• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4601656)   Today's Articles (211)   Subscriber (49365)
For: Hambli R, Bettamer A, Allaoui S. Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med Eng Phys 2012;34:202-10. [DOI: 10.1016/j.medengphy.2011.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/08/2011] [Accepted: 07/13/2011] [Indexed: 01/10/2023]
Number Cited by Other Article(s)
1
Nazari AR. Simulation of cancer progression in bone by a virtual thermal flux with a case study on lumbar vertebrae with multiple myeloma. Med Eng Phys 2024;126:104147. [PMID: 38621839 DOI: 10.1016/j.medengphy.2024.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
2
Fan R, Liu J, Jia Z. Biomechanical evaluation of different strain judging criteria on the prediction precision of cortical bone fracture simulation under compression. Front Bioeng Biotechnol 2023;11:1168783. [PMID: 37122861 PMCID: PMC10133557 DOI: 10.3389/fbioe.2023.1168783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023]  Open
3
Dong Y, Gao H, Feng X, Zhu H, Zhu Y, Hong Y, Jiang Y. Discussion on the related factors and nursing countermeasures of brittle fracture in elderly patients with osteoporosis. Minerva Surg 2022;77:624-627. [PMID: 34790932 DOI: 10.23736/s2724-5691.21.09223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
4
Investigation on the Differences in the Failure Processes of the Cortical Bone under Different Loading Conditions. Appl Bionics Biomech 2022;2022:3406984. [DOI: 10.1155/2022/3406984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022]  Open
5
Hudyma N, Lisjak A, Tatone BS, Garner HW, Wight J, Mandavalli AS, Olutola IA, Pujalte GGA. Comparison of Cortical Bone Fracture Patterns Under Compression Loading Using Finite Element–Discrete Element Numerical Modeling Approach and Destructive Testing. Cureus 2022;14:e29596. [PMID: 36321046 PMCID: PMC9599044 DOI: 10.7759/cureus.29596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/17/2022]  Open
6
Soni A, Kumar S, Kumar N. Stochastic failure analysis of proximal femur using an isogeometric analysis based nonlocal gradient-enhanced damage model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022;220:106820. [PMID: 35523024 DOI: 10.1016/j.cmpb.2022.106820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
7
Hennicke NS, Saemann M, Kluess D, Bader R, Sander M. Subject specific finite element modelling of periprosthetic femoral fractures in different load cases. J Mech Behav Biomed Mater 2021;126:105059. [PMID: 34995835 DOI: 10.1016/j.jmbbm.2021.105059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
8
Damage Function of a Quasi-Brittle Material, Damage Rate, Acceleration and Jerk during Uniaxial Compression: Model and Application to Analysis of Trabecular Bone Tissue Destruction. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
9
Buccino F, Colombo C, Duarte DHL, Rinaudo L, Ulivieri FM, Vergani LM. 2D and 3D numerical models to evaluate trabecular bone damage. Med Biol Eng Comput 2021;59:2139-2152. [PMID: 34471983 PMCID: PMC8440311 DOI: 10.1007/s11517-021-02422-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/05/2021] [Indexed: 12/25/2022]
10
Li Z, Liu P, Yuan Y, Liang X, Lei J, Zhu X, Zhang Z, Cai L. Loss of longitudinal superiority marks the microarchitecture deterioration of osteoporotic cancellous bones. Biomech Model Mechanobiol 2021;20:2013-2030. [PMID: 34309757 DOI: 10.1007/s10237-021-01491-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
11
Do XN, Hambli R, Ganghoffer JF. Mesh-independent damage model for trabecular bone fracture simulation and experimental validation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021;37:e3468. [PMID: 33896124 DOI: 10.1002/cnm.3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
12
Yadav RN, Sihota P, Uniyal P, Neradi D, Bose JC, Dhiman V, Karn S, Sharma S, Aggarwal S, Goni VG, Kumar S, Kumar Bhadada S, Kumar N. Prediction of mechanical properties of trabecular bone in patients with type 2 diabetes using damage based finite element method. J Biomech 2021;123:110495. [PMID: 34004396 DOI: 10.1016/j.jbiomech.2021.110495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
13
Mohammadi H, Pietruszczak S, Quenneville CE. Numerical analysis of hip fracture due to a sideways fall. J Mech Behav Biomed Mater 2020;115:104283. [PMID: 33412404 DOI: 10.1016/j.jmbbm.2020.104283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
14
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020;23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
15
Salem M, Westover L, Adeeb S, Duke K. Prediction of failure in cancellous bone using extended finite element method. Proc Inst Mech Eng H 2020;234:988-999. [PMID: 32605523 DOI: 10.1177/0954411920936057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
16
Laurent CP, Böhme B, Verwaerde J, Papeleux L, Ponthot JP, Balligand M. Effect of orthopedic implants on canine long bone compression stiffness: a combined experimental and computational approach. Proc Inst Mech Eng H 2019;234:255-264. [PMID: 31608817 DOI: 10.1177/0954411919882603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
17
Shen R, Waisman H, Yosibash Z, Dahan G. A novel phase field method for modeling the fracture of long bones. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019;35:e3211. [PMID: 31062516 DOI: 10.1002/cnm.3211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 03/16/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
18
Kluess D, Soodmand E, Lorenz A, Pahr D, Schwarze M, Cichon R, Varady PA, Herrmann S, Buchmeier B, Schröder C, Lehner S, Kebbach M. A round-robin finite element analysis of human femur mechanics between seven participating laboratories with experimental validation. Comput Methods Biomech Biomed Engin 2019;22:1020-1031. [PMID: 31084272 DOI: 10.1080/10255842.2019.1615481] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
19
Khor F, Cronin D, Watson B, Gierczycka D, Malcolm S. Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation. J Mech Behav Biomed Mater 2018;87:213-229. [DOI: 10.1016/j.jmbbm.2018.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/09/2018] [Accepted: 07/23/2018] [Indexed: 12/01/2022]
20
Mirzaei M, Alavi F, Allaveisi F, Naeini V, Amiri P. Linear and nonlinear analyses of femoral fractures: Computational/experimental study. J Biomech 2018;79:155-163. [DOI: 10.1016/j.jbiomech.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 01/23/2023]
21
Comparative Biomechanical Analysis of Stress-Strain State of the Elbow Joint After Displaced Radial Head Fractures. J Med Biol Eng 2018;38:618-624. [PMID: 30100829 PMCID: PMC6061104 DOI: 10.1007/s40846-017-0334-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/02/2017] [Indexed: 11/28/2022]
22
Necas L, Hrubina M, Cibula Z, Behounek J, Krivanek S, Horak Z. Fatigue failure of the sliding hip screw – clinical and biomechanical analysis. Comput Methods Biomech Biomed Engin 2017;20:1364-1372. [DOI: 10.1080/10255842.2017.1363192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
23
Bettamer A, Allaoui S, Hambli R. Using 3D digital image correlation to visualise the progress of failure of human proximal femur. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2017. [DOI: 10.1080/21681163.2015.1067152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
24
Klein KF, Hu J, Reed MP, Schneider LW, Rupp JD. Validation of a parametric finite element human femur model. TRAFFIC INJURY PREVENTION 2017;18:420-426. [PMID: 28095035 DOI: 10.1080/15389588.2016.1269172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
25
Hip joint geometry effects on cartilage contact stresses during a gait cycle. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017;2016:6038-6041. [PMID: 28269629 DOI: 10.1109/embc.2016.7592105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
26
Ng TP, R Koloor SS, Djuansjah JRP, Abdul Kadir MR. Assessment of compressive failure process of cortical bone materials using damage-based model. J Mech Behav Biomed Mater 2016;66:1-11. [PMID: 27825047 DOI: 10.1016/j.jmbbm.2016.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 11/26/2022]
27
Laurent CP, Böhme B, Mengoni M, d’Otreppe V, Balligand M, Ponthot JP. Prediction of the mechanical response of canine humerus to three-point bending using subject-specific finite element modelling. Proc Inst Mech Eng H 2016;230:639-49. [DOI: 10.1177/0954411916644269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 03/21/2016] [Indexed: 11/15/2022]
28
Sabet FA, Raeisi Najafi A, Hamed E, Jasiuk I. Modelling of bone fracture and strength at different length scales: a review. Interface Focus 2016;6:20150055. [PMID: 26855749 PMCID: PMC4686238 DOI: 10.1098/rsfs.2015.0055] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
29
Bettamer A, Hambli R, Allaoui S, Almhdie-Imjabber A. Using visual image measurements to validate a novel finite element model of crack propagation and fracture patterns of proximal femur. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2015. [DOI: 10.1080/21681163.2015.1079505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
30
Lekadir K, Noble C, Hazrati-Marangalou J, Hoogendoorn C, van Rietbergen B, Taylor ZA, Frangi AF. Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors. Ann Biomed Eng 2015;44:234-46. [DOI: 10.1007/s10439-015-1432-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
31
Hambli R. 3D finite element simulation of human proximal femoral fracture under quasi-static load. ACTA ACUST UNITED AC 2014. [DOI: 10.12989/aba.2013.1.1.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
32
Specimen-specific modeling of hip fracture pattern and repair. J Biomech 2014;47:536-43. [DOI: 10.1016/j.jbiomech.2013.10.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/16/2013] [Accepted: 10/20/2013] [Indexed: 11/17/2022]
33
Linear Elastic Analysis of Bovine Cortical Bone under Compression Loading. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.845.324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body. J Mech Behav Biomed Mater 2013;26:136-47. [DOI: 10.1016/j.jmbbm.2013.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/18/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022]
35
Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength. J Biomech 2013;46:2115-21. [DOI: 10.1016/j.jbiomech.2013.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/29/2013] [Accepted: 07/05/2013] [Indexed: 11/20/2022]
36
A Robust 3D Finite Element Simulation of Human Proximal Femur Progressive Fracture Under Stance Load with Experimental Validation. Ann Biomed Eng 2013;41:2515-27. [DOI: 10.1007/s10439-013-0864-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/06/2013] [Indexed: 01/22/2023]
37
Ridha H, Thurner PJ. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. J Mech Behav Biomed Mater 2013;27:94-106. [PMID: 23890577 DOI: 10.1016/j.jmbbm.2013.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 01/22/2023]
38
Hambli R, Benhamou CL, Jennane R, Lespessailles E, Skalli W, Laporte S, Laredo JD, Bousson V, Zarka J. Combined finite element model of human proximal femur behaviour considering remodeling and fracture. Ing Rech Biomed 2013. [DOI: 10.1016/j.irbm.2013.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
39
Hambli R, Lespessailles E, Benhamou CL. Integrated remodeling-to-fracture finite element model of human proximal femur behavior. J Mech Behav Biomed Mater 2013;17:89-106. [DOI: 10.1016/j.jmbbm.2012.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/16/2012] [Accepted: 08/18/2012] [Indexed: 11/28/2022]
40
Roque WL, Arcaro K, Alberich-Bayarri A. Mechanical competence of bone: a new parameter to grade trabecular bone fragility from tortuosity and elasticity. IEEE Trans Biomed Eng 2012;60:1363-70. [PMID: 23268378 DOI: 10.1109/tbme.2012.2234457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
41
A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Med Biol Eng Comput 2012. [DOI: 10.1007/s11517-012-0986-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA