• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635977)   Today's Articles (648)   Subscriber (50069)
For: Hussain S, Xie SQ, Jamwal PK, Parsons J. An intrinsically compliant robotic orthosis for treadmill training. Med Eng Phys 2012;34:1448-53. [PMID: 22421099 DOI: 10.1016/j.medengphy.2012.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/29/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
Number Cited by Other Article(s)
1
Aliman N, Ramli R, Amiri MS. Actuators and transmission mechanisms in rehabilitation lower limb exoskeletons: a review. BIOMED ENG-BIOMED TE 2024;69:327-345. [PMID: 38295350 DOI: 10.1515/bmt-2022-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
2
Zhou Y, Liu L. Design, Analysis, and Control of A User-Adaptive. J Med Device 2022. [DOI: 10.1115/1.4055521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]  Open
3
Slucock T. A Systematic Review of Low-Cost Actuator Implementations for Lower-Limb Exoskeletons: a Technical and Financial Perspective. J INTELL ROBOT SYST 2022;106:3. [PMID: 35990171 PMCID: PMC9379875 DOI: 10.1007/s10846-022-01695-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
4
Manuli A, Maggio MG, Stagnitti MC, Aliberti R, Cannavò A, Casella C, Milardi D, Bruschetta A, Naro A, Calabrò RS. Is intensive gait training feasible and effective at old age? A retrospective case-control study on the use of Lokomat Free-D in patients with chronic stroke. J Clin Neurosci 2021;92:159-164. [PMID: 34509244 DOI: 10.1016/j.jocn.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/17/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022]
5
Review of control strategies for lower-limb exoskeletons to assist gait. J Neuroeng Rehabil 2021;18:119. [PMID: 34315499 PMCID: PMC8314580 DOI: 10.1186/s12984-021-00906-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/25/2021] [Indexed: 12/20/2022]  Open
6
Hussain F, Goecke R, Mohammadian M. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Proc Inst Mech Eng H 2021;235:1375-1385. [PMID: 34254562 DOI: 10.1177/09544119211032010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
7
Zhu F, Kern M, Fowkes E, Afzal T, Contreras-Vidal JL, Francisco GE, Chang SH. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. J Neural Eng 2021;18. [PMID: 33752175 DOI: 10.1088/1741-2552/abf0d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
8
Choi HJ, Kim GS, Chai JH, Ko CY. Effect of Gait Training Program with Mechanical Exoskeleton on Body Composition of Paraplegics. J Multidiscip Healthc 2020;13:1879-1886. [PMID: 33299324 PMCID: PMC7721297 DOI: 10.2147/jmdh.s285682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]  Open
9
Active Motion Control of a Knee Exoskeleton Driven by Antagonistic Pneumatic Muscle Actuators. ACTUATORS 2020. [DOI: 10.3390/act9040134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
10
Manuli A, Maggio MG, Latella D, Cannavò A, Balletta T, De Luca R, Naro A, Calabrò RS. Can robotic gait rehabilitation plus Virtual Reality affect cognitive and behavioural outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. J Stroke Cerebrovasc Dis 2020;29:104994. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.104994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]  Open
11
Jamwal PK, Hussain S, Ghayesh MH. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies. Proc Inst Mech Eng H 2020;234:444-457. [PMID: 31916511 DOI: 10.1177/0954411919898293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
12
Maggio MG, Torrisi M, Buda A, De Luca R, Piazzitta D, Cannavò A, Leo A, Milardi D, Manuli A, Calabro RS. Effects of robotic neurorehabilitation through lokomat plus virtual reality on cognitive function in patients with traumatic brain injury: A retrospective case-control study. Int J Neurosci 2019;130:117-123. [PMID: 31590592 DOI: 10.1080/00207454.2019.1664519] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
13
Ayad S, Ayad M, Megueni A, Spaich EG, Struijk LNSA. Toward Standardizing the Classification of Robotic Gait Rehabilitation Systems. IEEE Rev Biomed Eng 2018;12:138-153. [PMID: 30561350 DOI: 10.1109/rbme.2018.2886228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
14
Singh R, Chaudhary H, Singh AK. Shape synthesis of an assistive knee exoskeleton device to support knee joint and rehabilitate gait. Disabil Rehabil Assist Technol 2018;14:462-470. [DOI: 10.1080/17483107.2018.1493754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
15
Assist-as-Needed Control of a Robotic Orthosis Actuated by Pneumatic Artificial Muscle for Gait Rehabilitation. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
16
Ma Q, Ji L, Wang R. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients. IEEE Trans Neural Syst Rehabil Eng 2018;26:451-459. [PMID: 29432112 DOI: 10.1109/tnsre.2017.2774295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
17
Liu Q, Liu A, Meng W, Ai Q, Xie SQ. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles. Front Neurorobot 2017;11:64. [PMID: 29255412 PMCID: PMC5722812 DOI: 10.3389/fnbot.2017.00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]  Open
18
Li J, Chen D, Fan Y. An Open-Structure Treadmill Gait Trainer: From Research to Application. JOURNAL OF HEALTHCARE ENGINEERING 2017;2017:9053630. [PMID: 29065662 PMCID: PMC5494776 DOI: 10.1155/2017/9053630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/26/2017] [Indexed: 11/17/2022]
19
Design of an Optimal 4-bar Mechanism Based Gravity Balanced Leg Orthosis. J INTELL ROBOT SYST 2017. [DOI: 10.1007/s10846-017-0466-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
20
Hussain S, Jamwal PK, Ghayesh MH. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study. Comput Methods Biomech Biomed Engin 2017;20:626-635. [PMID: 28349768 DOI: 10.1080/10255842.2017.1282471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
21
Jamwal PK, Hussain S. Design optimization of a cable actuated parallel ankle rehabilitation robot: A fuzzy based multi-objective evolutionary approach. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2016. [DOI: 10.3233/jifs-16030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
22
Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci 2016;37:503-14. [PMID: 26781943 DOI: 10.1007/s10072-016-2474-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/09/2016] [Indexed: 12/18/2022]
23
Cao J, Xie SQ, Das R, Zhu GL. Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Med Eng Phys 2014;36:1555-66. [DOI: 10.1016/j.medengphy.2014.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 11/29/2022]
24
Jamwal PK, Hussain S, Xie SQ. Review on design and control aspects of ankle rehabilitation robots. Disabil Rehabil Assist Technol 2013;10:93-101. [DOI: 10.3109/17483107.2013.866986] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA