1
|
Bošnjak D, Pepe A, Schussnig R, Egger J, Fries TP. A semi-automatic method for block-structured hexahedral meshing of aortic dissections. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3860. [PMID: 39209324 DOI: 10.1002/cnm.3860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The article presents a semi-automatic approach to generating structured hexahedral meshes of patient-specific aortas ailed by aortic dissection. The condition manifests itself as a formation of two blood flow channels in the aorta, as a result of a tear in the inner layers of the aortic wall. Subsequently, the morphology of the aorta is greatly impacted, making the task of domain discretization highly challenging. The meshing algorithm presented herein is automatic for the individual lumina, whereas the tears require user interaction. Starting from an input (triangle) surface mesh, we construct an implicit surface representation as well as a topological skeleton, which provides a basis for the generation of a block-structure. Thereafter, the mesh generation is performed via transfinite maps. The meshes are structured and fully hexahedral, exhibit good quality and reliably match the original surface. As they are generated with computational fluid dynamics in mind, a fluid flow simulation is performed to verify their usefulness. Moreover, since the approach is based on valid block-structures, the meshes can be made very coarse (around 1000 elements for an entire aortic dissection domain), and thus promote using solvers based on the geometric multigrid method, which is typically reliant on the presence of a hierarchy of coarser meshes.
Collapse
Affiliation(s)
- Domagoj Bošnjak
- Institute of Structural Analysis, Graz University of Technology, Graz, Austria
| | - Antonio Pepe
- Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
| | | | - Jan Egger
- Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
- Institute of Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Graz, Austria
| |
Collapse
|
2
|
Decroocq M, Frindel C, Rougé P, Ohta M, Lavoué G. Modeling and hexahedral meshing of cerebral arterial networks from centerlines. Med Image Anal 2023; 89:102912. [PMID: 37549612 DOI: 10.1016/j.media.2023.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Computational fluid dynamics (CFD) simulation provides valuable information on blood flow from the vascular geometry. However, it requires extracting precise models of arteries from low-resolution medical images, which remains challenging. Centerline-based representation is widely used to model large vascular networks with small vessels, as it encodes both the geometric and topological information and facilitates manual editing. In this work, we propose an automatic method to generate a structured hexahedral mesh suitable for CFD directly from centerlines. We addressed both the modeling and meshing tasks. We proposed a vessel model based on penalized splines to overcome the limitations inherent to the centerline representation, such as noise and sparsity. The bifurcations are reconstructed using a parametric model based on the anatomy that we extended to planar n-furcations. Finally, we developed a method to produce a volume mesh with structured, hexahedral, and flow-oriented cells from the proposed vascular network model. The proposed method offers better robustness to the common defects of centerlines and increases the mesh quality compared to state-of-the-art methods. As it relies on centerlines alone, it can be applied to edit the vascular model effortlessly to study the impact of vascular geometry and topology on hemodynamics. We demonstrate the efficiency of our method by entirely meshing a dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of the bifurcations were meshed without defects needing manual intervention, despite the challenging aspect of the input data. The source code is released publicly.
Collapse
Affiliation(s)
- Méghane Decroocq
- CREATIS, Université Lyon1, CNRS UMR5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne, France; LIRIS, CNRS UMR 5205, F-69621, France; ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Carole Frindel
- CREATIS, Université Lyon1, CNRS UMR5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne, France; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Pierre Rougé
- ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Université de Reims Champagne Ardenne, CReSTIC, 51100 Reims, France
| | - Makoto Ohta
- ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Guillaume Lavoué
- LIRIS, CNRS UMR 5205, F-69621, France; Ecole Centrale de Lyon, France
| |
Collapse
|
3
|
Robert Bateman A, Alexander Bateman G, Barber T. Investigating the hemodynamic implications of triangular cross-sectioned superior sagittal sinus vessels and the errors associated with idealised modelling. J Biomech 2023; 149:111507. [PMID: 36868042 DOI: 10.1016/j.jbiomech.2023.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The superior sagittal sinus (SSS) is a blood vessel that is often observed to be approximately triangular in cross-section, due to how the venous wall attaches to the surrounding tissue. Despite this, the vessel has been assumed to be circular, when models are generated without patient-specific data. In this study, the differences between the cerebral hemodynamics of one circular, three triangular and five patient-specific cross-sectional models of a SSS were conducted. The errors associated with using circular cross-sectioned flow extensions were also determined. Computational fluid dynamics (CFD) models were generated from these geometries, with a population mean transient blood flow profile incorporated. The maximal helicity of the fluid flow was found to be elevated in the triangular cross-section, compared to the circular, with a higher wall shear stress (WSS) observed over a smaller, more concentrated region on the posterior sinus wall. The errors associated with using a circular cross-section were detailed, with the cross-sectional area appearing to have a greater influence on the hemodynamic parameters than the triangularity or circularity of the cross-section. This highlighted the importance of exhibiting caution when incorporating idealised modelling, especially when commenting on the true hemodynamics of these models. Errors were also found to be induced when using a circular cross-sectioned flow extension, for a geometry which was non-circular. This study highlights the importance of understanding the human anatomy when modelling blood vessels.
Collapse
Affiliation(s)
| | - Grant Alexander Bateman
- Department of Medical Imaging, John Hunter Hospital, Newcastle, NSW, Australia; Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia
| | - Tracie Barber
- School of Mechanical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Johnston RD, Ghasemi M, Lally C. Inverse material parameter estimation of patient-specific finite element models at the carotid bifurcation: The impact of excluding the zero-pressure configuration and residual stress. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3663. [PMID: 36443952 PMCID: PMC10078390 DOI: 10.1002/cnm.3663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The carotid bifurcation experiences a complex loading environment due to its anatomical structure. Previous in-vivo material parameter estimation methods often use simplified model geometries, isotropic hyperelastic constitutive equations or neglect key aspects of the vessel, such as the zero-pressure configuration or residual stress, all of which have independently been shown to alter the stress environment of the vessel wall. Characterizing the location of high stress in the vessel wall has often been proposed as a potential indicator of structural weakness. However, excluding the afore-mentioned zero-pressure configuration, residual stress and patient-specific material parameters can lead to an incorrect estimation of the true stress values observed, meaning that stress alone as a risk indicator of rupture is insufficient. In this study, we investigate how the estimated material parameters and overall stress distributions in geometries of carotid bifurcations, extracted from in-vivo MR images, alter with the inclusion of the zero-pressure configuration and residual stress. This approach consists of the following steps: (1) geometry segmentation and hexahedral meshing from in-vivo magnetic resonance images (MRI) at two known phases; (2) computation of the zero-pressure configuration and the associated residual stresses; (3) minimization of an objective function built on the difference between the stress states of an "almost true" stress field at two known phases and a "deformed" stress field by altering the input material parameters to determine patient-specific material properties; and (4) comparison of the stress distributions throughout these carotid bifurcations for all cases with estimated material parameters. This numerical approach provides insights into the need for estimation of both the zero-pressure configuration and residual stress for accurate material property estimation and stress analysis for the carotid bifurcation, establishing the reliability of stress as a rupture risk metric.
Collapse
Affiliation(s)
- Robert D. Johnston
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Milad Ghasemi
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland, Trinity College DublinDublinIreland
| |
Collapse
|
5
|
Ghasemi M, Johnston RD, Lally C. Development of a Collagen Fibre Remodelling Rupture Risk Metric for Potentially Vulnerable Carotid Artery Atherosclerotic Plaques. Front Physiol 2021; 12:718470. [PMID: 34776999 PMCID: PMC8586512 DOI: 10.3389/fphys.2021.718470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Atherosclerotic plaque rupture in carotid arteries can lead to stroke which is one of the leading causes of death or disability worldwide. The accumulation of atherosclerotic plaque in an artery changes the mechanical properties of the vessel. Whilst healthy arteries can continuously adapt to mechanical loads by remodelling their internal structure, particularly the load-bearing collagen fibres, diseased vessels may have limited remodelling capabilities. In this study, a local stress modulated remodelling algorithm is proposed to explore the mechanical response of arterial tissue to the remodelling of collagen fibres. This stress driven remodelling algorithm is used to predict the optimum distribution of fibres in healthy and diseased human carotid bifurcations obtained using Magnetic Resonance Imaging (MRI). In the models, healthy geometries were segmented into two layers: media and adventitia and diseased into four components: adventitia, media, plaque atheroma and lipid pool (when present in the MRI images). A novel meshing technique for hexahedral meshing of these geometries is also demonstrated. Using the remodelling algorithm, the optimum fibre patterns in various patient specific plaques are identified and the role that deviations from these fibre configurations in plaque vulnerability is shown. This study provides critical insights into the collagen fibre patterns required in carotid artery and plaque tissue to maintain plaque stability.
Collapse
Affiliation(s)
- Milad Ghasemi
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Robert D. Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Fedele M, Quarteroni A. Polygonal surface processing and mesh generation tools for the numerical simulation of the cardiac function. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3435. [PMID: 33415829 PMCID: PMC8244076 DOI: 10.1002/cnm.3435] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 06/05/2023]
Abstract
In order to simulate the cardiac function for a patient-specific geometry, the generation of the computational mesh is crucially important. In practice, the input is typically a set of unprocessed polygonal surfaces coming either from a template geometry or from medical images. These surfaces need ad-hoc processing to be suitable for a volumetric mesh generation. In this work we propose a set of new algorithms and tools aiming to facilitate the mesh generation process. In particular, we focus on different aspects of a cardiac mesh generation pipeline: (1) specific polygonal surface processing for cardiac geometries, like connection of different heart chambers or segmentation outputs; (2) generation of accurate boundary tags; (3) definition of mesh-size functions dependent on relevant geometric quantities; (4) processing and connecting together several volumetric meshes. The new algorithms-implemented in the open-source software vmtk-can be combined with each other allowing the creation of personalized pipelines, that can be optimized for each cardiac geometry or for each aspect of the cardiac function to be modeled. Thanks to these features, the proposed tools can significantly speed-up the mesh generation process for a large range of cardiac applications, from single-chamber single-physics simulations to multi-chambers multi-physics simulations. We detail all the proposed algorithms motivating them in the cardiac context and we highlight their flexibility by showing different examples of cardiac mesh generation pipelines.
Collapse
Affiliation(s)
- Marco Fedele
- MOX, Department of MathematicsPolitecnico di MilanoMilanItaly
| | - Alfio Quarteroni
- MOX, Department of MathematicsPolitecnico di MilanoMilanItaly
- Institute of MathematicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Black RA, Houston G. 40th Anniversary Issue: Reflections on papers from the archive on "Cardiovascular devices and modelling". Med Eng Phys 2020; 72:74-75. [PMID: 31554581 DOI: 10.1016/j.medengphy.2019.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard A Black
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK.
| | - Gregor Houston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
8
|
Canè F, Selmi M, De Santis G, Redaelli A, Segers P, Degroote J. Mixed impact of torsion on LV hemodynamics: A CFD study based on the Chimera technique. Comput Biol Med 2019; 112:103363. [PMID: 31491610 DOI: 10.1016/j.compbiomed.2019.103363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Image-based patient-specific Computational Fluid Dynamics (CFD) models of the Left Ventricle (LV) can be used to quantify hemodynamics-based biomarkers that can support the clinicians in the early diagnosis, follow-up and treatment planning of patients, beyond the capabilities of the current imaging modalities. We propose a workflow to build patient-specific CFD models of the LV with moving boundaries based on the Chimera technique to overcome the convergence issues previously encountered by means of the Arbitrarian Lagrangian Eulerian approach. The workflow was tested while investigating whether the torsional motion has an impact on LV fluid dynamics. Starting from 3D cine MRI scans of a healthy volunteer, six cardiac cycles were simulated in three CFD LV models: with no, physiological, and exaggerated torsion. The Chimera technique was robust in handling the impulsive motion of the LV endocardium, allowing to notice cycle-to-cycle variations in every simulated case. Torsion affected slightly velocity, vorticity, WSS. It did not affect energy loss and induced a double-sided effect in terms of residence time: the particles ejected in one beat decreased, whereas the motility of the particles remaining in the LV was affected only in the exaggerated torsion case, indicating that implementation of torsion can be discarded in case of physiological levels. Nonetheless, caution is warranted when interpreting these results given the absence of the mitral valve, the papillary muscles, and the trabeculae. The effects of the mitral valve will be evaluated within an Fluid Structure Interaction simulation framework as further development of the current model.
Collapse
Affiliation(s)
- Federico Canè
- IBiTech - bioMMeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
| | - Matteo Selmi
- Division of Cardiac Surgery, Department of Surgery, Università di Verona, Verona, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | | | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Patrick Segers
- IBiTech - bioMMeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Joris Degroote
- Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
From 4D Medical Images (CT, MRI, and Ultrasound) to 4D Structured Mesh Models of the Left Ventricular Endocardium for Patient-Specific Simulations. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516008 PMCID: PMC5817367 DOI: 10.1155/2018/7030718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-1 vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume.
Collapse
|
10
|
A step-by-step review on patient-specific biomechanical finite element models for breast MRI to x-ray mammography registration. Med Phys 2017; 45:e6-e31. [DOI: 10.1002/mp.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/27/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023] Open
|
11
|
Ghaffari M, Tangen K, Alaraj A, Du X, Charbel FT, Linninger AA. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation. Comput Biol Med 2017; 91:353-365. [PMID: 29126049 DOI: 10.1016/j.compbiomed.2017.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
Abstract
In this paper, we present a novel technique for automatic parametric mesh generation of subject-specific cerebral arterial trees. This technique generates high-quality and anatomically accurate computational meshes for fast blood flow simulations extending the scope of 3D vascular modeling to a large portion of cerebral arterial trees. For this purpose, a parametric meshing procedure was developed to automatically decompose the vascular skeleton, extract geometric features and generate hexahedral meshes using a body-fitted coordinate system that optimally follows the vascular network topology. To validate the anatomical accuracy of the reconstructed vasculature, we performed statistical analysis to quantify the alignment between parametric meshes and raw vascular images using receiver operating characteristic curve. Geometric accuracy evaluation showed an agreement with area under the curves value of 0.87 between the constructed mesh and raw MRA data sets. Parametric meshing yielded on-average, 36.6% and 21.7% orthogonal and equiangular skew quality improvement over the unstructured tetrahedral meshes. The parametric meshing and processing pipeline constitutes an automated technique to reconstruct and simulate blood flow throughout a large portion of the cerebral arterial tree down to the level of pial vessels. This study is the first step towards fast large-scale subject-specific hemodynamic analysis for clinical applications.
Collapse
Affiliation(s)
- Mahsa Ghaffari
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kevin Tangen
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Alaraj
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA; Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Xinjian Du
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Fady T Charbel
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Andreas A Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA; Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Rodriguez-Vila B, Sánchez-González P, Oropesa I, Gomez EJ, Pierce DM. Automated hexahedral meshing of knee cartilage structures – application to data from the osteoarthritis initiative. Comput Methods Biomech Biomed Engin 2017; 20:1543-1553. [DOI: 10.1080/10255842.2017.1383984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- B. Rodriguez-Vila
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicacion, Center for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain
- Networking Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - P. Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicacion, Center for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain
- Networking Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - I. Oropesa
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicacion, Center for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain
| | - E. J. Gomez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicacion, Center for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain
- Networking Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - D. M. Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
13
|
Aorta Ascending Aneurysm Analysis Using CFD Models towards Possible Anomalies. FLUIDS 2017. [DOI: 10.3390/fluids2020031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Strbac V, Pierce D, Rodriguez-Vila B, Vander Sloten J, Famaey N. Rupture risk in abdominal aortic aneurysms: A realistic assessment of the explicit GPU approach. J Biomech 2017; 56:1-9. [DOI: 10.1016/j.jbiomech.2017.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
15
|
Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K. From Finite Element Meshes to Clouds of Points: A Review of Methods for Generation of Computational Biomechanics Models for Patient-Specific Applications. Ann Biomed Eng 2015; 44:3-15. [PMID: 26424475 DOI: 10.1007/s10439-015-1469-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/22/2015] [Indexed: 11/24/2022]
Abstract
It has been envisaged that advances in computing and engineering technologies could extend surgeons' ability to plan and carry out surgical interventions more accurately and with less trauma. The progress in this area depends crucially on the ability to create robustly and rapidly patient-specific biomechanical models. We focus on methods for generation of patient-specific computational grids used for solving partial differential equations governing the mechanics of the body organs. We review state-of-the-art in this area and provide suggestions for future research. To provide a complete picture of the field of patient-specific model generation, we also discuss methods for identifying and assigning patient-specific material properties of tissues and boundary conditions.
Collapse
Affiliation(s)
- Adam Wittek
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia, Australia.
| | - Nicole M Grosland
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA.,Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA, USA.,Center for Computer Aided Design, The University of Iowa, Iowa City, IA, USA
| | - Grand Roman Joldes
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia, Australia
| | - Vincent Magnotta
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
| | - Karol Miller
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia, Australia.,Institute of Mechanics and Advanced Materials, Cardiff School of Engineering, Cardiff University, Wales, UK
| |
Collapse
|
16
|
Bols J, Taelman L, De Santis G, Degroote J, Verhegghe B, Segers P, Vierendeels J. Unstructured hexahedral mesh generation of complex vascular trees using a multi-block grid-based approach. Comput Methods Biomech Biomed Engin 2015. [DOI: 10.1080/10255842.2015.1058925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Disturbed flow in a patient-specific arteriovenous fistula for hemodialysis: Multidirectional and reciprocating near-wall flow patterns. J Biomech 2015; 48:2195-200. [DOI: 10.1016/j.jbiomech.2015.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/27/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
|
18
|
A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. J Mech Behav Biomed Mater 2015; 47:147-164. [PMID: 25931035 DOI: 10.1016/j.jmbbm.2015.03.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/21/2022]
Abstract
The existence of residual stresses in human arteries has long been shown experimentally. Researchers have also demonstrated that residual stresses have a significant effect on the distribution of physiological stresses within arterial tissues, and hence on their development, e.g., stress-modulated remodeling. Through progress in medical imaging, image analysis and finite element (FE) meshing tools it is now possible to construct in vivo patient-specific geometries and thus to study specific, clinically relevant problems in arterial mechanics via FE simulations. Classical continuum mechanics and FE methods assume that constitutive models and the corresponding simulations start from unloaded, stress-free reference configurations while the boundary-value problem of interest represents a loaded geometry and includes residual stresses. We present a pragmatic methodology to simultaneously account for both (i) the three-dimensional (3-D) residual stress distributions in the arterial tissue layers, and (ii) the equilibrium of the in vivo patient-specific geometry with the known boundary conditions. We base our methodology on analytically determined residual stress distributions (Holzapfel and Ogden, 2010, J. R. Soc. Interface 7, 787-799) and calibrate it using data on residual deformations (Holzapfel et al., 2007, Ann. Biomed. Eng. 35, 530-545). We demonstrate our methodology on three patient-specific FE simulations calibrated using experimental data. All data employed here are generated from human tissues - both the aorta and thrombus, and their respective layers - including the geometries determined from magnetic resonance images, and material properties and 3-D residual stretches determined from mechanical experiments. We study the effect of 3-D residual stresses on the distribution of physiological stresses in the aortic layers (intima, media, adventitia) and the layers of the intraluminal thrombus (luminal, medial, abluminal) by comparing three types of FE simulations: (i) conventional calculations; (ii) calculations accounting only for prestresses; (iii) calculations including both 3-D residual stresses and prestresses. Our results show that including residual stresses in patient-specific simulations of arterial tissues significantly impacts both the global (organ-level) deformations and the stress distributions within the arterial tissue (and its layers). Our method produces circumferential Cauchy stress distributions that are more uniform through the tissue thickness (i.e., smaller stress gradients in the local radial directions) compared to both the conventional and prestressing calculations. Such methods, combined with appropriate experimental data, aim at increasing the accuracy of classical FE analyses for patient-specific studies in computational biomechanics and may lead to increased clinical application of simulation tools.
Collapse
|
19
|
Automatic Reconstruction and Generation of Structured Hexahedral Mesh for Non-planar Bifurcations in Vascular Networks. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-444-63578-5.50101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Tarjuelo-Gutierrez J, Rodriguez-Vila B, Pierce DM, Fastl TE, Verbrugghe P, Fourneau I, Maleux G, Herijgers P, Holzapfel GA, Gomez EJ. High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi. Med Biol Eng Comput 2013; 52:159-68. [PMID: 24306943 DOI: 10.1007/s11517-013-1127-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/08/2013] [Indexed: 10/25/2022]
Abstract
In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies.
Collapse
Affiliation(s)
- J Tarjuelo-Gutierrez
- Bioengineering and Telemedicine Centre, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mao H, Zhang L, Jiang B, Genthikatti VV, Jin X, Zhu F, Makwana R, Gill A, Jandir G, Singh A, Yang KH. Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases. J Biomech Eng 2013; 135:111002. [PMID: 24065136 DOI: 10.1115/1.4025101] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/29/2013] [Indexed: 11/08/2022]
Abstract
This study is aimed to develop a high quality, extensively validated finite element (FE) human head model for enhanced head injury prediction and prevention. The geometry of the model was based on computed tomography (CT) and magnetic resonance imaging scans of an adult male who has the average height and weight of an American. A feature-based multiblock technique was adopted to develop hexahedral brain meshes including the cerebrum, cerebellum, brainstem, corpus callosum, ventricles, and thalamus. Conventional meshing methods were used to create the bridging veins, cerebrospinal fluid, skull, facial bones, flesh, skin, and membranes—including falx, tentorium, pia, arachnoid, and dura. The head model has 270,552 elements in total. Thirty five loading cases were selected from a range of experimental head impacts to check the robustness of the model predictions based on responses including the brain pressure, relative skull-brain motion, skull response, and facial response. The brain pressure was validated against intracranial pressure data reported by Nahum et al. (1977, “Intracranial Pressure Dynamics During Head Impact,” Proc. 21st Stapp Car Crash Conference, SAE Technical Paper No. 770922) and Trosseille et al. (1992, “Development of a F.E.M. of the Human Head According to a Specific Test Protocol,” Proc. 36th Stapp Car Crash Conference, SAE Technical Paper No. 922527). The brain motion was validated against brain displacements under sagittal, coronal, and horizontal blunt impacts performed by Hardy et al. (2001, “Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-Ray,” Stapp Car Crash Journal, 45, pp. 337–368; and 2007, “A Study of the Response of the Human Cadaver Head to Impact,” Stapp Car Crash Journal, 51, pp. 17–80). The facial bone responses were validated under nasal impact (Nyquist et al. 1986, “Facial Impact Tolerance and Response,” Proc. 30th Stapp Car Crash Conference, SAE Technical Paper No. 861896), zygoma and maxilla impact (Allsop et al. 1988, “Facial Impact Response – A Comparison of the Hybrid III Dummy and Human Cadaver,” Proc. 32nd Stapp Car Crash Conference, SAE Technical Paper No. 881719)]. The skull bones were validated under frontal angled impact, vertical impact, and occipital impact (Yoganandan et al. 1995, “Biomechanics of Skull Fracture,” J Neurotrauma, 12(4), pp. 659–668) and frontal horizontal impact (Hodgson et al. 1970, “Fracture Behavior of the Skull Frontal Bone Against Cylindrical Surfaces,” 14th Stapp Car Crash Conference, SAE International, Warrendale, PA). The FE head model was further used to study injury mechanisms and tolerances for brain contusion (Nahum et al. 1976, “An Experimental Model for Closed Head Impact Injury,” 20th Stapp Car Crash Conference, SAE International, Warrendale, PA). Studies from 35 loading cases demonstrated that the FE head model could predict head responses which were comparable to experimental measurements in terms of pattern, peak values, or time histories. Furthermore, tissue-level injury tolerances were proposed. A maximum principal strain of 0.42% was adopted for skull cortical layer fracture and maximum principal stress of 20 MPa was used for skull diploë layer fracture. Additionally, a plastic strain threshold of 1.2% was used for facial bone fracture. For brain contusion, 277 kPa of brain pressure was calculated from reconstruction of one contusion case.
Collapse
Affiliation(s)
| | - Liying Zhang
- e-mail: Bioengineering Center, Wayne State University, 818 West Hancock, Detroit, MI 48201
| | - Binhui Jiang
- Hunan University, No. 1 Lushanna Road Changsha, Hunan 410082, China e-mail:
| | | | | | | | | | | | | | | | - King H. Yang
- e-mail: Bioengineering Center, Wayne State University, 818 West Hancock, Detroit, MI 48201
| |
Collapse
|
22
|
van Bogerijen GH, Tolenaar JL, Conti M, Auricchio F, Secchi F, Sardanelli F, Moll FL, van Herwaarden JA, Rampoldi V, Trimarchi S. Contemporary Role of Computational Analysis in Endovascular Treatment for Thoracic Aortic Disease. AORTA (STAMFORD, CONN.) 2013; 1:171-181. [PMID: 26798690 PMCID: PMC4682739 DOI: 10.12945/j.aorta.2013.13-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/12/2013] [Indexed: 06/05/2023]
Abstract
In the past decade, thoracic endovascular aortic repair (TEVAR) has become the primary treatment option in descending aneurysm and dissection. The clinical outcome of this minimally invasive technique is strictly related to an appropriate patient/stent graft selection, hemodynamic interactions, and operator skills. In this context, a quantitative assessment of the biomechanical stress induced in the aortic wall due to the stent graft may support the planning of the procedure. Different techniques of medical imaging, like computed tomography or magnetic resonance imaging, can be used to evaluate dynamics in the thoracic aorta. Such information can also be combined with dedicated patient-specific computer-based simulations, to provide a further insight into the biomechanical aspects. In clinical practice, computational analysis might show the development of aortic disease, such as the aortic wall segments which experience higher stress in places where rupture and dissection may occur. In aortic dissections, the intimal tear is usually located at the level of the sino-tubular junction and/or at the origin of the left subclavian artery. Besides, computational models may potentially be used preoperatively to predict stent graft behavior, virtually testing the optimal stent graft sizing, deployment, and conformability, in order to provide the best endovascular treatment. The present study reviews the current literature regarding the use of computational tools for TEVAR biomechanics, highlighting their potential clinical applications.
Collapse
Affiliation(s)
- Guido H.W. van Bogerijen
- Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
| | - Jip L. Tolenaar
- Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Pavia, Italy
| | - Francesco Secchi
- Department of Radiology, Policlinico San Donato IRCCS, University of Milan, Milan, Italy; and
| | - Francesco Sardanelli
- Department of Radiology, Policlinico San Donato IRCCS, University of Milan, Milan, Italy; and
| | - Frans L. Moll
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Vincenzo Rampoldi
- Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
| | - Santi Trimarchi
- Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Computer Simulations in Stroke Prevention: Design Tools and Virtual Strategies Towards Procedure Planning. Cardiovasc Eng Technol 2013. [DOI: 10.1007/s13239-013-0134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
The accuracy of ultrasound volume flow measurements in the complex flow setting of a forearm vascular access. J Vasc Access 2012; 14:281-90. [PMID: 23172170 DOI: 10.5301/jva.5000118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2012] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Maturation of an arterio-venous fistula (AVF) frequently fails, with low post-operative fistula flow as a prognostic marker for this event. As pulsed wave Doppler (PWD) is commonly used to assess volume flow, we studied the accuracy of this measurement in the setting of a radio-cephalic AVF. METHODS As in-vivo validation of fistula flow measurements is cumbersome, we performed simulations, integrating computational fluid dynamics with an ultrasound (US) simulator. Flow in the arm was calculated, based on a patient-specific model of the arm vasculature pre and post AVF creation. Raw ultrasound signals were subsequently simulated, from which Doppler spectra were calculated in both a proximal and a distal location. RESULTS The velocity component in the direction of the PWD-US beam (vPWD), in a centered, small, sample volume, can be captured accurately using PWD spectrum mean-tracking (maximum bias [mB] 8.1%). However, when deriving flow rate from these measurements, a high degree of inaccuracy occurs. First, the angle-correction of vPWD towards the velocity along the axis of the vessel is largely influenced by the radial velocity components in the complex flow field (mB=16.3%). Second, the largest error is introduced when transferring the centerline velocity to the cross-sectional mean velocity without any knowledge of the flow profile (mB=97.7%). CONCLUSIONS In the setting of a forearm AVF, flow estimates based on PWD are hampered by the complex flow patterns. Overall, flow estimation based on centerline measurement, analyzed by mean-tracking of the RF-spectral estimates, under the assumption of a parabolic flow profile, appeared to provide the most reasonable values.
Collapse
|
25
|
Van Canneyt K, Morbiducci U, Eloot S, De Santis G, Segers P, Verdonck P. A computational exploration of helical arterio-venous graft designs. J Biomech 2012; 46:345-53. [PMID: 23159095 DOI: 10.1016/j.jbiomech.2012.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
Although arterio-venous grafts (AVGs) are the second best option as long-term vascular access for hemodialysis, they suffer from complications caused by intimal hyperplasia, mainly located in vessel regions of low and oscillating wall shear stress. However, certain flow patterns in the bulk may reduce these unfavorable hemodynamic conditions. We therefore studied, with computational fluid dynamics (CFD), the impact of a helical AVG design on the occurrence of (un)favorable hemodynamic conditions at the venous anastomosis. Six CFD-models of an AVG in closed-loop configuration were constructed: one conventional straight graft, and five helical designed grafts with a pitch of 105 mm down to 35 mm. At the venous anastomosis, disturbed shear was assessed by quantifying the area with unfavorable conditions, and by analyzing averaged values in a case-specific patch. The bulk hemodynamics were assessed by analyzing the kinetic helicity in and the pressure drop over the graft. The most helical design scores best, being instrumental to suppress disturbed shear in the venous segment. There is, however, no trivial relationship between the number of helix turns of the graft and disturbed shear in the venous segment, when a realistic closed-loop AVG model is investigated. Bulk flow investigation showed a marked increase of helicity intensity in, and a moderate pressure drop over the AVG by introducing a lower pitch. At the venous anastomosis, unfavorable hemodynamic conditions can be reduced by introducing a helical design. However, due to the complex flow conditions, the optimal helical design for an AVG cannot be derived without studying case by case.
Collapse
|
26
|
Virtual evaluation of stent graft deployment: A validated modeling and simulation study. J Mech Behav Biomed Mater 2012; 13:129-39. [DOI: 10.1016/j.jmbbm.2012.04.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 11/20/2022]
|
27
|
Trachet B, Bols J, De Santis G, Vandenberghe S, Loeys B, Segers P. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data. J Biomech Eng 2012; 133:121006. [PMID: 22206423 DOI: 10.1115/1.4005479] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Computational fluid dynamics (CFD) simulations allow for calculation of a detailed flow field in the mouse aorta and can thus be used to investigate a potential link between local hemodynamics and disease development. To perform these simulations in a murine setting, one often needs to make assumptions (e.g. when mouse-specific boundary conditions are not available), but many of these assumptions have not been validated due to a lack of reference data. In this study, we present such a reference data set by combining high-frequency ultrasound and contrast-enhanced micro-CT to measure (in vivo) the time-dependent volumetric flow waveforms in the complete aorta (including seven major side branches) of 10 male ApoE -/- deficient mice on a C57Bl/6 background. In order to assess the influence of some assumptions that are commonly applied in literature, four different CFD simulations were set up for each animal: (i) imposing the measured volumetric flow waveforms, (ii) imposing the average flow fractions over all 10 animals, presented as a reference data set, (iii) imposing flow fractions calculated by Murray's law, and (iv) restricting the geometrical model to the abdominal aorta (imposing measured flows). We found that - even if there is sometimes significant variation in the flow fractions going to a particular branch - the influence of using average flow fractions on the CFD simulations is limited and often restricted to the side branches. On the other hand, Murray's law underestimates the fraction going to the brachiocephalic trunk and strongly overestimates the fraction going to the distal aorta, influencing the outcome of the CFD results significantly. Changing the exponential factor in Murray's law equation from 3 to 2 (as suggested by several authors in literature) yields results that correspond much better to those obtained imposing the average flow fractions. Restricting the geometrical model to the abdominal aorta did not influence the outcome of the CFD simulations. In conclusion, the presented reference dataset can be used to impose boundary conditions in the mouse aorta in future studies, keeping in mind that they represent a subsample of the total population, i.e., relatively old, non-diseased, male C57Bl/6 ApoE -/- mice.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech - bioMMeda, Ghent University, BE-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
28
|
De Bock S, Iannaccone F, De Santis G, De Beule M, Mortier P, Verhegghe B, Segers P. Our capricious vessels: The influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. J Biomech 2012; 45:1353-9. [PMID: 22483228 DOI: 10.1016/j.jbiomech.2012.03.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/17/2012] [Accepted: 03/14/2012] [Indexed: 11/30/2022]
Abstract
There is a growing interest in virtual tools to assist clinicians in evaluating different procedures and devices for endovascular treatment. In the present study we use finite element analysis to investigate the influence of stent design and vessel geometry for stent assisted coiling of intracranial aneurysms. Nine virtual stenting procedures were performed: three nitinol stent designs ((i) an open cell stent resembling the Neuroform, (ii) a generic stiff and (iii) a more flexible closed cell design), were deployed in three patient-specific cerebral aneurysmatic vessels. We investigated the percentage of strut area covering the aneurysm neck, the straightening induced on the cerebrovasculature by the stent placement (quantified by the reduction in tortuosity), and stent apposition to the wall (quantified as the percentage of struts within 0.2mm of the vessel). The results suggest that the open cell design better covers the aneurysm neck (11.0±1.1%) compared to both the stiff (7.8±1.6%) and flexible (8.7±1.6%) closed cell stents, and induces less straightening of the vessel (-5.1±1.6% vs. -42.9±9.8% and -26.9±11.9% ). The open cell design has, however, less struts apposing well to the vessel wall (56.0±6.4%) compared to the flexible (73.4±4.6%) and stiff (70.4±5.1%) closed cell design. With the presented study, we hope to contribute to and improve aneurysm treatment, using a novel patient specific environment as a possible pre-operative tool to evaluate mechanical stent behavior in different vascular geometries.
Collapse
Affiliation(s)
- S De Bock
- Institute Biomedical Technology (IBiTech), Ghent University, De Pintelaan 185-Block B, BE-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Makris E, Neofytou P, Tsangaris S, Housiadas C. A novel method for the generation of multi-block computational structured grids from medical imaging of arterial bifurcations. Med Eng Phys 2012; 34:1157-66. [PMID: 22209311 DOI: 10.1016/j.medengphy.2011.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
In this study a description of a new approach, for the generation of multi-block structured computational grids on patient-specific bifurcation geometries is presented. The structured grid generation technique is applied to data obtained by medical imaging examination, resulting in a surface conforming, high quality, multi-block structured grid of the branching geometry. As a case study application a patient specific abdominal aorta bifurcation is selected. For the evaluation of the grid produced by the novel method, a grid convergence study and a comparison between the grid produced by the method and unstructured grids produced by commercial meshing software are carried out.
Collapse
Affiliation(s)
- Evangelos Makris
- Thermal Hydraulics & Multiphase Flow Laboratory, National Centre for Scientific Research Demokritos, 15310 Agia Paraskevi, Greece.
| | | | | | | |
Collapse
|