hoffmann L, Kelly C, Michailidou C, Muscat S, Murrell DH, Pérez-Alija J, Palmer C, Placidi L, Popovic M, Rønde HS, Selby A, Skopidou T, Solomou N, Stroom J, Thompson C, West NS, Zaila A, Appelt AL. Multi-centre evaluation of variation in cumulative dose assessment in reirradiation scenarios. Radiother Oncol 2024; 194:110184. [PMID: 38453055 DOI: 10.1016/j.radonc.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Safe reirradiation relies on assessment of cumulative doses to organs at risk (OARs) across multiple treatments. Different clinical pathways can result in inconsistent estimates. Here, we quantified the consistency of cumulative dose to OARs across multi-centre clinical pathways. MATERIAL AND METHODS We provided DICOM planning CT, structures and doses for two reirradiation cases: head & neck (HN) and lung. Participants followed their standard pathway to assess the cumulative physical and EQD2 doses (with provided α/β values), and submitted DVH metrics and a description of their pathways. Participants could also submit physical dose distributions from Course 1 mapped onto the CT of Course 2 using their best available tools. To assess isolated impact of image registrations, a single observer accumulated each submitted spatially mapped physical dose for every participating centre. RESULTS Cumulative dose assessment was performed by 24 participants. Pathways included rigid (n = 15), or deformable (n = 5) image registration-based 3D dose summation, visual inspection of isodose line contours (n = 1), or summation of dose metrics extracted from each course (n = 3). Largest variations were observed in near-maximum cumulative doses (25.4 - 41.8 Gy for HN, 2.4 - 33.8 Gy for lung OARs), with lower variations in volume/dose metrics to large organs. A standardised process involving spatial mapping of the first course dose to the second course CT followed by summation improved consistency for most near-maximum dose metrics in both cases. CONCLUSION Large variations highlight the uncertainty in reporting cumulative doses in reirradiation scenarios, with implications for outcome analysis and understanding of published doses. Using a standardised workflow potentially including spatially mapped doses improves consistency in determination of accumulated dose in reirradiation scenarios.
Collapse
Affiliation(s)
- Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | | | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles Mayo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Myriam Ayadi
- Department of Radiation Oncology, Physics Unit, Centre Léon Bérard, Lyon, France
| | - Francesca Belosi
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Cemile Ceylan
- Department of Radiation Oncology, Istanbul Oncology Hospital, Istanbul, Turkey; Department of Medical Physics, University of Yeditepe, Istanbul, Turkey
| | - Angela Davey
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Pauline Dupuis
- Department of Radiation Oncology, Physics Unit, Centre Léon Bérard, Lyon, France
| | | | | | - Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Colin Kelly
- St Luke's Radiation Oncology Network, Dublin, Ireland
| | | | - Sarah Muscat
- Department of Medical Physics, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Donna H Murrell
- Department of Oncology, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Jaime Pérez-Alija
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Catherine Palmer
- Department of Radiotherapy Physics, Norfolk and Norwich University Hospitals, NHS Foundation Trust, UK
| | - Lorenzo Placidi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marija Popovic
- Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Heidi S Rønde
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Adam Selby
- South West Wales Cancer Centre, Swansea, Wales, UK
| | | | - Natasa Solomou
- Department of Radiotherapy Physics, Norfolk and Norwich University Hospitals, NHS Foundation Trust, UK
| | - Joep Stroom
- Department of Radiation Oncology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Ali Zaila
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Ane L Appelt
- Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Nenoff L, Amstutz F, Murr M, Archibald-Heeren B, Fusella M, Hussein M, Lechner W, Zhang Y, Sharp G, Vasquez Osorio E. Review and recommendations on deformable image registration uncertainties for radiotherapy applications. Phys Med Biol 2023; 68:24TR01. [PMID: 37972540 PMCID: PMC10725576 DOI: 10.1088/1361-6560/ad0d8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Deformable image registration (DIR) is a versatile tool used in many applications in radiotherapy (RT). DIR algorithms have been implemented in many commercial treatment planning systems providing accessible and easy-to-use solutions. However, the geometric uncertainty of DIR can be large and difficult to quantify, resulting in barriers to clinical practice. Currently, there is no agreement in the RT community on how to quantify these uncertainties and determine thresholds that distinguish a good DIR result from a poor one. This review summarises the current literature on sources of DIR uncertainties and their impact on RT applications. Recommendations are provided on how to handle these uncertainties for patient-specific use, commissioning, and research. Recommendations are also provided for developers and vendors to help users to understand DIR uncertainties and make the application of DIR in RT safer and more reliable.
Collapse
Affiliation(s)
- Lena Nenoff
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, Dresden Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany
| | - Florian Amstutz
- Department of Physics, ETH Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | | | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Mohammad Hussein
- Metrology for Medical Physics, National Physical Laboratory, Teddington, United Kingdom
| | - Wolfgang Lechner
- Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Greg Sharp
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Thompson C, Pagett C, Lilley J, Svensson S, Eriksson K, Bokrantz R, Ödén J, Nix M, Murray L, Appelt A. Brain Re-Irradiation Robustly Accounting for Previously Delivered Dose. Cancers (Basel) 2023; 15:3831. [PMID: 37568647 PMCID: PMC10417278 DOI: 10.3390/cancers15153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: The STRIDeR (Support Tool for Re-Irradiation Decisions guided by Radiobiology) planning pathway aims to facilitate anatomically appropriate and radiobiologically meaningful re-irradiation (reRT). This work evaluated the STRIDeR pathway for robustness compared to a more conservative manual pathway. (2) Methods: For ten high-grade glioma reRT patient cases, uncertainties were applied and cumulative doses re-summed. Geometric uncertainties of 3, 6 and 9 mm were applied to the background dose, and LQ model robustness was tested using α/β variations (values 1, 2 and 5 Gy) and the linear quadratic linear (LQL) model δ variations (values 0.1 and 0.2). STRIDeR robust optimised plans, incorporating the geometric and α/β uncertainties during optimisation, were also generated. (3) Results: The STRIDeR and manual pathways both achieved clinically acceptable plans in 8/10 cases but with statistically significant improvements in the PTV D98% (p < 0.01) for STRIDeR. Geometric and LQ robustness tests showed comparable robustness within both pathways. STRIDeR plans generated to incorporate uncertainties during optimisation resulted in a superior plan robustness with a minimal impact on PTV dose benefits. (4) Conclusions: Our results indicate that STRIDeR pathway plans achieved a similar robustness to manual pathways with improved PTV doses. Geometric and LQ model uncertainties can be incorporated into the STRIDeR pathway to facilitate robust optimisation.
Collapse
Affiliation(s)
- Christopher Thompson
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
| | - Christopher Pagett
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
| | - John Lilley
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
| | | | | | | | - Jakob Ödén
- RaySearch Laboratories, SE-104 30 Stockholm, Sweden
| | - Michael Nix
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
| | - Louise Murray
- Leeds Cancer Centre, Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS2 9JT, UK
| | - Ane Appelt
- Leeds Cancer Centre, Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (C.T.)
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Murray L, Thompson C, Pagett C, Lilley J, Al-Qaisieh B, Svensson S, Eriksson K, Nix M, Aldred M, Aspin L, Gregory S, Appelt A. Treatment plan optimisation for reirradiation. Radiother Oncol 2023; 182:109545. [PMID: 36813170 DOI: 10.1016/j.radonc.2023.109545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The STRIDeR (Support Tool for Re-Irradiation Decisions guided by Radiobiology) project aims to create a clinically viable re-irradiation planning pathway within a commercial treatment planning system (TPS). Such a pathway should account for previously delivered dose, voxel-by-voxel, taking fractionation effects, tissue recovery and anatomical changes into account. This work presents the workflow and technical solutions in the STRIDeR pathway. METHODS The pathway was implemented in RayStation (version 9B DTK) to allow an original dose distribution to be used as background dose to guide optimisation of re-irradiation plans. Organ at risk (OAR) planning objectives in equivalent dose in 2 Gy fractions (EQD2) were applied cumulatively across the original and re-irradiation treatments, with optimisation of the re-irradiation plan performed voxel-by-voxel in EQD2. Different approaches to image registration were employed to account for anatomical change. Data from 21 patients who received pelvic Stereotactic Ablative Radiotherapy (SABR) re-irradiation were used to illustrate the use of the STRIDeR workflow. STRIDeR plans were compared to those produced using a standard manual method. RESULTS The STRIDeR pathway resulted in clinically acceptable plans in 20/21 cases. Compared to plans produced using the laborious manual method, less constraint relaxation was required or higher re-irradiation doses could be prescribed in 3/21. CONCLUSION The STRIDeR pathway used background dose to guide radiobiologically meaningful, anatomically-appropriate re-irradiation treatment planning within a commercial TPS. This provides a standardised and transparent approach, offering more informed re-irradiation and improved cumulative OAR dose evaluation.
Collapse
Affiliation(s)
- Louise Murray
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Clinical Oncology, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Christopher Thompson
- Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Christopher Pagett
- Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John Lilley
- Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Bashar Al-Qaisieh
- Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | - Michael Nix
- Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Michael Aldred
- Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Lynn Aspin
- Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Stephen Gregory
- Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ane Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Medical Physics, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
6
|
Cui T, Weiner J, Danish S, Chundury A, Ohri N, Yue N, Wang X, Nie K. Evaluation of Biological Effective Dose in Gamma Knife Staged Stereotactic Radiosurgery for Large Brain Metastases. Front Oncol 2022; 12:892139. [PMID: 35847934 PMCID: PMC9280470 DOI: 10.3389/fonc.2022.892139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Gamma knife (GK) staged stereotactic radiosurgery (Staged-SRS) has become an effective treatment option for large brain metastases (BMs); however, it has been challenging to evaluate the total dose because of tumor shrinkage between two staged sessions. This study aims to evaluate total biological effective dose (BED) in Staged-SRS, and to compare the BED with those in single-fraction SRS (SF-SRS) and hypo-fractionated SRS (HF-SRS). Methods Patients treated with GK Staged-SRS at a single institution were retrospectively included. The dose delivered in two sessions of Staged-SRS was summed using the deformable image registration. Each patient was replanned for SF-SRS and HF-SRS. The total BEDs were computed using the linear-quadratic model. Tumor BED98% and brain V84Gy2, equivalent to V12Gy in SF-SRS, were compared between SF-SRS, HF-SRS, and Staged-SRS plans with the Wilcoxon test. Results Twelve patients with 24 BMs treated with GK Staged-SRS were identified. We observed significant differences (p < 0.05) in tumor BED98% but comparable brain V84Gy2 (p = 0.677) between the Staged-SRS and SF-SRS plans. No dosimetric advantages of Staged-SRS over HF-SRS were observed. Tumor BED98% in the HF-SRS plans were significantly higher than those in the Staged-SRS plans (p < 0.05). Despite the larger PTVs, brain V84Gy2 in the HF-SRS plans remained lower (p < 0.05). Conclusion We presented an approach to calculate the composite BEDs delivered to both tumor and normal brain tissue in Staged-SRS. Compared to SF-SRS, Staged-SRS delivers a higher dose to tumor but maintains a comparable dose to normal brain tissue. Our results did not show any dosimetric advantages of Staged-SRS over HF-SRS.
Collapse
Affiliation(s)
- Taoran Cui
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Taoran Cui,
| | - Joseph Weiner
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Shabbar Danish
- Jersey Shore University Medical Center (JSUMC), Neptune, NJ, United States
| | - Anupama Chundury
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Nisha Ohri
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Ning Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Xiao Wang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Ke Nie
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Niebuhr NI, Splinter M, Bostel T, Seco J, Hentschke CM, Floca RO, Hörner-Rieber J, Alber M, Huber P, Nicolay NH, Pfaffenberger A. Biologically consistent dose accumulation using daily patient imaging. Radiat Oncol 2021; 16:65. [PMID: 33823885 PMCID: PMC8025323 DOI: 10.1186/s13014-021-01789-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This work addresses a basic inconsistency in the way dose is accumulated in radiotherapy when predicting the biological effect based on the linear quadratic model (LQM). To overcome this inconsistency, we introduce and evaluate the concept of the total biological dose, bEQDd. METHODS Daily computed tomography imaging of nine patients treated for prostate carcinoma with intensity-modulated radiotherapy was used to compute the delivered deformed dose on the basis of deformable image registration (DIR). We compared conventional dose accumulation (DA) with the newly introduced bEQDd, a new method of accumulating biological dose that considers each fraction dose and tissue radiobiology. We investigated the impact of the applied fractionation scheme (conventional/hypofractionated), uncertainties induced by the DIR and by the assigned α/β-value. RESULTS bEQDd was systematically higher than the conventionally accumulated dose with difference hot spots of 3.3-4.9 Gy detected in six out of nine patients in regions of high dose gradient in the bladder and rectum. For hypofractionation, differences are up to 8.4 Gy. The difference amplitude was found to be in a similar range to worst-case uncertainties induced by DIR and was higher than that induced by α/β. CONCLUSION Using bEQDd for dose accumulation overcomes a potential systematic inaccuracy in biological effect prediction based on accumulated dose. Highest impact is found for serial-type late responding organs at risk in dose gradient regions and for hypofractionation. Although hot spot differences are in the order of several Gray, in dose-volume parameters there is little difference compared with using conventional or biological DA. However, when local dose information is used, e.g. dose surface maps, difference hot spots can potentially change outcomes of dose-response modelling and adaptive treatment strategies.
Collapse
Affiliation(s)
- Nina I Niebuhr
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg Institute for Radiooncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany. .,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
| | - Mona Splinter
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiooncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Tilman Bostel
- Clinical Cooperation Unit "Radiation Oncology", German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Medical Center Mainz, Mainz, Germany
| | - Joao Seco
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clemens M Hentschke
- Heidelberg Institute for Radiooncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ralf O Floca
- Heidelberg Institute for Radiooncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Heidelberg Institute for Radiooncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Clinical Cooperation Unit "Radiation Oncology", German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Alber
- Heidelberg Institute for Radiooncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Huber
- Clinical Cooperation Unit "Radiation Oncology", German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H Nicolay
- Clinical Cooperation Unit "Radiation Oncology", German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
| | - Asja Pfaffenberger
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiooncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
9
|
A review on 3D deformable image registration and its application in dose warping. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
10
|
Troost EGC, Wink KCJ, Roelofs E, Simone CB, Makocki S, Löck S, van Kollenburg P, Dechambre D, Minken AWH, van der Stoep J, Avery S, Jansen N, Solberg T, Bussink J, de Ruysscher D. Photons or protons for reirradiation in (non-)small cell lung cancer: Results of the multicentric ROCOCO in silico study. Br J Radiol 2019; 93:20190879. [PMID: 31804145 DOI: 10.1259/bjr.20190879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Locally recurrent disease is of increasing concern in (non-)small cell lung cancer [(N)SCLC] patients. Local reirradiation with photons or particles may be of benefit to these patients. In this multicentre in silico trial performed within the Radiation Oncology Collaborative Comparison (ROCOCO) consortium, the doses to the target volumes and organs at risk (OARs) were compared when using several photon and proton techniques in patients with recurrent localised lung cancer scheduled to undergo reirradiation. METHODS 24 consecutive patients with a second primary (N)SCLC or recurrent disease after curative-intent, standard fractionated radio(chemo)therapy were included in this study. The target volumes and OARs were centrally contoured and distributed to the participating ROCOCO sites. Remaining doses to the OARs were calculated on an individual patient's basis. Treatment planning was performed by the participating site using the clinical treatment planning system and associated beam characteristics. RESULTS Treatment plans for all modalities (five photon and two proton plans per patient) were available for 22 patients (N = 154 plans). 3D-conformal photon therapy and double-scattered proton therapy delivered significantly lower doses to the target volumes. The highly conformal techniques, i.e., intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), CyberKnife, TomoTherapy and intensity-modulated proton therapy (IMPT), reached the highest doses in the target volumes. Of these, IMPT was able to statistically significantly decrease the radiation doses to the OARs. CONCLUSION Highly conformal photon and proton beam techniques enable high-dose reirradiation of the target volume. They, however, significantly differ in the dose deposited in the OARs. The therapeutic options, i.e., reirradiation or systemic therapy, need to be carefully weighed and discussed with the patients. ADVANCES IN KNOWLEDGE Highly conformal photon and proton beam techniques enable high-dose reirradiation of the target volume. In light of the abilities of the various highly conformal techniques to spare specific OARs, the therapeutic options need to be carefully weighed and patients included in the decision-making process.
Collapse
Affiliation(s)
- Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), partnersite Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Krista C J Wink
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Roelofs
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Charles B Simone
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiation Oncology, New York Proton Center, New York, USA
| | - Sebastian Makocki
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), partnersite Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter van Kollenburg
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David Dechambre
- Department of Radiation Oncology, University Hospital of Liege (CHU), Liege, Belgium.,Radiotherapy Department, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | | - Judith van der Stoep
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephen Avery
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolas Jansen
- Department of Radiation Oncology, University Hospital of Liege (CHU), Liege, Belgium
| | - Timothy Solberg
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
11
|
Palma G, Monti S, Conson M, Pacelli R, Cella L. Normal tissue complication probability (NTCP) models for modern radiation therapy. Semin Oncol 2019; 46:210-218. [PMID: 31506196 DOI: 10.1053/j.seminoncol.2019.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Mathematical models of normal tissue complication probability (NTCP) able to robustly predict radiation-induced morbidities (RIM) play an essential role in the identification of a personalized optimal plan, and represent the key to maximizing the benefits of technological advances in radiation therapy (RT). Most modern RT techniques pose, however, new challenges in estimating the risk of RIM. The aim of this report is to schematically review NTCP models in the framework of advanced radiation therapy techniques. Issues relevant to hypofractionated stereotactic body RT and ion beam therapy are critically reviewed. Reirradiation scenarios for new or recurrent malignances and NTCP are also illustrated. A new phenomenological approach to predict RIM is suggested.
Collapse
Affiliation(s)
- Giuseppe Palma
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Serena Monti
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Laura Cella
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy.
| |
Collapse
|
12
|
Rigaud B, Simon A, Castelli J, Lafond C, Acosta O, Haigron P, Cazoulat G, de Crevoisier R. Deformable image registration for radiation therapy: principle, methods, applications and evaluation. Acta Oncol 2019; 58:1225-1237. [PMID: 31155990 DOI: 10.1080/0284186x.2019.1620331] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Deformable image registration (DIR) is increasingly used in the field of radiation therapy (RT) to account for anatomical deformations. The aims of this paper are to describe the main applications of DIR in RT and discuss current DIR evaluation methods. Methods: Articles on DIR published from January 2000 to October 2018 were extracted from PubMed and Science Direct. Our search was restricted to articles that report data obtained from humans, were written in English, and address DIR methods for RT. A total of 207 articles were selected from among 2506 identified in the search process. Results: At planning, DIR is used for organ delineation using atlas-based segmentation, deformation-based planning target volume definition, functional planning and magnetic resonance imaging-based dose calculation. In image-guided RT, DIR is used for contour propagation and dose calculation on per-treatment imaging. DIR is also used to determine the accumulated dose from fraction to fraction in external beam RT and brachytherapy, both for dose reporting and adaptive RT. In the case of re-irradiation, DIR can be used to estimate the cumulated dose of the two irradiations. Finally, DIR can be used to predict toxicity in voxel-wise population analysis. However, the evaluation of DIR remains an open issue, especially when dealing with complex cases such as the disappearance of matter. To quantify DIR uncertainties, most evaluation methods are limited to geometry-based metrics. Software companies have now integrated DIR tools into treatment planning systems for clinical use, such as contour propagation and fraction dose accumulation. Conclusions: DIR is increasingly important in RT applications, from planning to toxicity prediction. DIR is routinely used to reduce the workload of contour propagation. However, its use for complex dosimetric applications must be carefully evaluated by combining quantitative and qualitative analyses.
Collapse
Affiliation(s)
- Bastien Rigaud
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Antoine Simon
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Joël Castelli
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Caroline Lafond
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Oscar Acosta
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Pascal Haigron
- CLCC Eugène Marquis, University of Rennes, Inserm , Rennes , France
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | | |
Collapse
|
13
|
Abstract
As deformable image registration makes its way into the clinical routine, the summation of doses from fractionated treatment regimens to evaluate cumulative doses to targets and healthy tissues is also becoming a frequently utilized tool in the context of image-guided adaptive radiotherapy. Accounting for daily geometric changes using deformable image registration and dose accumulation potentially enables a better understanding of dose-volume-effect relationships, with the goal of translation of this knowledge to personalization of treatment, to further enhance treatment outcomes. Treatment adaptation involving image deformation requires patient-specific quality assurance of the image registration and dose accumulation processes, to ensure that uncertainties in the 3D dose distributions are identified and appreciated from a clinical relevance perspective. While much research has been devoted to identifying and managing the uncertainties associated with deformable image registration and dose accumulation approaches, there are still many unanswered questions. Here, we provide a review of current deformable image registration and dose accumulation techniques, and related clinical application. We also discuss salient issues that need to be deliberated when applying deformable algorithms for dose mapping and accumulation in the context of adaptive radiotherapy and response assessment.
Collapse
|
14
|
Olsson CE, Jackson A, Deasy JO, Thor M. A Systematic Post-QUANTEC Review of Tolerance Doses for Late Toxicity After Prostate Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1514-1532. [PMID: 30125635 PMCID: PMC6652194 DOI: 10.1016/j.ijrobp.2018.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The aims of this study were to systematically review tolerance doses for late distinct gastrointestinal (GI), genitourinary (GU), and sexual dysfunction (SD) symptoms after external beam radiation therapy (EBRT) alone and treatments involving brachytherapy (BT) for prostate cancer after Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) and ultimately to perform quantitative syntheses of identified dose/volume tolerances represented by dose-volume histogram (DVH) thresholds, that is, statistically significant (P ≤ .05) cutoff points between symptomatic and asymptomatic patients in a certain study. METHODS AND MATERIALS PubMed was scrutinized for full-text articles in English after QUANTEC (January 1, 2010). The inclusion criteria were randomized controlled trials, case-control studies, or cohort studies with tolerance doses for late distinct symptoms ≥3 months after primary radiation therapy for prostate cancer (N > 30). All DVH thresholds were converted into equivalent doses in 2-Gy fractions (EQD2α/β) and were fitted with a linear or linear-quadratic function (goodness of fit, R2). The review was registered on PROSPERO (CRD42016042464). RESULTS From 33 identified studies, which included 36 to 746 patients per symptom domain, the majority of dose/volume tolerances were derived for GI toxicity after EBRT alone (GI, 97 thresholds; GU, 8 thresholds; SD, 1 threshold). For 5 symptoms (defecation urgency, diarrhea, fecal incontinence, proctitis, and rectal bleeding), relationships between dose/volume tolerances across studies (R2 = 0.93 [0.82-1.00]), and across symptoms, leading to a curve for overall GI toxicity (R2 = 0.98), could be determined. For these symptoms, mainly rectal thresholds were found throughout low and high doses (10 Gy ≤ equivalent dose in 2-Gy fractions using α/β = 3Gy (EQD23) ≤ 50 Gy and 55 Gy ≤ EQD23 ≤ 78 Gy, respectively). For BT with or without EBRT, dose/volume tolerances were also mainly identified for GI toxicity (GI, 14 thresholds; GU, 4 thresholds; SD, 2 thresholds) with the largest number of DVH thresholds concerning rectal bleeding (5 thresholds). CONCLUSIONS Updated dose/volume tolerances after QUANTEC were found for 17 GI, GU, or SD symptoms. A DVH curve described the relationship between dose/volume tolerances across 5 GI symptoms after EBRT alone. Restricting treatments for EBRT alone using the lower boundaries of this curve is likely to limit overall GI toxicity, but this should be explored prospectively. Dose/volume tolerances for GU and SD toxicity after EBRT alone and after BT with or without EBRT were scarce and support further research including data-sharing initiatives to untangle the dose/volume relationships for these symptoms.
Collapse
Affiliation(s)
- Caroline E Olsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Regional Cancer Center West, Western Sweden Healthcare Region, Gothenburg, Sweden
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
15
|
McVicar N, Thomas S, Liu M, Carolan H, Bergman A. Re-irradiation volumetric modulated arc therapy optimization based on cumulative biologically effective dose objectives. J Appl Clin Med Phys 2018; 19:341-345. [PMID: 30371001 PMCID: PMC6236857 DOI: 10.1002/acm2.12481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022] Open
Abstract
The objective of this note is to introduce a clinical tool that generates ideal base plan dose distributions to enable re‐irradiation volumetric modulated arc therapy (VMAT) optimization based on cumulative biological effective dose objectives for specific organs at risk (OARs). The tool is demonstrated with a lung cancer case that required re‐irradiation at our clinic. First, previous treatment dose is deformed onto the retreatment computed tomography (CT) using commercial software. Then, the in‐house Matlab tool alters the deformed previous dose using radiobiological concepts on a voxel‐by‐voxel manner to generate an ideal base plan dose distribution. Ideal base plans that were generated using the in‐house Matlab tool were compatible with the Varian Eclipse™ treatment planning system. The tool enabled optimization of VMAT re‐irradiation plans using cumulative dose limits for OARs and all OAR cumulative dose objectives were met on the first optimization for the recurrent lung cancer case tested.
Collapse
Affiliation(s)
- Nevin McVicar
- Department of Medical Physics, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Steven Thomas
- Department of Medical Physics, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Mitchell Liu
- Department of Radiation Oncology, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Hannah Carolan
- Department of Radiation Oncology, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Alanah Bergman
- Department of Medical Physics, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| |
Collapse
|